
1 INTRODUCTION

Discrete event control theory was introduced in
a series of papers by Ramadge and Wonham and
their co-workers [1, 2, 3]. There the control theory
for discrete event systems was formulated through
the concept of supervisory control. The controllabi-
lity conditions were studied and the optimal control
was formulated in the sense of maximally permis-
sive controller, which does not restrict the behavi-
our of the system more than necessary. Modular
approach was also presented.

Several other researchers continued the develop-
ment of the basic theory with the studies of obser-
vability, normality, hierarchical control, and the
number of published theoretical papers is substan-
tial.

On the other hand, the reports on application of
the supervisory control are rather rare. One of the
first among them is the paper of Balemi et al. [4]
describing the application in the semiconductor in-
dustry. Other papers report the applications in pro-
tocol conversion, transaction execution in database
systems, automated highway systems, etc. Applica-
tion of supervisory control theory to control syn-
thesis for an assembly line is reported in [5].

In this paper we investigate the application of
supervisory control theory to design a control pro-
gram that will be implemented by a programmable
logic controller (PLC). PLCs are one of the most
commonly used implementation platforms and the
majority of industrial automation solutions are cur-
rently based on PLCs.

The traditional approach to PLC programming is
mainly concerned with the application of different
programming languages. Severe efforts to unify the
diverse programming techniques resulted in the in-

ternational standard IEC 61131-3 [6]. The standard
defines common elements and specific syntax of
four programming languages (Instruction List,
Structured Text, Function Block Diagram, Ladder
Diagram) plus additional language for structuring
the code (Sequential Function Chart).

While many efforts have been taken to improve
the programming techniques, less has been done on
the design of the control logic itself. The key to the
success of the controller program lies in the cor-
rectness of the underlying logic. An approach com-
monly used in the computer science is to verify the
program code by formal techniques. Recently, seve-
ral papers have been published on the verification
techniques for the PLCs, a survey may be found in
[7]. The main idea of the verification approaches is
to verify the correctness of the code that has been
programmed in the usual way.

What we investigate here is the complementary
approach, i.e. a systematic design procedure that
would result in an automatically generated code,
correct by design. The procedure consists of several
design phases, from system modelling, followed by
specification of control requirements to control syn-
thesis and implementation. The supervisory control
theory is applied in the control synthesis phase
while implementation is performed within the IEC
61131-3 compliant programming environment. A
similar approach is reported in [5]. The main differ-
ence is in implementation where we use a pro-
grammable logic controller instead of a personal
computer and a dedicated software.

The paper is structured as follows. In the next
section a brief overview of the discrete event con-
trol theory is given. Then the proposed design pro-
cedure is described and a simple application exam-
ple is presented at the end of the paper.

Ga{per Mu{i~, Drago Matko

Discrete Event Control Theory Applied to PLC Programming

UDK 681.518.5:004.4
IFAC IA 4.2;2.8

Professional paper

In the paper we present an implementation method for controllers designed by discrete event control theory.
Controllers are implemented by standard programmable logic controller and IEC 61131-3 compliant programming
software.

Key words: discrete event systems, programmable controllers, supervisory control

AUTOMATIKA 43(2002) 1−2, 21−28 21

ISSN 0005−1144
ATKAAF 43(1−2), 21−28 (2002)

2 DISCRETE EVENT CONTROL THEORY

The supervisory control theory was introduced in
[1] as an attempt to build up a control theory for
discrete event systems. The process that is con-
trolled is modelled as a deterministic finite state
automaton [8], interpreted as a generator of a for-
mal language L(G).

2.1 Formal languages

One of the possible representations of dynamics
of discrete event system is to write possible event
sequences the system can generate. Let symbol σ
represent an event in the system. The system can
generate a finite set of distinguished events. Rela-
ted symbols form a nonempty finite set Σ, also na-
med an alphabet of the system.

A string, also called trace or word is a finite set
of symbols, e.g. s = σ1σ2σ3σ4. Length of a string |s| is
a nonnegative integer, equal to the number of sym-
bols forming the string. A string with length 0 is an
empty string denoted as ε. The concatenation of
strings: s = s1s2 is the string of symbols of s1 fol-
lowed by the string of symbols of s2. The empty
string is the identity element for the operation of
concatenation: εs = sε = s.

The set Σ* is a set of all finite strings of ele-
ments of Σ including the empty string ε. The langu-
age is defined as a subset of Σ*. Standard set ope-
rations union, intersection, set difference, comple-
ment (relative to Σ*) are defined over the langua-
ges of Σ*.

If s′t = s and s, s′,t∈ Σ*, then s′ is a prefix of s. A
prefix closure of a language L ⊆ Σ* is defined as

. is again a language:

. L is prefix closed if .

2.2 Automaton as a generator of a formal language

A deterministic automaton is defined as a five-
-tuple

G = (X, Σ, δ, x0, Xm) (1)

where X is a set of states, Σ is a set of symbols, asso-
ciated with events in the automaton. δ : X× Σ → X is
a state transition function of G and is in general a
partial function on its domain. x0 is the initial state
of the automaton G, Xm is a subset of states, called
a set of marker states.

The set of marker states Xm enables to designate
a set of states with special meaning, e.g. states
where different tasks in the system are completed.
It is a common request that a system is capable of
returning to one of the marker states at any mo-
ment.

L L=L L⊆

LL s t st L= ∈ ∃ ∈ ∈Σ Σ*; *,l q

The state transition function δ of a generator G
is extended from X × Σ to X × Σ* in a recursive
manner: δ(x, ε) = x, δ(x, sσ) = δ(δ(x, s), σ), for s ∈ Σ*
and σ ∈ Σ whenever x′ = δ(x, s) and δ(x′, σ) are de-
fined.

A generator G may be represented as a directed
graph with a set of nodes X, where there exist a
connection x→ x′, labeled σ, for every triple (x, x′, σ),
such that x′ = δ(x,σ). The generator G is interpreted
as a device, which enters state x0 when switched on
and then changes its state following the graph. A
symbol is generated at every transition. The transi-
tions between states occur spontaneously, asynchro-
nously, and in an instant. The described model does
not include any event selecting mechanism nor
time.

The language generated by the generator G is

L(G) = {s∈Σ*; δ(x0, s) is defined} (2)

The language marked by G is

Lm(G) = {s∈ L; δ(x0, s)∈ Xm} (3)

L(G) is interpreted as a set of all finite event se-
quences that may occur in the automaton. Lm(G) is
a subset of event sequences that end in marker sta-
tes. It is not required that the generator stops the-
re, it may continue with the symbol generation. If G
is a generator, the language L(G) is prefix closed:
L(G) = L(G); which is not always true for Lm(G).

If the set of states X is finite, G is a finite auto-
maton. The class of finite automata is particularly
interesting for implementation. The class of langua-
ges that may be represented by finite automata is
the class of regular languages.

2.3 Composition of automata

Complex models may be built by composing sim-
pler automata. Two basic composition operations
exist: product, denoted by ×, and parallel composi-
tion, denoted by || . Operation || is often called syn-
chronous product and × is sometimes called totally
synchronous product.

Denote a pair of automata as

G1 = (X1,Σ1,δ1, x01,Xm1) and G2 = (X2,Σ2,δ2, x02,Xm2).

In the product G1 × G2, transitions in the two au-
tomata must always be synchronised on a common
event, that is an event in Σ1 ∩ Σ2. Other events can-
not occur at all. In the parallel composition G1 || G2,
the two automata are only synchronised on com-
mon events, while other events may occur whenever
possible. The composed automaton is

G1 || G2 = Ac(X1 × X2, Σ1 ∪ Σ2, δ, (x01, x02), Xm1 × Xm2)

(4)

22 AUTOMATIKA 43(2002) 1−2, 21−28

G. Mu{i~, D. MatkoDiscrete Event Control Theory ...

where Ac denotes the accessible part of the au-
tomaton, i.e. automaton where only the states that
can be reached from its initial state are kept. The
state transition function in the composed automa-
ton is defined as:

(5)

When Σ1 = Σ2, all events must occur synchronously
therefore G1 || G2 = G1 × G2.

2.4 Supervisory control

The supervisory control concept deals with a dis-
crete event system whose behaviour is restricted by
an external controller called supervisor.

if and

defined

if defined,

if defined,

undefined otherwise

1 2

1 1 2 2
1 1 2 2

1 1
1 1 2

2

2 2
1 2 2

1

((,),)

(,) (,)
(,), (,)

(,)
(,),

(,)
, (,)

x x

x x
x x

x
x x

x
x x

δ σ

δ σ δ σ
δ σ δ σ

δ σ
δ σ

σ

δ σ
δ σ

σ

Σ

Σ

=





 ∉= 



∉


are disabled. Not every event can be disabled. The
set of events is therefore divided into a subset of
controllable and a subset of uncontrollable events:
Σ = Σc ∪ Σu, Σc ∩ Σu = 0/.

The uncontrollable events are either generated by
the process itself and cannot be controlled or must
not be blocked by an external agent due to the sa-
fety of other requirements. The process events are
denoted by Σpr in Figure 2 while Σco denotes the
events generated by the local controller. It follows
that Σpr ⊆ Σu and Σc ⊆ Σco.

Supervisory control synthesis methods enable the
computation of the supervisor that is maximally
permissive. That means the resulting closed-loop
system meets the demands about the system behavi-
oural restrictions, while the supervisor never tries to
block an uncontrollable event and at the same time
does not restrict the system more than necessary.
The key issues are the concept of controllability [1]
and a concept of supremal controllable sublanguage
[2].

The main problem of the related design proce-
dures is the large number of states in automata that
represents real systems. The testing of controllabil-
ity and calculation of supremal controllable sublan-
guage involve searching over the state space of an
automaton. The so-called state explosion may be
avoided by hierarchical and modular approaches.

3 SUPERVISORY CONTROL SYNTHESIS OF LOGIC

CONTROLLER

The local controller in Figure 2 is supervised by
the supervisor, which limits its behaviour. This su-
pervisor is unnecessary in the case when the beha-
viour of the controller is defined as a sublanguage
of the supervised behaviour of the system. This
brings us back to the original setup of Ramadge
and Wonham (Figure 1) but with the different in-
terpretation of the controller S – a logic controller.

AUTOMATIKA 43(2002) 1−2, 21−28 23

G. Mu{i~, D. Matko Discrete Event Control Theory ...

Fig. 1 Feedback loop of supervisory control

The supervisor (Figure 1) does not uniquely de-
termine the next event to occur in a system; it me-
rely monitors events generated by the system and
determines the set of allowable events that can oc-
cur at any instant (γi in Figure 1). In this way the
supervisor actually intervenes only in cases when
some undesired process behaviour is about to take
place. The control effect is restricted to prevention
of certain events in the system.

The supervisor is computed based on the »open-
-loop« system model that can be given as a finite
automaton. Commonly, the open-loop model (G in
Figure 1) represents a locally controlled process; it
therefore includes the process and the local control
mechanisms (Figure 2).

Supervisory controller action is to define a set of
enabled events that are permitted to occur with re-
gard to the sequence of the past events. The events
that are not included in the set of enabled events

Fig. 2 Supervisory control

The logic controller activity is not limited to
monitoring the process events and providing a set
of enabled events. It is extended to actively trigger
events that result in the state changes of the actu-
ating elements of the process. The controller there-
fore actively drives the process through a desired
event sequence.

Note that this does not present any contradiction
with the original supervisory control framework. In
the closed loop of the supervisory control there is
no implication on the causal order of events or
about the event triggering mechanism. The only re-
quirement is that the events in the process and the
controller must be synchronised [9]. Since the con-
troller is designed to generate a subset of the allo-
wed behaviour, all the control specifications are ful-
filled.

The proposed design procedure is schematically
shown in Figure 3 and described in the following
sections.

Every device is modelled independently as a fi-
nite automaton. Only those event sequences are in-
cluded in the model that are physically possible.
E.g., a pneumatic piston equipped with two limit
switches at both ends and an electro-pneumatic val-
ve on the pressure supply may not generate a sequ-
ence of two switch state changes without a change
of the state of the valve in between.

In general, change of the state of an actuator is
physically possible at any moment (events Σco in
Figure 2) while sensor events (denoted by Σpr in
Figure 2) depend on the state of the actuators.

Even if certain sequence of actuator events is
physically possible it may not be allowed (e.g. for
safety reasons). This requirement, however, is not
part of the process model but belongs to the con-
trol specification.

The complete model of the process may be ob-
tained by parallel composition of device models.
The number of states in such a model increases ex-
ponentially with the number of devices so modular
approach [3] to the control design must be adopted.

3.2 Specifications

Control specifications define the desired behavi-
our of the process. This is related to desired system
operation, e.g. completing of tasks in the specified
order, and additional measures to assure safety, co-
-ordinate subprocesses, prevent deadlocks, etc.

Therefore the specifications are split up in two
parts. The first part deals with the sequential speci-
fication and defines prescribed order of tasks. It
consists primarily of events related to sensor readings.
The second part involves prevention of undesired
behaviour. It is composed of the so-called inter-
locks, and includes primarily events related to actu-
ator states.

Every specification is modelled as a single auto-
maton that generates desired event sequences. Si-
milarly as with the process model, different parts of
the control specifications are combined with paral-
lel composition of the related automata. When mo-
dular approach is used, only specifications related
to a single device are used at a time.

3.3 Supervisory control synthesis

Once the model of the process and the specifi-
cation model are obtained the supervisor is de-
signed in a formal way, according to procedures de-
scribed in [1, 2]. The result is an automaton that
may be used to implement the supervisor. In our
approach, we do not implement the supervisor di-
rectly but extract a logic controller first.

24 AUTOMATIKA 43(2002) 1−2, 21−28

G. Mu{i~, D. MatkoDiscrete Event Control Theory ...

Fig. 3 Design procedure

3.1 Modelling

Modelling of the process aims to capture all the
possible event sequences in the system that has to
be controlled. Looking from the viewpoint of the
logic controller, process events are changes in the
states of sensing and actuating elements. Due to
physical setup of the system, only a subset of all
sensors and actuators are directly related. Accor-
ding to this relation the process is decomposed in-
to a set of subsystems that we call devices.

3.4 Logic controller extraction

The logic controller must generate a subset of
the behaviour that is allowed by the supervisor –
the admissible behaviour. It is extracted by inspec-
ting the state transition graph of the automaton
model of the admissible behaviour.

In every node of the graph, a set of enabled
controllable events is determined. One of them is
chosen as the preferred event. The criteria the pre-
ferred event is chosen upon depend on the desig-
ner. One criterion may be, e.g., to try to complete
the tasks (reach the marker states) in the minimal
number of steps.

The table of chosen controllable events is built
up and stored for later use in the implementation
phase. The arcs related to chosen controllable event
and all the uncontrollable events are retained while
other may be deleted from the state transition
graph. Note that this is not absolutely necessary
since the choice among the events is based on the
control table.

3.5 Logic controller implementation

The result of the controller extraction is a finite
state model of control logic and the table of events
that should be generated in its states. This model
may be coded in a program of a logic controller in
a rather straightforward way. The standard IEC
61131-3 provides different programming languages
that may be used for this purpose. Since the re-
quired set of operations in our case is very basic,
the choice of programming language is more or less
a matter of programmer's preference. Here we
show the implementation by ladder diagram, which
is one of the classical tools for programming logic
controller.

Beside the programming languages, the standard
IEC 61131-3 provides also means for structuring
the code in the modular and hierarchical way.
When using modular approach as suggested above,
the so-called function blocks may be of advantage.
For every device, a function block is defined. Such
a block in a general form is shown in Figure 4.

Inputs to the function block are current states of
all the sensors and actuators related to particular
device. Additional inputs are »Reset«, which returns
the implemented automaton in the initial state, and
»Enable« which controls whether state transitions
inside the block are allowed or not.

The body of the function block is implemented
by ladder diagram consisting of several sections. Ty-
pical program sections are shown in Figures 5 to 8.

AUTOMATIKA 43(2002) 1−2, 21−28 25

G. Mu{i~, D. Matko Discrete Event Control Theory ...

Fig. 4 Function block representing controller for a single device

Figure 5 shows a part of the event detection
section, where events are expressed as transitions of
the states of sensors and actuators.

Figure 6 shows the reset section, where the ini-
tial state of the automaton is established when a
»Reset« input equals 1.

Fig. 5 Event detection section of the ladder diagram

Fig. 6 Reset section of the ladder diagram

Figure 7 shows a part the state transition section,
where the actual state transition logic is pro-
grammed. The »Enable« signal is reset after any
successful state transition, which assures only one
state transition occurs in a single program cycle and
no output event is lost. In case of simultaneous
events the priority of state transitions is established
by correct sequencing of the rungs of the ladder
diagram. The top-most rung corresponds to the
state transition with the highest priority.

Finally, the output section is shown in Figure 8.
The outputs of the function block are set or reset
according to the internal states of the block. The
set of states that participate in generation of a par-
ticular event is determined by the control table.
The outputs are interpreted as requests for actions.
The actual change in the state of the actuator de-
pends on the agreement of eventual other function
blocks that deal with the same actuator. This con-
cept enables a true modular approach, with possi-
bility of interlocking and coordination above the
device level. Since state transitions inside blocks de-
pend on actual state of the actuators, the requested
action that is blocked by external agent does not in-
fluence the correct state transition sequence in the
block. The possibility of deadlock, which is inherent
in such an architecture, must be avoided in the su-
pervisory control design stage.

4 EXAMPLE

The application of the above described concept
is illustrated by a simple example. Figure 9 shows a
part of a laboratory model of a modular production

system. The system consists of five working stations,
controlled by five programmable logic controllers
[10]. Two of the stations are shown in Figure 9.

We design a simple control logic that will move
the arm of the manipulator, which moves the work-
pieces between the two stations. The arm is equip-
ped with two limit switches to signal the left (sl)
and right (sr) position. There is also a bidirectional
pneumatic gear that moves the arm. The movement
is initiated by opening one of the corresponding
electro-pneumatic valves (ar – movement right, al –
movement left). If both valves are closed or ope-
ned, the arm holds its position.

Model of the arm is shown in Figure 10. Events
are labelled by the label of the related sensor/actu-
ator followed by the subscript indicating the transi-
tion of the corresponding signal (1 – transition
from 0 to 1, 0 – transition from 1 to 0). The initial
state is designated by arrow pointing to the state
while marker states are designated by arrows poin-
ting out from the states.

26 AUTOMATIKA 43(2002) 1−2, 21−28

G. Mu{i~, D. MatkoDiscrete Event Control Theory ...

Fig. 7 State transition section of the ladder diagram

Fig. 8 Output section of the ladder diagram

Fig. 9 Manipulator in the modular production system

Fig. 10 Model of the manipulator arm

Any sequence of state changes of the actuators
is possible, while changes of the sensor states de-
pend on the movement of the arm caused by the
particular sequence of actuator events.

The sequential specification is very simple in this
example; we only want to move the arm cyclically
between the two end positions (Figure 11). The ini-
tial state is assumed on the left while both states
are marker states indicating that any end position
can be interpreted as the completed task.

An additional specification may express the re-
quirement that both electro-pneumatic valves must
not be opened at the same time. An exception to
this is the initialisation phase, where this is actually
required in order to fill the gear with the air. The
aim of this is to provide sufficient damping of the
movement.

This requirements are modelled by the interlock
specification in Figure 12. Note that a change of
the state of a sensor is used as an indication that
the initialisation phase has terminated. After this,
activation of an actuator must be followed by its
deactivation, before the other one may be activated.

Finally, the model of the controller is imple-
mented in the ladder diagram as described in the
previous section. The related diagram is not shown
here for space limitation.

AUTOMATIKA 43(2002) 1−2, 21−28 27

G. Mu{i~, D. Matko Discrete Event Control Theory ...

Fig. 11 Sequential specification for the manipulator arm

Fig. 12 Interlock specification for the manipulator arm

The process model and the specification are used
as input to the synthesis of the supervisor. All the
sensor events are considered as uncontrollable and
the maximally permissive supervisor is searched for.
The corresponding algorithm was implemented in
Matlab according to [2]. The result is the automa-
ton model of the admissible behaviour (Figure 13)
that may be used for supervisor implementation.

The controller model is extracted from the au-
tomaton in Figure 13 by taking a single path thro-
ugh its state transition graph. The result of this
procedure is shown in Figure 14.

Fig. 13 Supervisor of the manipulator arm

Fig. 14 Logic controller of the manipulator arm

5 CONCLUSIONS

The design procedure presented in this paper is
well suited to design of the basic control logic for
individual devices in manufacturing systems. Except
the modelling stage, most of the design steps may
be automated and this is one of the issues of the
future work.

The other issues that are currently investigated
are related to the interactions between devices. The
main design problem here is to avoid deadlocks,
which may require another supervisory layer of the
control logic. The complexity of such a supervisor
may be considerable, what limits the practical ap-
plicability of the proposed method. On the other
hand, coordination between stations has already
been studied in the Petri net framework [10] and
the possibilities of integration of the two approach-
es are also investigated.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial
support of the Ministry of Education, Science and Sport
of the Republic of Slovenia under grant J2-2417-1538-01,
which was used to finance part of this work.

REFERENCES

[1] P. J. Ramadge, W. M. Wonham, Supervisory Control of a
Class of Discrete Event Processes. SIAM J. Control and
Optimization, vol. 25, no. 1, pp. 206–230, 1987.

[2] W. M.Wonham, P. J. Ramadge, On the Supremal Controll-
able Sublanguage of a Given Language. SIAM J. Control
and Optimization, vol. 25, no. 3, pp. 637–659, 1987.

[3] P. J. Ramadge, W. M.Wonham, Modular Feedback Logic for
Discrete Event Systems. SIAM J. Control and Optimiza-
tion, vol. 25, no. 5, pp. 1202–1218, 1987.

[4] S. Balemi, G. J. Hoffmann, P. Gyugyi, H.Wong-Toi, and G.
F. Franklin, Supervisory control of a rapid thermal multi-
processor. IEEE Transactions on Automatic Control, vol.
38, no. 7, pp. 1040–1059, 1993.

[5] V. Chandra, S. R. Mohanty, R. Kumar, Automated Control
Synthesis for an Assembly Line Using Discrete Event Sy-
stem Control Theory. Proc. of the American Control Conf.,
pp. 4956–4961, Arlington VA, June, 2001.

[6] ..., IEC, International Electrotechnical Commission, Pro-
grammable Controllers – Part 3: Programming Languages,
Publication 61131.3, 1993.

[7] G. Frey, L. Litz, Formal methods in PLC programming.
Proc. of the IEEE SMC 2000, Nashville, TN, 2000.

[8] C. G. Cassandras, S. Lafortune, Introduction to Discrete
Event Systems. Kluwer Academic Publishers, 1999.

[9] W. M. Wonham, Notes on Control of Discrete Event Sy-
stems. University of Toronto, 1999.

[10] G. Mu{i~, D. Matko, Petri Net Based Control of a Modular
Production System. Proc. IEEE International Symp. on In-
dustrial Electronics, vol. 3, pp. 1383–1388, Bled, Slovenia,
1999.

[11] G. Mu{i~, D. Matko, Petri Net Based Supervisory Control
of Flexible Batch Plants. Prepr. 8th IFAC Symp. on Large
Scale Systems: Theory & Application, vol. II, pp. 989–994,
Rio Patras, Greece, 1998.

28 AUTOMATIKA 43(2002) 1−2, 21−28

G. Mu{i~, D. MatkoDiscrete Event Control Theory ...

Primjena teorije upravljanja diskretnim doga|ajima u programiranju PLC-ova. U radu su prikazane realizaci-
je regulatora zasnovanog na teoriji upravljanja diskretnim doga|ajima. Regulatori su realizirani pomo}u standard-
nih programirljivih kontrolera i u skladu s IEC 61131-3 programskom podr{kom.

Klju~ne rije~i: sustavi diskretnih doga|aja, programirljivi kontroleri, nadzorno upravljanje

AUTHORS’ ADDRESS:

Asst. Prof. Dr. Ga{per Mu{i~
Prof. Dr. Drago Matko
Faculty of Electrical Engineering, University of Ljubljana,
Tr`a{ka 25, 1000 Ljubljana, Slovenia.
E-mail: gasper.music@fe.uni-lj.si, drago.matko@fe.uni-lj.si.

Received: 2002−10−05

