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SUMMARY 

Regarding the widespread confusion about the concept and nature of complexity, information and 

biological organization, we look for some coordinated conceptual considerations corresponding to 

quantitative measures suitable to grasp the main characteristics of biological complexity. Quantitative 

measures of algorithmic complexity of supercomputers like Blue Gene/L are compared with the 

complexity of the brain. We show that both the computer and the brain have a more fundamental, 

dynamic complexity measure corresponding to the number of operations per second. Recent insights 

suggest that the origin of complexity may go back to simplicity at a deeper level, corresponding to 

algorithmic complexity. We point out that for physical systems Ashby’s Law, Kahre’s Law and causal 

closure of the physical exclude the generation of information, and since genetic information corresponds 

to instructions, we are faced with a controversy telling that the algorithmic complexity of physics is 

much lower than the instructions’ complexity of the human DNA: Ialgorithmic(physics) ~ 10
3
 bit << 

Iinstructions(DNA) ~ 10
9
 bit. Analyzing the genetic complexity we obtain that actually the genetic 

information corresponds to a deeper than algorithmic level of complexity, putting an even greater 

emphasis to the information paradox. We show that the resolution of the fundamental information 

paradox may lie either in the chemical evolution of inheritance in abiogenesis, or in the existence of 

an autonomous biological principle allowing the production of information beyond physics. 
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INTRODUCTION AND THE MEMORY-DNA PROBLEM 

Brain’s complexity is widely considered in terms of neurons and synaptic connections, e.g. [1]. 

For a number of neurons N = 10
11

 – 10
13

 [2], taking a value for the number of their 

interconnections as a few thousand per neuron c ≈ 10
4
 [3], we obtain for the measure of the 

brain’s complexity the number N1 = Nconnections = c·Nneurons = 10
15

 – 10
17

. The general view is 

assuming a connection (synapse) represents 1 bit of information. In this way, we obtain for 

the information measure of the brain’s complexity a value of I1 = I(human brain) ~ 10
15

 – 

10
17

 bit. Now since algorithmic complexity may be characterized by the size of the memory, 

we obtain that I1 = Ialgorithmic(human brain). The biggest supercomputer today, Blue Gene/L, 

has a memory capacity of 64 TB, corresponding roughly to 5·10
14

 bit, a value not far from 

our brain’s synoptic capacity I1. To put the brain’s algorithmic complexity into context, we 

mention a few related measures. Importantly, Maynard Smith [4] noted that the genetic 

information content of the human DNA corresponds to instructions and it is about I2(DNA) ~ 

10
9
 bit. Since the instructions coded in DNA control all cellular processes [5], we may regard 

genetic information I2 as acting at least at the algorithmic level or deeper, and so I2(DNA) ≤ 

Ialgorithmic(human organism). A third important measure is found in [6] measuring a special 

genetic complexity by the simplest model, in which each gene is either ON or OFF, and so 

a genome with N genes can theoretically encode 2N states. With 30 000 genes indicated to 

be present in the whole human genome, the arising human genetic complexity is a mere I3 = 

Igenetic expression(human organism) ~ 3·10
4
 bit. We obtained the following result: I1 = 

Ialgorithmic(human brain) ~ 10
15

 – 10
17

 bit >> I2(DNA) >> I3 = Igenetic expression(human organism) ~ 

3·10
4
 bit. 

The first fruit of absorbing these complexity measures arises when we recognize a problem: 

how can it be that the genetic complexity of the human organism (including the brain) 

I2 ~ 10
9
 bit is smaller than the algorithmic capacity of the human brain, I1 ~ 10

15
 – 10

17
 bit – 

if the brain receives merely morphological and no algorithmic information from the 

environment through our senses during our lifetime? Would it be possible that the brain 

absorbs somehow algorithmic complexity from the environment as well? Or the complexity 

measures I1 ~ 10
15

 – 10
17

 bit and I2 ~ 10
9
 bit correspond in reality to different levels of 

complexity? To solve this problem (the memory-DNA problem), we will need estimations of 

complexity measures for the brain’s dynamic activity as well as for the algorithmic 

complexity of the environment. 

DYNAMIC MEASURES OF COMPLEXITY 

Let us turn again to the computer-brain metaphor to see whether we can recognize some 

dynamic aspects of complexity that may be useful for further clarification. A measure of 

dynamic complexity is the number of operations per second. The number of operations per 

second in the Blue Gene/L in the third quarter of 2005 is 367 Teraflops – i.e., 3,67·10
14

 

operations per second. This is to be compared to the number of operations in the human brain 

per second. Let us take first operations corresponding to neural action potentials. Considering 

that the visual input into the brain comes through the 10
8
 retinal cells, and 10

6
 retinal cells are 

connected to the brain with axons sending 100 spikes of action potentials per second, 

regarded as carrying 1 bit of information each, one obtains 10
8
 bit per second for the visual 

input into the brain. Assuming that an average neuron processes at a similar rate of 

operations, or 100 operations per second per neuron, we obtain for the 10
11

 – 10
13

 neurons a 

value of 10
13

 – 10
15

 operations per second as the number of “neural operations” in the brain, 

N1 = 10
13

 – 10
15

 operations per second. The close agreement of the dynamic complexity of 

the Blue Gene/L with that of the brain’s neural complexity lends certain plausibility to 
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attempts at modeling the brain in terms of the Blue Gene/L (The Blue Brain project, 

http://bluebrainproject.epfl.ch). 

In reality, neural action potentials do not form a closed chain of events arising from a given 

initial state. Instead, they are continuously influenced by the information flow coming 

through the outer senses, and from internal processes extending from cellular chemical 

reactions up to the level of self-consciousness – by means of processes whose mathematical 

description far transcends the computational capacity of the Blue Gene/L. Therefore, it 

appears that although Blue Gene/L may be suitable to simulate brain’s neural activity, it is a 

poor choice for modeling the brain’s activity at the molecular level. Actually, Blue Gene/L is 

planned to simulate protein folding [7]. 

DYNAMIC COMPLEXITY MEASURES AT THE MOLECULAR LEVEL 

To consider complexity measures corresponding to the molecular level, let us try to estimate 

the number of chemical reactions per second in the human organism. Certainly, the number 

of chemical reactions per second is larger than the number of ATP molecules produced per 

second. Kornberg [8] determined that the average daily intake of about 2500 kcal, 

corresponding to approximately 100 W, translates into a turnover of a whopping 180 kg of 

ATP. This number translates into N2 = NATP(organism) ~ 2·10
21

 ATP molecule production 

per second in the human body. Regarding the fact that the ATP is produced in a chain of 

electron transfer events, and acts though energy coupling that involves the coupling of two 

reactions occurring at the same time, at the same place, typically utilizing the same enzyme 

complex, we find it plausible to assume that the rate of ATP production of NATP(organism) ~ 

2·10
21

 operations per second is smaller than the number of all chemical reactions of the 

human organism, N3 = Nchemical reactions(organism) > 2·10
21

 chemical reactions per second. It is 

clear that both the production of each ATP molecule together with its reactants has to be 

timed so that the energy coupling can take effect, and that this timing is not completely pre-

programmed because it depends on the cellular, intercellular, and global organizational 

levels. Each chemical reaction in the cell may occur sooner or later, here or there, therefore, 

ignoring now the question of redundancy which will be considered later below, one may 

count that at least 1 bit is necessary for their proper timing. Therefore the flux of biochemical 

reactions corresponds to a rate of information production İ1 = İbiochem > 2·10
21

 bit/s. With 

6·10
13

 cells in the body, we obtain a lower limit İlower(cell) > 4·10
7
 bit/s. When this measure 

applies to neurons, we obtain that the dynamic chemical complexity of the brain exceeds by 6 

orders of magnitude the complexity of the neural level. 

ARGUMENTS EVALUATING THE BIOLOGICALLY UTILISED 
PERCENTAGE OF THE THERMODYNAMIC CAPACITY 

i.) It is well known that the biological efficiency of cellular respiration is about 40 %, and 

that the general efficiency of the living organism is also about 40 % [9]. While in 

engineering such a rate of efficiency may be reached, there is a big difference that makes 

sense for complexity measure considerations. In machines, the energy transfer occurs 

through a few macroscopic degrees of freedom, corresponding to the moving constituent 

parts of the machine, in living organisms the energy flux does not flow automatically but 

is utilized by the living organism for molecular processes. Therefore in living organism 

the energy is continuously redistributed on microscopic degrees of freedom, on electronic 

excitation levels, activating just the chemical reactions the occurrence of which is useful 

for biological activities. Therefore in living organism a significant part of microscopic 

degrees of freedom corresponds to the dynamic biological information flux flowing from 

DNA to cellular reactions. This means that the approximately 40 % biological efficiency 
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is related to an astronomically high information flow corresponding to the app. 40 % 

utilization of the thermodynamic capacity of the living organism. 

ii.) Now let us estimate the thermodynamic capacity of the human organism. With a 

metabolism rate of L(organism) ~ 100 W the human body can mobilize an extropy flow 

  Lout/Tout – Lin/Tin ~ 3,3·10
–1

 J·K
-1

·s
-1

 [10], and this translates in information units to İ2 

= İTD(organism) ≈ 3·10
22

 bit·s
-1

. This means that the lower limit of information flux we 

obtained above, İ1 = İbiochem > 2·10
21

 bit·s
–1

 is within an order of magnitude to the 

thermodynamic limit, a fit that may be regarded as quantitatively underpinning our 

argument. Nevertheless, we find it worthwhile to mention some further theoretical and 

quantitative arguments and tests on this point. 

iii.)Ashby [11] pointed out that organization means conditionality, and since biological 

organization extends to the whole of the organism, every molecule’s behavior is 

conditional, contingent on every other molecule’s activity in the cell. There are strong 

indications that biological organization acts at the molecular level, e.g. [12]. Certainly, a 

significant part of the molecules of the cell has to follow highly specific pathways. The 

findings of proteomics, systems biology, and structural biology indicate that the 

organization of chemical reactions occurs simultaneously in intimate interactions between 

the molecular, cellular and higher levels. To make these complex interactions possible, 

Davies [13] noted that biological signals released by nucleic acids do the job to instruct 

ribosomes to assemble proteins, freeing protein assembly from the strictures of chemistry 

and permitting life to choose whatever amino acid sequences it needs. The complex of 

instructing biological signals influence chemical reactions of the cell in a way that is 

highly non-redundant. At present, little is known about how cells integrate signals 

generated by different receptors into a physiological response [14], yet it is clear that 

biological organization at the level of the cell contributes as well as higher and lower 

levels (corresponding to DNA, its genetic and nucletypic roles, cells, individuals, 

populations, species). Petricoin et al. [15] formulated that the ultimate goal of proteomics 

is to characterize the information flow through protein networks that interconnect the 

different and numerous regulatory systems of the organism. There are eleven major body 

regulating systems in human physiology: the circulatory, digestive, respiratory, urinatory, 

skeletal, muscular, integumentary, immune, nervous, endocrine and reproductive systems 

[16] and all of them influences each cell’s chemical reactions. Regarding the non-

redundant character of chemical reactions of the cells we note that evolutionary studies 

had shown that biology attempts to optimize resources. Therefore, it is not implausible to 

conjecture that biological organization may approach its thermodynamic limits, at least 

regarding informational resources. 

iv.) Aoki [17] estimated the entropy production of the human body as 0,259 J·K
-1

·s
-1

. This 

dynamic complexity measure is to be compared with the extropy flow [10] utilised by the 

whole organism. A food intake of 100 W corresponds to 0,325 J·K
-1

·s
-1

. On the basis of 

these crude approximations, we derived the result that nearly 20 % of the total 

thermodynamic capacity of the human organism can be actually utilized for biological 

organization. In contrast, the general view is that the net efficiency of the utilized energy 

income is around 20 – 50 %, and in certain cases it may be even higher. For our present 

purposes, it suffices to recognize that biological organization utilizes a significant part 

(say 20 – 50 %) of the thermodynamic informational capacity. This result also fits well to 

our estimation of the complexity measure İ1 > 2·10
21

 bit·s
-1

, the information flux present 

in biochemical reactions, as compared to the thermodynamic capacity of the organism, İ2 

= İTD(organism) ≈ 3·10
22

 bit·s
-1

. 



Complexity, information and biological organisation 

63 

LEVELS OF BIOLOGICAL INFORMATION 

Having obtained a quantitative and confirmed result for the dynamic chemical complexity 

measure, let us now consider how the levels of complexity are interrelated. Maynard Smith 

[4] realised that one could quantify biological information at three levels. First, at the genetic 

level, the biological information content is app. 2 bit per base. Second, at the selection level, 

a value of İ(evolution) ~ 0,2 bit·year
-1

 is found [18]. We add that one could expect that the 

appearance of the first living cells on the Earth, allegedly by abiogenetic way, would 

contribute to an enormous acceleration of the accumulation of genetic information, in 

comparison to the merely chemical evolution. Apparently, as the above obtained numerical 

measures of complexity show, the case is different. If the first life form has a similar 

complexity to the smallest genome yet found in free living organism, marine α-

proteobacterium (Pelagibacter ubique), having a genome consisting of 1 308 759 base pairs, 

corresponding to app. 1,3·10
6
 bit, than it had to evolve certainly in less than hundred million 

years, and so its rate of developments had to be (much) higher than İlowerlimit(abiotic) ~ 0,013 

bit·year
-1

, a value comparable with Kimura’s İ(evolution) ~ 0,2 bit·year
-1

. These comparable 

values show a sharp contrast with plausible expectations that life is enormously more 

efficient in accumulating information then prebiotic processes. Third, biological information 

can be quantified at the morphological level. But to consider the morphological level, one has 

to be careful, for the genome is not a description of the adult form, but a set of instructions on 

how to make it. Maynard Smith emphasizes that the genome is a recipe, not a blueprint. We 

note that the genetic level corresponds to a complexity level at the algorithmic complexity or 

to a yet deeper level of complexity, regulating the algorithms. We think this is one of the 

main reasons why complexity sciences like cellular automata and self-organization, etc., enter 

into the scene: These sciences also recognize that it is possible to generate apparently 

complex products at the phenomenal level by means of simple physical or mathematical 

rules. Therefore, the real question is not what the degree of complexity at the morphological 

level is, but how complex an organism is at the algorithmic and at deeper levels. 

MEASUREMENT OF BIOLOGICAL COMPLEXITY 

Maynard Smith and Szathmáry [19, p.5] presented Table 1.1 summing up the genome sizes 

and percentages of coding DNA for bacterium (E. coli), Yeast, nematode, fruit fly, newt, 

human, lungfish, and flowering plants. They realized that when we allow for the fact that a 

varyingly small proportion of the DNA codes for anything, we may obtain a combined 

measure as a function of genome size as well as the percentage of coding DNA, a measure 

that makes sense. This measure, the size of the coding DNA, shows a progressive increase 

from bacteria to humans, with some minor exceptions only (lungfish). They noted that what 

this biological complexity measure tells us about structural and functional complexity is very 

limited [19, p.5]. On the basis of their Table 1.1, the coding part of human genome has 

Nbp(coding) ~ 6·10
8
 base pairs. 

COMPLEXITY JUMPS IN THE HISTORY OF LIFE AND THE PROBLEM 
OF ABIOGENESIS 

We find it remarkable that the size of the coding DNA shows a mere hundredfold increase 

from bacteria to humans, from 4·10
6
 base pairs to 6·10

8
 base pairs. It is widely thought that 

terrestrial life were already present within 100 million years after the solidification of the 

Earth’s crust. In this context, it is important to take into account the fundamental fact that the 

laws of physics has a very low information content, since their algorithmic complexity can be 

characterized by a computer program less than a thousand characters [20]. In a personal 
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communication, Chaitin wrote [21]: “My paper on physics was never published, only as an 

IBM report. In it I took: Newton’s laws, Maxwell’s laws, the Schrödinger equation, and 

Einstein's field equations for curved spacetime near a black hole, and solved them 

numerically, giving ‘motion-picture’ solutions. The programs, which were written in an 

obsolete computer programming language APL2 at roughly the level of Mathematica, were 

all about half a page long, which is amazingly simple”. Now one may estimate the 

complexity of a page as approximately 2·10
3
 bit, since the average rate of information 

processing in reading is about 50 bit·s
-1

 [22] and so reading 1,5 pages in one minute the 

information content of a page is about 10
3
 bit. In this way we obtain that the algorithmic 

complexity of physical equations is surprisingly low, Ialgorithmic(physical equations) ~ 10
3
 bit. 

Certainly, the observed flow of environmental information is enormous, but it is 

morphological information, and, apparently, it may arise from a much smaller algorithmic 

complexity through self-organization [23]. Now since we cannot expect that Big Bang (or 

recycling) cosmological models obtained initial conditions corresponding to an algorithmic 

complexity higher than the algorithmic complexity of physical laws themselves, we can 

estimate that the complexity measure of physics, initial and boundary conditions and physical 

equations included, is also about I(physics) ~ 10
3
 bit. 

This means that there is a much larger complexity jump between the early Earth without life 

and the first bacteria (from 10
3
 bit to 4·10

6
 bit, a jump of J1(10

8
 years) ~ 4·10

3
, within about 

10
8
 years) than between the first bacteria and humans (from 4·10

6
 bit to 6·10

8
 bit, a jump of 

J2(4·10
9
 years) ~ 150, during 4·10

9
 years). This fact seems strange, since chemical 

abiogenesis may be thought as apparently unable to accelerate the evolution of complexity 

much faster than life itself. The question inevitable arises: How could chemical evolution 

reach a twenty-seven times higher increase in complexity within a forty times shorter time 

period, than life, if one would expect that biological complexity increase should be relatively 

(much) faster? This is the problem what we count as the problem of abiogenesis. 

QUANTITATIVE RELATION BETWEEN GENOMIC AND DYNAMIC 
INFORMATION 

Maynard Smith and Szathmáry [19, p.5] noted that the number of base pairs of the coding 

DNA is a measure of genomic complexity that makes sense, but what these numbers tell us 

about structural and functional complexity is very limited. It is a general view that DNA 

contains the information necessary to govern biological organization, e.g. [24 – 26]. The 

DNA stores information that controls all cellular processes [5]. 

Now the requirement that the DNA information I2 ~ 10
9
 bit should control İ1 ~ İbiochem > 

2·10
21

 bit·s
–1

 can be satisfied only if we allow that in every time-steps the activation state of 

any base pairs of the DNA may change. Indeed, in order to regulate and control all the 

cellular reactions, DNA has to represent functional information. It was Abel [27] who 

introduced functional sequence complexity (FSC) which is a succession of algorithmic 

selections leading to function, besides the random sequence complexity (RSC) that can be 

simplistically defined as a mathematical function of the number of equiprobable potential 

alphanumeric symbols that could occupy each locus times the number of loci in that sequence 

of symbols and the ordered sequence complexity (OSC) which is exampled by polymers such 

as polysaccharides. Bits of functional information represent binary choices at successive 

algorithmic decision nodes. Algorithms are processes that produce a needed result, whether it 

is computation or the end products of biochemical pathways. Such strings of decision node 

selection are anything but random, and they are certainly not self-ordered by redundant 

cause-and-effect necessity. Abel [27] pointed out that questions relating to the origin of FSC 

are among the most difficult in biology, if not all science. If one would ask, does the FSC 
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originates from OSC and RSC, the best answer would probably be the slang expression: “No 

way!”. The genetic information content of DNA does not originate from the chemical 

sequence of amino acids. Instead, FSC can only be quantified in its relation to biological 

functions actualized in the instantaneous internal and external environment. This is why FSC 

(and its counterpart, our dynamic complexity measure İbiochem) is not highly redundant. Abel 

[27, p.65] adds: “There is a cybernetic aspect of life processes that is directly analogous to 

that of computer programming.” We may realize that computer programming represents a yet 

deeper complexity level than the algorithmic complexity corresponding to the memory 

capacity. Analogously, the DNA complexity (I2 ~ 10
9
 bit) has to correspond to a deeper level 

of complexity than the algorithmic level of the brain (corresponding to I1 ~ 10
15

 – 10
17

 bit), 

and in this way we obtained a solution to the memory-DNA problem. Actually, if it is the 

DNA that plays the dominant role in governing cellular chemical reactions, it has to couple, 

coordinate and determine the timing of chemical reactions. This means that DNA 

corresponds to the deepest complexity level of the organism where the coordinating cellular 

reactions, what are themselves governed by algorithms related to couplings of chemical 

reactions, occurs. The complexity level of DNA corresponds to the regulation of the 

algorithmic complexity of cellular reaction pathways; therefore the genetic complexity is 

deeper than the algorithmic complexity of the memory. 

Requiring that the static but deeper-than-algorithmic complexity of DNA is expressed 

through the mediation of activations of the Nbp(DNA) ~ 10
9
 base pairs of the DNA, its 

information measure I2 ~ 10
9
 bit have to correspond to İ1 ~ İbiochem > 2·10

21
 bit·s

–1
, and so 

from this requirement we became able to determine the length of the time necessary to 

activation of base pairs as t ≈ 4,2·10
-13

 s. Actually, this timescale may be realistic for light-

induced transfer of electrons t(electronic transitions) ≈ 10
-12

 s [28, p.6, Figs. 1-7]. This 

physical requirement seems to fit well with activation timescales. In this way, we obtained a 

conversion between the different forms of information, of its static and dynamic forms, 

converting I2 ~ 10
9
 bit to İ1 ~ İbiochem > 2·10

21
 bit·s

–1
. It is this manner by which the DNA can 

fulfill the natural requirement to be differently activated in the different cells, if necessary, in 

each timesteps. In this way, DNA becomes able to supply the task of timing, to determine 

which chemical reactions should occur in the next timestep. Certainly, the DNA cannot do 

the timing alone, and its activity should be coherent with cellular organization supplying the 

necessary chemicals in the necessary places in the right moments, utilizing also a significant 

part of their thermodynamic capacities. But, in the way we obtained, the dynamic DNA can 

still preserve its key role to allow genetic control over the cellular reactions. 

THE INFORMATION PARADOX: AN APPARENT CONFLICT 
BETWEEN PHYSICS AND BIOLOGY 

While the morphological information of a circle is enormous, its algorithmic complexity is 

minuscule. The basic importance of the fact that simple rules may govern the appearance of 

high phenomenal complexity are already recognized in self-organizing systems, computer 

games, cellular automata [23], and it is widely thought that life’s apparent complexity may 

appear as a product of certain yet-to-be-discovered, presumably simple physical rules. 

Now Ashby’s Law [11] states that “The variety of outputs of any deterministic physical 

system cannot be greater than the variety of inputs; the information of output cannot exceed 

the information already present in the input.” In accordance, Kahre’s “Law of Diminishing 

Information” reads: Compared to direct reception, an intermediary can only decrease the 

amount of information [29, p.14]. Moreover, it is a widely held view nowadays that the chain 

of physical causes forms a closed circle. The hypothesis of the causal closure of the physical 
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[30] maintains (roughly) “that for any event E that has a cause we can cite a physical cause, 

P, for its happening, and that citing P explains why E happened”. Therefore, not only 

Ashby’s and Kahre’s laws but the causal closure thesis is in conflict with the complexity 

measures found in physics and in biology. Now if the algorithmic complexity of one human 

brain is already around I1 ~ 10
15

 – 10
17

 bit, the information paradox consists in the fact that 

the information content of physics is I(physics) ~ 10
3
 bit while that of the whole living 

kingdom is I4 = I(biology) >> I3 = Ialgorithmic(one human organism) > I1 = Ialgorithmic(brain) ~ 

10
15

 – 10
17

 bit. Taking into account also that physics is hopelessly far from being able to cope 

with the task to govern even one human person’s biological activity İ1 ~ 2·10
21

 bit per 

second, it becomes clear that at present, modern cosmological models’ algorithmic 

complexity is much less than the above obtained complexity measures characterizing life. 

Actually, the origin of biological information is widely thought to be in evolutionary biology 

as arising from the environment through natural selection. The problem is now: where does 

the high algorithmic information of the environment comes from, in a universe the behavior 

of which – as it is widely assumed – can be described by physical laws corresponding to a 

mere I(physical laws) < 10
3
 bit? In other words: If the genome obtains its high information 

content from the environment, as it is assumed in evolutionary studies nowadays, how this 

environment could achieve an algorithmic complexity of biological size if it should 

correspond to the much lower algorithmic complexity measure of physics? We may realize 

that we are faced with a complexity paradox corresponding to the relation of physics to 

biology. Apparently, the informational resources of physics are far lower than the complexity 

measures of the brain and, in general, living organisms. 

Certainly, the thermodynamic capacity of modern cosmological models allows the 

development of an information generation process producing information in an astronomical 

rate. Our Sun has a luminosity L(Sun) ~ 4·10
26

 J·s
-1

, corresponding to a thermodynamic 

information capacity of İ3 = İ(Sun) ~ 10
38

 bit·s
-1

 [31, p.183]. There are N(stars) ~ 7·10
22

 stars 

in the observable universe, offering an information flux capacity İ(stars) ~ 10
61

 bit·s
-1

. What 

percentage is utilized from this astronomically high information capacity in the universe? 

What kinds of agents are necessary to utilize the thermodynamic capacity of the universe? 

The problem is: how this vast thermodynamic information capacity is utilized in the universe 

in the nowadays widely assumed absence of cosmic life? One could expect that the 

thermodynamic capacity to generate information can be utilized only by symbol-generating 

agents capable of generating, recognizing, handling and accumulating information. Again, it 

seems that abiotic processes should generate and accumulate information – in sharp contrast 

with the fundamental law of cybernetics (Ashby’s Law [11]); with the fundamental law of the 

mathematical theory of information, the Law of Diminishing Information [29]; and with the 

dogma of the causal closure of the physical. 

In this context, an example may be enlightening. Hoyle [32] pointed out that to solve the 

Rubik cube by one random step in every second, it would take 1,35·10
12

 years. The chance 

against each move producing perfect color matching for all the cube’s faces is about 5·10
19

 to 

1. Now if an intelligence is present, telling after each move if it is successful or not, 

reckoning 1 minute for each successful move and, say, 120 moves to reach the solution, the 

solution of the same Rubik cube may be reached within 2 hours. Certainly, the abiotic 

processes are not completely random – modifying the success ratio with and without 

intelligence from about 10
16

 to somewhat lower. 

We point out that the production of algorithmic information seems not to be possible from 

phenomenal information arriving through the outer senses. The generation of genetic 

information from sensory data seems to be even more implausible. Although it is shown [23] 

that simple algorithmic rules can produce high amount of phenomenal complexity, certainly, 
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the opposite process, the production of algorithmic information from phenomenal information 

is not shown to be possible yet, especially not in the absence of agents that are able to follow 

their own interests and not merely the laws of physics. One cannot expect that rules of games 

will develop from mere aggregate of phenomenal data. Mathematical operations like addition 

and multiplication does not arise from numbers alone. If laws could develop from aggregation 

of phenomena, it would be nomic emergence. Nomic emergence is something completely 

different from property emergence. Not only a different level of phenomena should emerge, but 

casual laws should also emerge simultaneously. But there is no basis “to accept emergent 

causal powers that magically emerge at a higher level of which there is no accounting in terms 

of lower-level properties and their causal powers and nomic connections” [33]. Nomic 

connections are based on generation of algorithmic complexity corresponding to the emergent 

laws. But no algorithmic complexity comes for free. Laws cannot be generated in the universe 

of phenomena. Although chemical symbiosis may be present in abiogenesis [4, p.35], even if it 

could increase the algorithmic complexity of chemical information (a process that already 

requires the existence of agents – and agents should be the output of chemical evolution and not 

its input), it could not generate genetic complexity, since the ordered sequence complexity, as 

Abel [27] had shown, is much simpler than the functional one and functional sequence 

complexity cannot be produced form ordered sequence complexity. 

There exists a popular example of monkeys that can type Shakespeare’s complete oeuvre on a 

typewriter. Actually, to type only one sentence from the Hamlet, consisting of 40 letters, each 

selected from 30 possibilities, it would be necessary to realize 30
40

 ~ 10
59

 trials. Let us 

assume that we have ten billion monkeys – that is, rather more monkeys than there are 

currently people in the world. And let us imagine each monkey hits one key per second. Let 

us further assume that they never stop to sleep or eat or anything else. It will still take more 

than 10
49

 seconds before one of the monkeys has the luck to hit on the right sequence. Now 

one year is about 32 million seconds, so it will take our world population of monkeys about 

3·10
41

 years to get there. Now how would it be possible that the absence of monkeys and 

typewriters, corresponding to the case of chemical abiogenesis, would accelerate the process 

to write an amount of information corresponding to Shakespeare’s whole Hamlet, within a 

mere 10
8
 years? Certainly, one cannot expect that chemical evolution would be able to 

produce useful amount of genetic complexity in the absence of agents. Even in the presence 

of “inanimate agents” it seems highly implausible to expect that the accumulation rate of 

genetic information by chemical abiogenesis in an assumedly physical environment 

(information accumulation in physical systems is excluded by Ashby’s Law, Kahre’s Law 

and causal closure) could produce much higher jump in genetic information than the jump 

produced by life during its 4·10
9
 years of evolution. Why should “inanimate agents”, if they 

may exist at all, be much more efficient than living agents possessing much higher genetic 

complexity? Especially, if the number of regulatory genes grows approximately with the 

square of the total number of genes, as it is shown by genetic experiments [34]. 

SOLUTIONS FOR THE INFORMATION PARADOX 

Within the present state of biology, it seems that there are only two ways out of the 

informational paradox of biology. The established way is that of the abiogenesis [19, 35, 36]. 

They realised a foundational work concerning the details of the chemical evolutionary 

process. The chemoton theory has the ambitious aim to follow chemical evolution until life’s 

development. We think that chemoton theory is basic and will remain fundamental even 

when we turn our attention to a complementary aspect relative to chemical evolution: to the 

quantitative understanding of the origin of genetic information. In the light of the results of 

this paper, it seems that the problems of chemical evolution are larger now than the problem 
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of protein folding was fifty years ago. In this case, we find it reasonable to shed some light on 

another important aspect of the problem that is the weak point of evolutionary theories: how 

to handle complexity. In this paper we try to characterize by numerical measures the process 

coupling autocatalytic cycles into hypercycles and co-operating hypercycles and representing 

genetic information. Only further developments of chemical evolution theories (see [36, 37]) 

may help to understand chemical evolution at the molecular level. With the present paper we 

would like to present a complementary global picture which may shed some light to the 

quantitative aspects of complexity at the algorithmic and genetic levels where coupling 

process occur, in the hope that the simultaneous development of progress from the aspects of 

molecular level and that of the global level may facilitate to bridge the gap between these 

levels much earlier than to proceed in one direction only. 

Our proposal for answering the information paradox concerns the nature of first principles. Let 

us consider the important point that when complex forms develop from simple rules in self-

organization, a static algorithmic complexity generates developing structures, a dynamic 

information of the morphological level. If the algorithmic complexity of the “simple laws” of 

our real world has to be much higher than that of the physical laws, then certainly we will need 

complex rules instead of simple rules producing biological blueprints. But perhaps these 

complex rules (together with their high algorithmic information content) may arise from simple 

laws themselves – again from a deeper level of information. The development of physics in the 

twentieth century had shown that physical laws arise from a much deeper concept: the concept 

of the first principle of physics – the action principle. Apparently, there is an intimate 

connection between the three levels of biological complexity, the morphological, algorithmic 

and genetic levels, and the three levels of science: the phenomenal level of observable 

phenomena, the level of laws, and the level of the first principle of physics, the action 

principle [38]. Morphological complexity seems to be related to the phenomenal, algorithmic 

complexity to the nomic level, and genetic complexity to the principal level. 

The action principle is formulated by Feynman’s path-integral method as arising from virtual 

processes covering a multitude of possible pathways and the resulting physical path will be 

the simple sum or integral of these paths. The integral form of the action principle contains a 

non-negligible surplus over its formulation in differential equations. Differential equations 

need definite initial conditions, while the integral formalism – virtually – includes 

informative interactions with a large set of the environment. Integral principles are 

independent from coordinates, and therefore they can cope with time-dependent boundary 

conditions as well. The apparent teleological behavior of living organisms may correspond to 

computational processes determined at the organism level, where the organism acts as an 

agent, following its own interests and biological needs like survival. Once the biologically 

favourable endpoint of a biological process is prescribed by the organism, the biological 

problem will be simplified, and with the help of the action principle of physics it becomes 

possible to determine the trajectory to be followed, and the organism can realize the 

biological needs by rearranging its internal physical environment. 

Therefore, the solution we offer as an alternative to solve the information paradox of physics 

and biology is to allow agents to follow their biological needs. Agents had been introduced 

into biology, and they are indicated to be present already at the subcellular level [39, 40]. 

Szathmáry [36, 41] pointed out that there are some enzymes can adapt different shapes: in A 

it works as an enzyme, in B it does not. The enzyme function of hormones like adrenalin is 

not determined by physics at all. Nothing makes the structure of adrenalin to act like it does. 

Actually, adrenalin could be used as the opposite effect. An arbitrary coupling occurs 

between the enzyme and its function, and it is just such arbitrary coupling that is at the heart 

of symbolic communication that appears at agents (see also [42]). 
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If our results will be confirmed, it will turn out that biology cannot be reduced simply to 

physics, since its genetic, algorithmic and symbolic information content is much higher than 

that of physics. Our proposal not only allows biology to follow its own, and, necessarily, 

autonomous first principle not derivable from physics, but allows also to approach biology 

from a viewpoint that can make theoretical biology to develop into a science with exactness 

almost reaching the exactness of physics. The first principle of biology (the Bauer principle 

[43]) may be only one step only beyond the action principle of physics, and can be 

understood as its generalization. We propose that biological organization manifests itself in a 

way that decisions are made at the biological level first, and these decisions determine the 

endpoints of physical processes to be reached. By our proposal, biological laws can harness 

physical laws with the help of their enormous and effective information content. 

ACKNOWLEDGMENT 

It is a great pleasure to acknowledge about the inspirations, encouragement and English 

lecturing of a previous version of this paper to my friend, Jean Drew. 

REFERENCES 

[1] Stripling, J.: Introduction to Cognitive Science. 
Neuroscience, 2004, 

http://comp.uark.edu/~jstripli/CogSci-JS-L1-web.pdf, 

[2] Smith, T.E.: Molecular Cell Biology. 
In: Devlin, T.M., ed.: Textbook of Biochemistry. 4

th
 edition. Wiley-Liss, New York, Ch. 22, p.921, 1997, 

[3] Koch, C. and Laurent, G.: Complexity and the Nervous System. 
Science 284, 96-98, 1999, 

[4] Maynard Smith, J.: The Concept of Information in Biology. 
Philosophy of Science 67, 177-194, 2000, 

[5] Woski, S.A. and Smith, F.J.: DNA and RNA: Composition and Structure. 
In: Devlin, T.M., ed.: Textbook of Biochemistry. 5

th
 edition. Wiley-Liss, p.28, 2002, 

[6] Claverie, J.-M.: What if there are only 30,000 human genes? 
Science 291, 1255-1257, 2000, 

[7] Allen, F.; et al.: Blue Gene: A vision for protein science using a petaflop supercomputer. 
IBM Systems Journal 40(2), 2001, 

[8] Kornberg, A.: For the love of enzymes. 
Harvard University Press, Cambridge, p.65, 1989, 

[9] Vander, A.J.; Sherman, J.H. and Luciano, D.S.: Human Physiology. 5
th

 edition. 
McGraw-Hill Publ. Co., New York, p.95. 1990, 

[10] Martinás, K.: Entropy and information. 
World Futures 50, 483-493, 1997, 

[11] Ashby, W. R. 
In: Foster, H.V. and Zopf, G.W., eds.: Principles of Self-Organization. Pergamon Press, Oxford, 

255, 1962, 

[12] Bialek, W. and Setayeshgar, S.: Physical limits to biochemical signalling. 
Proc. New York Acad. Sci. 102, 10040-10045, 2005, 

[13] Davies, P.: Physics and Life. 
In: Chela-Flores, J.; Owen, T. and Raulin, F., eds.: The First Steps of Life in the Universe. 

Kluwer Academic Publishers, Dordrecht, 2001, 

[14] Aebersold, R.: Molecular Systems Biology: a new journal for a new biology? 
Molecular Systems Biology 1, 1, 2005, 

http://comp.uark.edu/~jstripli/CogSci-JS-L1-web.pdf


A. Grandpierre 

70 

[15] Petricoin, E.; Wulfkuhle, J.; Espina, V. and Liotta, L.A.: Clinical proteomics: 

Revolutionizing Disease Detection and Patient Tailoring Therapy. 
Journal of Proteome Research 3, 209-217, 2004, 

[16] Sherwood, L.: Human Physiology. From Cells to Systems. 2
nd

 edition. 
West Publ. Co., Minneapolis-St. Paul-New York, p.7, 1993, 

[17] Aoki, I.: Entropy production in living systems: from organisms to ecosystems. 
Thermochimica Acta 250, 359-370, 1995, 

[18] Kimura, M.: Natural Selection as a Process of Accumulating Genetic Information in 

Adaptive Evolution. 
Genetical Research 2, 127-140, 1961, 

[19] Maynard Smith, J. and Szatmáry, E.: The Major Transitions in Evolution. 
W. H. Freeman – Spektrum, Oxford, 1995, 

[20] Chaitin, G.J.: An APL2 gallery of mathematical physics – a course outline. 
Proc. Japan ’85 APL Symposium, Publ. N:GE18-9948-0 IBM Japan, 1-26, 1985, 

[21] Chaitin, G.J. Personnal communication. 2004, 

[22] Breuer, H.: Informatik. 
DTV-Atlas zur Informatik. Deutscher Taschenbuch Verlag. Kg, München, p.13, 1995, 

[23] Wolfram, S.: A NewKind of Science. 
Wolfram Media, 2002, 

[24] Crick, F.: Central dogma of molecular biology. 
Nature 227, 561-563, 1970, 

[25] Campbell, N.A.: Biology. 4
th

 edition. 
The Benjamin/Cummings Publishing Company, Menlo Park, p.4, 1996, 

[26] Miyano, S.: Gene Networks for Systems Biology. 
http://www.inrialpes.fr/helix/people/sagot/bertinoro2005/bertinoro.html, 

[27] Abel, D.L.: Is life reducible to complexity? 
In: Pályi, G.; Zucchi, C. and Cagliotti, L., eds.: Fundamentals of Life. Elsevier, Paris, 2002, 

[28] Stryer, L.: Biochemistry. 
W.H. Freeman & Comp., p.6 & Figs 1-6, 1995, 

[29] Kahre, J.: The Mathematical Theory of Information. 
Kluwer Academic Publishers, Boston/Dordrecht/London, 2002, 

http://www.matheory.info/chapter1.html, 

[30] Cameron, R. J.: Teleology in Aristotle and Contemporary Philosophy of Biology: An Account 

of the Nature of Life. PhD Thesis. 
University of Colorado, p.244, 2000, 

http://hosting.uaa.alaska.edu/cameron/research/diss/diss.pdf, 

[31] Tribus, M. and McIrvine, E.C.: Energy and Information. 
Scientific American 225(3), 179-188, 1971, 

[32] Hoyle, F.: The Intelligent Universe. 
Michael Joseph Ltd., London, 1983, 

see also http://en.wikipedia.org/wiki/Fred_Hoyle, 

[33] Kim, J. et al., eds.: Supervenence and Mind. 
University of Cambridge, Cambridge, p.326, 1993, 

[34] Schuster, P.: The disaster of central control. An impressive example from nature. 
Complexity 9, 13, 2004, 

[35] Gánti, T.: The Principles of Life. With a commentary by James Griemeser and Eörs Szathmáry. 
Oxford University Press, Oxford, 2003, 

http://www.inrialpes.fr/helix/people/sagot/bertinoro2005/bertinoro.html
http://www.matheory.info/chapter1.html
http://hosting.uaa.alaska.edu/cameron/research/diss/diss.pdf
http://en.wikipedia.org/wiki/Fred_Hoyle


Complexity, information and biological organisation 

71 

[36] Szathmáry, E.: In search of the simplest cell. 
Nature 433, 469-470, 2005, 

[37] Schuster, P.: From self-organization to evolution of RNA molecules: The origin of 

biological information. 
Solid State Phenomena 27, 97-98, 2004, 

[38] Grandpierre, A.: The Dynamics of Time and Timelessness: Philosophy, Physics and 

Prospect for our Lives. 
In: Buccheri, R.; Saniga, M. and Stuckey, W.M., eds.: The Nature of Time: Geometry, Physics 

and Perception. NATO Science Series II. Mathematics, Physics and Chemistry, Vol. 95, Kluwer 

Academic Publishers, Dordrecht-Boston-London, 383-392, 2003, 

[39] Monod, J.: Chance and Necessity. 
Vintage, 1972, 

[40] Emmeche, C.: The Agents of Biomass. 
In: Jürgensen, A. and Ohrt, C., eds.: The Mass Ornament. The mass phenomenon at the turn of 

the millenium. Kunsthallen Brandts Klædefabrik, Odense, 64-79, 1998, 

http://www.nbi.dk/~emmeche/p.biosem.html, 

[41] Szathmáry, E.: Information and information-processing in biological systems. 
talk at the European Forum, Alpbach, 2005, 

[42] Abel, D.L. and Trevors, J.T.: Three subsets of sequence complexity and their relevance 

to biopolymeric information. 
Theoretical Biology & Medical Modelling 2, art. no. 29, 2005, 

http://www.tbiomed.com/content/2/1/29, 

[43] Bauer, E.: Theoretical Biology. In Hungarian. 
Akadémiai Kiadó, Budapest, 32-78, 1967, 

KOMPLEKSNOST, INFORMACIJA I 
BIOLOŠKA ORGANIZACIJA 

A. Grandpierre 

 Opservatorij Konkoly Madžarske akademije znanosti 

 Budimpešta, Madžarska 

SAŽETAK 

Raširena konfuzija oko koncepta i prirode kompleksnosti, informacije i biološke organizacije motivirala nas je na 

koordinarana konceptualna razmatranja kvantitativnih mjera prikladnih za izdvajanje značajki biološke kompleksnosti. 

Kvantitativne mjere algoritamske kompleksnosti superračunala poput Blue Gene/L su uspoređene s kompleksnossti 

mozga. Pokazujemo da je i računalu i mozgu pridružena fundamentalnija, dinamička mjera kompleksnosti koja odgovara 

broju operacija u sekundi. Noviji uvidi upućuju na to da izvor kompleksnosti može biti u jednostavnosti na višoj razini, 

što odgovara algoritamskoj kompleksnosti. Ashbyev zakon, Kahreov zakon i kauzalna zatvorenost fizikalnih sustava 

isključuju nastajanje informacija. Budući da genetske informacije predstavljaju upute, nailazimo na paradoks da je 

algoritamska kompleksnost fizike znatno manja od kompleksnosti uputa u ljudskoj DNK: Ialgoritam(fizika) ~ 10
3
 bit << 

Iupute(DNK) ~ 10
9
 bit. Analizirajući genetsku kompleksnost dobivamo da genetska informacija odgovara stupnju 

kompleksnosti višem od algoritamske, što dodatno pojačava informacijski paradoks. Naposljetku, pokazujemo da 

razriješenje informacijskog paradoksa može biti ili u kemijskoj evoluciji nasljeđa u abiogenezi, ili u postojanju 

autonomnog biološkog principa koji omogućava generiranje informacija van fizike. 

KLJUČNE RIJEČI 

razine kompleksnosti, računalo i mozak, algoritamska kompleksnost, kompleksnost i informacija, temeljni 

informacijski paradoks prirodnih znanosti 
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