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l.INTRODUCTION

Those trying to explain the world we live in have

always hoped that, in the realm of complexity and

irregularity observed in nature, simplicity would
be found behind everything, and unpredictable
events would finally become predictable.
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Izvorni znanstveni rad

In recent decades, the theoretical understanding

of some complex dynamic systems has undergone

a rapid development. By dynamic system, we mean

a system whose evolution from some initial state

can be described by a set of rules. These rules may

be conveniently expressed by sets of differential
equations. Dynamic systems also include systems
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Abstract - In this study the time series of monthly averages of temperature, cloudiness and solar

radiation are analyzed to investigate the chaotic properties of the local climate, and the possibility of
the estimation of an minimum number of independent variables necessary to model the time evolution
of the underlying climate system. The analysis of observations is based on a statistical procedure,

called "correlation algorithm", leading to the measures of dimensionality or degrees of freedom which

control the underlying dynamics. The results show that there is no indication of the existence of a low-
dimensional attractor of the Zagreb-Grid time series.

Within a climate system, it is possible to isolate a three-variable subsystem, conffolling the large

amplitudes of the local climate. These are: temperature, cloudiness and solar radiation. The existence

of autocorrelation in the time series, due to solar radiation, has enabled the detection of a low-dimen-

sional attractor. When the seasonal cycle has been theoretically filtered out of the series, the correla-
tion disapped, as well as the low-dimensional climate subsystem.
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Saietak - U radu su analizirani vremenski nizovi mjesednih srednjaka temperature, naoblake i
Sundevog zra(enja opservatorija Zagreb-Grid u razdoblju 188-1995, s ciljem ispitivanja njihovih
kaotidnih osobina, i moguinosti odredivanja minimalnog broja neovisnih varijabli potrebnih za opis

vremenske evolucije pripadnog klimatskog sistema. Analiza se zasniva na statistidkoj metodi pozna-

toj kao korelacijski algoritam, i daje moguinost radunanja mjera dimenzionalnosti odnosno broja stup-

njeva slobode pripadnog dinamidkog sistema. Rezultati primjene metode pokazuju da nije moguie
doii do korelacijske dimenzije atraktora, odnosno da niskodimenzionalni gridki atraktor ne postoji.

Unutar klimatskog sistema moZe se izdvojiti podsistem, karakteriziran sa samo tri varijable koje opisu-
ju utjecaje velikih amplituda djelovanja: temperaturom, naoblakom i Sundevim zradenjem. Postojanje

klimatskog podsistema unutar nizova mjesednih srednjaka uzrokovano je autokorelacijom zbog pre-

vladavajuieg utjecaja Sundeva. zradenja. Eliminacija tog utjecaja ima za posljedicu i5dezavanje

autokorelacije, odnosno niskodimenzionalnog atraktora lokalnog klimatskog podsistema.

Kliuine rrTec'i: klimatski atraktor, klimatski sistem
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where the exact present state oply approximately
determines a near future state; but there is no assur-
ance that distant future states will be even approxi-
mately determined. This extended definition cov-
ers many real physical systems, whose behavior
commonly involves at least some randomness or
uncertainty. Among these systems a prominent one

is the atmosphere plus its immediate surroundings.

Low-order models, and, indeed, many larger
models, are examples of dynamic systems. The
theory of dynamic systems, or the qualitative theo-
ry of ordinary differential equations, dates back at
least to Poincare, but it has experienced a surge of
interest in the past decade. A dynamic system may
consist of any finite number of equations, but, for
obvious reasons, the most thoroughly examined
systems have been small ones. Low-order models
of the atmosphere and other fluid systems have
provided pure mathematics with many of their spe-
cific examples. The best example is the system
created by Lorenz (1963), a three-coefficient sim-
plification of a Galerkin approximation originally
developed for studying the Rayleigh-Benard con-
vection, which has been cited many times during
the last decade.

Dynamic systems are commonly described in
geometrical terms. The dependent variables are
treated as coordinates in a multidimensional space.

A particular state then becomes a point in space.
As the state varies in accordance with the equa-
tions, it traces out a trajectory, or orbit. An exact
periodic solution becomes a closed curve, while a

steady-state solution becomes a fixed point, which
is treated as a special type ofclosed orbit. Two dis-
tinct orbits cannot intersect, although they can ap-
proach each other asymptotically.

Over the last decades scientists from many disci-
plines have accepted a new way of looking at com-
plex dynamic systems: chaos theory. A chaotic
system is one that exhibits sensitive dependence on
the initial conditions, i.e. where the approximate
present state is insufficient to determine approxi-
mate states in the distant future, whether or not the
exact present state determines the future. The solu-
tions of equations describing dynamic system are
extremely dependent on the initial conditions; near
trajectories diverge exponentially, and rherefore
long-range predictability is lost. The numerical
values of any variable at equally widely spaced in-
tervals, e.g., once-a-year observations of tempera-
ture at a single whether station, will have the ap-
pearance of random numbers.

A primary motivation for studying chaos is this:
Given an observation of irregular behavior, is there
a simple explanation that can account for it? And if
so, how simple? There is a growing consensus that
a useful understanding of the physical world will
require more than finally uncovering the funda-
mental laws of physics. Simple systems, which
obey simple laws, can nonetheless exhibit exotic
and unexpected behavior. Nature is filled with sur-
prises that turn out to be direct consequences of
Newton's laws.

Of particular interest are bounded systems, where
each orbit eventually enters a fixed region of space
and subsequently remains there. For such systems,
a basic subset of space is Ihe attractor. Given any
particular orbit, there are certain points which the
orbit will be repeatedly approaching, arbitrarily
closely, at regular or irregular intervals; these are
the limit or attracting points for that orbit. A point
having a greater-than-zero probability of bein_{ an
attracting point for a randomly selected orbit lies in
the attractor. An attractor may consist of a stable
fixed point, a stable closed curve, or something
more complicated. The orbit passing through any
point of the attractor lies entirely in the attractor.
Orbits not contained in the attractor are likely to
approach it asymptotically; exceptions include un-
stable fixed points and unstable closed orbits.
When the solution of a system is determined by nu-
merical integration, it is usually safe to assume
that, after an initial transient segment has been dis-
carded, the solution describes a part ofthe attractor
as closely as a the round-off error will permit.

In a lot of cases we have no a priori knowledge
about the equations describing the system, at least
not complete knowledge. An experimentalist, con-
fronted with a physical system, measures at regular
and discrete intervals of time the value of a state
variable (e.g. temperature) and records the time se-

ries: x(tfl, x(t1), x(t),..., wirh x(t) e R and /, =
ty+iAt . The question is, how to, by using the only
information available, the x(t)time series, reach
the same information available from the knowl-
edge of equations describing the dynamics of the
system. Recently developed methods have made it
possible to obtain some measures of the dimen-
sionality or degrees of freedom which control the
observed turbulent flows by analysing of observa-
tions (Grassberger and Procaccia, 1983, 1984). But
these methods of data analysis also provide an ob-
jective test for the quality of the model solutions
because they give a quantitative measure for its
tirre evolution.
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A review ofthe theory ofthe statisticalproper'
ties of dynamic systems can be found in Eckmann

and Ruelle (1985), and Abarbanel et al. (1993). We

also refer to a great book by Lorenz (1993), which

provides a clear account of chaos and fractals, and

the application of the science of chaos to meteorol-

ogy.

In this paper, the time series of temperature,
cloudiness and solar radiation are analyzed to in-
vestigate the chaotic properties of the local cli-
mate, and the possibility of an estimation of the

minimum number of independent variables neces-

sary to model the time evolution of the underlying

climate system" At the time when we started this

study the possibility of the existence of low-dimen-

sional attractors in the weather and climate systems

was still widely accepted. Some explanations (e.g.,

Fraedrich, 1986), reasoning the appearence of
low-dimensional attractors, seemed to be accept-

able. During the last several years great progress

has been done in understanding of reasons ac-

counting for such results. We have followed this
progress in our investigation, taking into account

the specific purpose ofthis study and the character-

istics of the data used. Special attention has been

paid to the investigation ofthe influence ofseason-
al data variations on the results. In Section 2 of this
paper the methodological background and a short

review of the results presented up to day are de-

scribed. Section 3 presents the application to the

Zagreb-Grii Observatory data. A conclusion is
given in Section 4.

2. THE METHODOLOGY FOR ESTIMAT-
ING THE DIMENSIONS AN ATTRACTOR

2.1. Basic concepts

Consider a system whose state may be described

by n variables X t, ..., Xn. Let the system be gov-

emed by the set of equations

ff= n1x,,...,x,) i=l, ..., tt, (1)

where time r is the single independent variable,

and the functions F; possess continuous first partial

derivatives. Such a system may be studied by
means of phase space - an n-dimensional Euclidean

space f. whose coordinates are X 1, ..., X,,. Each

point in phase space represents a possible instanta-

neous state of the system. A state varying in accor-

dance with (1) is represented by a moving particle
in phase space, traveling along a trajectory in phase

space. Ifthe system exhibits an attractor, all trajec-

tories initiated from different initial conditions will
eventually converge and stay on a submanifold of
the total available space-attractor.

Deterministically developed systems have attrac-

tors characterizedby an integer dimension that is

equal to the topological dimension of the submani-

fold in the state space. Trajectories converging on

them do not diverge, but stay a[ a constant distance

from each other. When the attracting submanifold
is not topological, it is called a'fractal' set and is

characterized by a dimension that is not an integer
(Mandelbrot, 1983). The corresponding attractors

are called 'strange' attractors. An important prop-

erty of these attractors is the divergence of initially
nearby trajectories. The dimensionality of an at-

tractor, whether fractal or not, indicates the rnini-
mum number of variables present in the evolution

of the system. Therefore, the determination of the

dimension of an attractor sets a number of con-

straints that should be satisfied by a model used to

predict the evolution of the system.

2.2. Delay -Time Embedding

In the case where an exact mathematical formu-

lation ofthe system is not available, the state space

can be replaced by the phase space which can be

produced using a single record of some observable

variable from that system. If this system is the at-

mosphere then the observable variable could be,

for instance, temperature, pressure, or geopoten-

tial.

The analyses ofobservations are based on statis-

tical procedures which lead to measures of the di-
mensionality or degrees of freedom which control

the underlying dynamics (Grassberger and

Procaccia, 1983, 1984).

The measurement x(r) represents a projection
n:Rn-+R from the full state vector X(t)eRn

The partial differential equations describing the

dynamics of the system can be transformed to a set

of n time dependent ordinary differential equa-

tions. The resulting set of ordinary differential
equations (1) defines the time development of n
expansion coefficients X;. Thus the phase space

containing the time evolution of the underlying
process is spanned by the n different variables X; , i
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=1, ..., n of the dynamic system. Portraits of the Thus, for deriving the dimension of attractors
time evolution of the system are formed by trajec- from single state variables it is sufficient to embed
tories in this iz-dimensional phase space. The time them into an rn-dimensional space spanned by the
evolution may be described by avector \(t): time series and its ru-1 derivatives:

€(t) = [X](t), ,X,(t)1, (2) X(r)= [X(t),X'(t),...,X@,1) (t)], (5)

whose components define the position of the tra- i.e. it is not necessary to know the original phase
jectory in the phase space. System (1) can be re- space (or independent state variables) and its di-
duced to a single highly nonlinear differential mension r as long as rz is chosen large enough.
equation for one of the variables Xi (t), say X (t), if
all others are eliminated by differentiation. This . Instead of j,he continuous variable X(l) and its

leads to an n thorder differential equation derivatives, X(n1'1) (t), a discrete time series X(r)
and its shifts by (rt-1) time lags (rz-1)t may be

X(n) = F[X, X' , ..., X(n ] )1, (3) considered to identify structures in the time evolu-

which is equivalenr ro a set of z equations de- :i"^::: jf:,:ingle state variable' Packard et al'

scribing the rime evorurion, x(/), plus its ,-1 deriv- !l?jol,1*t:ed 
a delay scheme to reconstruct the

atives X(t), X' (t), ..., Yf, t i' 1tS :"'
X(r)= [X(t),X'(t), ,y(n-\) @]. (4) valuesof thescalartimeseries, avector* eRi,is

The initial value problem posed by the single
state variable X(t) and its n-1 successive deriva-
tives starts the time evolution (3) or (a) which ap-
pears in the same n-dimensional phase space of r
coordinates (i.e., the time series plus its (n-l ) de-
rivatives). This is represented by the vector com-
ponents (4) which define the position of the trajec-
tory of the time evolution. Adding further deriva-
tives (e.g., y(n)(t)) ro the vecror (4) is superfluous,
because it does not produce more independent in-
formation.

If a manifold within the original n-dimensional
phase space Xr, ..., X,(1), (2) is considered, it can
be described in the new phase space X, X' , X" , ...
spanned by a single variable and its derivatives (3),
(4). It should be noted that the dimensionality of
the new phase space may be smaller than that of
the original phase space. This is an embedding the-
orem which is valid for almost all smooth dynamic
systems. The theorem implies that d-dimensional
manifolds (described by the dynamic system (1)
and evolving in the n-dimensional phase space
with coordinates X;, i=1,..., n) can be embedded
into a (ne2D+1)-dimensional space (e.g. spanned
by the variable X(t) and its successive derivatives
which define the embedded dynamics). Takens
and Mane have provided often-cited proofs that
this procedure does (almost always) reconstruct the
original state space of a dynamic system, as long as

the embedding dimension nt > 2D+1, where D is
the fractal dimension of the underlying attractor
(Theiler, 1990). As long as nt> D, the reconstruct-
ed set will almost always have the same dimension
as the attractor (Eckmann and Ruelle, 1985).

created:
A
X (t) = {X(t), X(t-x), ..., X[t-(m-l )r]], (6)

where the time delay t and the embedding di-
mension m are parameters of the embedding proce-
dure. Here X (r,) represents a more comprehensive
description of the state of the system at time t than
does x(t) and can be thought of as a map of
n(m)'pn1pn' from the full state X(t) to the recon-
structed state X (t).

The time-deiay embedding makes it possible for
one to analyze the self-organizing behavior of a

complex dynamic system without knowing the full
state at any given time. Although almost any delay
time t and embedding dimension m > D will work
in principle (with unlimited, infinitely precise
data), it is nontrivial to choose the embedding pa-
rameters in an optimal way. In general, one wants T
to be not too much less than, and (m-l)t not too
much greater than some characteristic decorrela-
tion time. The linear autocorrelation time is one
such characteristic (Theiler, 1990).

2.3. CorrelationDimension

The most popular way to compute an attractor
dimension is to use the correlation algorithm,
which estimates dimension based on the statistics
of pairwise distances. The box counting algorithm
(Mandelbrot, 1983) and the correlation algorirhm
are both in the class of fixed size algorithms be-
cause they are based on the scaling of mass with
size for fixed-size balls (or grids). Grassberger and
Procaccia (1983, 1984) have suggested to calculate
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a direct arithmetic average of the pointwise mass

function, which gives what they call a correlation
integral. The procedure consists of counting pairs

of points X(ti), X(t) on a geometrical object which
are a distance rijapart].

rij = lx(t) -X(tj)l Q)

The number N(r) of such pairs, whose distance is

smaller than the prescribed threshold. r4 < r, is for-

mally determined by

where @ is the Heaviside function with @(a)=0

or 1, if a>0 or <0; N is the total number of points.

This leads to a cumulative distribution function,
which is normalized by the total number of N2

pairs:

(il N2) N@. (e)

It describes how the number of pairs grows with
the increasing threshold distance r. For N-+-, the

growth rate changing with the dimension d is de-

termined by the cumulative distribution function

Is there a Grid Attractor?

2.5. Application to weather and climate
variables

The Grassberger-Procaccia (GP) method, or cor-
relation algorithm for estimating the dimension of
attractors has been the most popular method ap-

plied to time series of various variables represent-

ing the weather and climate system during the last

decade. The first to apply this method to climate
data were Nicolis and Nicolis (1984). They applied

the correlation dimension method to the time series

describing the isotope record of deep-sea cores,

and their results indicated the existence of the frac-
tal dimension D=3.1. They have suggested that a

model involving four variables could already pro-
vide a description of the salient features of the cli-
mate system. Based on the same method, Fraedrich
(1986) evaluated the dimensions of different
weather and climate single variable time series to
estimate possible low-dimensional attractors.
Various weather and climate variables (local pres-

sure, relative sunshine duration, zonal wave ampli-
tudes, and 6lSO-record of the Meteor core 13519

in the tropical Atlantic) were analyzed, and for all
of them a low dimensionality (between three and

five) was found. These results might account for
the required four independent variables, necessary

to model the conesponding system dynamics.

In the following years, the correlation algorithm
was used in a number of papers applied to different
meteorological time series. The quantities selected

for analysis included (besides the above mentioned
ones) upper-level geopotential heights (Essex et al,

1987, Keppenne and Nicolis, 1989), low-level ver-
tical velocity components (Tsonis and Elsner,
1988), rainfall intensities (Sharifi et al, 1990), cy-

clone positions (Fraedrich and Leslie, 1989), tree-

ring widths (Grassberger, 1986). All these findings
raised hopes that suitably constructed models with
relatively few variables might recapture the dy-
namics of the weather and climate. Reported val-
ues of attractor dimension typically fall between

three and eight. Because the atmosphere is so com-
plex, these values have seemed surprisingly low,
and doubts as to their appropriateness were ex-
pressed even by the originators of the method
(Grassberger, 1986, 1987, Procaccia, 1988).
Procaccia (1988) stressed the importance of using

a sufficient amount of data to provide meaningful
calculations of a dimension. Grassberger ( 1986)

tested the results obtained by Nicolis and Nicolis
(1984) and his results did not give any hint of a fi-
nite-dimensional attractor. This was a waming that

spuriously small dimension estimates can be ob-

n(,) =.i.o('-1",- tl) (8)

Now the dimension of a geometrical object, say

an attractor in phase space, can be determined by
the cumulative frequency distribution C(r/ of dis-
tances of pairs of points which are situated on the

time trajectory of the dynamic system; the slope of
the distribution, i.e. /nC(r) versus /nr leads to the
dimension

cQ)= li:'_#N(r) - rD

^ _ ln C'(r)
lnr

(10)

(l l)

Not only is this a particularly elegant formula-
tion but it has.the substantial advantage that the

function C(r) is approximated even for r as small
as the minimum interpoint distance

Typically, having chosen t, one performs a di-
mension analysis for increasing values of nt and
looks for a plateau in the plot ofD versus nr.The
scaling exponent D is the correlation dimension for
that m. In practice, we increase the value of m and

check for a saturatiort value D (i.e. a further in-
crease of ru does not affect D), which will be an es-

timation of the conelation dimension of the attrac-

tor.
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tained from using too few, too finely sampled and
too highly smoothed data. For example,
Grassberger (1981) found the resulrs obtained by
Fraedich (1986) wrong due to including in the sum
(8) pairs whose time separation is less than the
correlation time.

Practical implementations of the Grassberger-
Procaccia method were stressed by Theiler (1990),
Tsonis et al. (1993) and Grassberger et ai (1991).
Here are the most important facts, found responsi-
ble for the appearence of low-dimensional attrac-
tors in the above meteorological studies:

l. In the sum over pairs (X;, Xp), the diagonal
terms i =k should of course not be included. Where
this seems to have been done (Fraedrich, 1986), the
results should be taken with great care.

2. But leaving out the diagonal terms is in gener-
al not sufficient. We have to remember that the
correlation sum should reflect the clustering of
points in phase space due to purely geometrical ef-
fects, not due to dynamic correlation. Thus, all
pairs should be discarded whose distance in time is
not much larger than the correlationtime tro,.,"r1, as

pointed out in Theiler (1986). It seems thar a num-
ber of spuriously small observed attractor dimen-
sions are obsolete due to a neglect of this. A popu-
lar altemative to excluding just pairs witn lt, - tlrl <
trorrrl is to take only a subset of the time sequence
where the delay I t, - t,r-11 between successive
points is ) tcorret. While this does, indeed, elimi-
nate the above problem, it has the drawback of
substantial reducing the statistics, and is thus not
recommended when the time sequence is extreme-
ly long.

3. The time sequence has, of course, to be long
enough to sample the attractor reasonably, and the
system has to be stationary. This remark is related
to the preceding remark: if the attractor is not yet
sampled enough, a// points in the time sequence
are dynamicly correlated. The neglect of this obvi-
ous requirement is probably the most common rea-
son why many authors found low dimensional
chaos in real-world phenomena. The small dimen-
sions found in these analyses are dimensions of in-
dividual trajectories, but not of invariant measures.

4. Small measured correlation dimensions can be
misleading in systems with strong intermittency, or
with two different dynamics acting at different
times. Take, for instance, wind speed measure-
ments near the coast with strong winds during the
day and weak winds during the night and morning.

Most pairs (i, k) with (v; = v2) will come from night
or morning measurements, representing a phase
space region which on the global "attractor" scale
is essentially a single point. A small measured di-
mension would then result trivially. Such a mea-
surement was done by Tsonis and Elsner (1988).
Though the night data were left out in this analysis,
the morning and evening data were still retained.
They account most likely for the effect observed.

4. The minimal length of the time series needed
for a dimension estimate has been much discussed
(Nerenberg and Essex, 1990, Theiler, 1990). It is
often difficult to obtain long time sequences since
it is hard to keep the system stationary over long
times. In some cases it is possible to repeat the
measurement. But, unfortunately, this is not the
case in the meteorology.

5. The main problem in the optimal choice of the
embedding appears to be not so much the optimal
embedding but the optimal choice of metric in the
embedding space. The most obvious arbitrariness
here concerns the choice between the Euclidean
and the maximum norm. The maximum norrn was
first proposed by Takens , and has some advan-
tages over the Euclidean norm (Grassberger et al.,
1991).

Lorenz (1991) proposed another explanation for
the seemingly low estimates of correlation dimen-
sion. It does not say that most real-data studies are
meaningless, but that they need to be reinterpreted.
Lorenz (1991) showed that if the variable selected
for analysis is strongly coupled to only a few vari-
ables of the system, the estimated value of D, if N
is only moderately large, will be considerably
smaller than the dimension as determined by other
standard methods, such as the Kaplan-Yorke
(1919) conjecture. As suggested by Tsonis and
Elsner (1989), the atmosphere may be viewed as a
loosely coupled set of lower-dimensional subsys-
tems, and the correlation algorithm, as practiced,
attempts to measure the dimension of a subsystem.

3. APPLICATION OF THE CORRELATION
ALGORITHM TO THE ZAGREB.GRIE

LONG TERM METEOROLOGICAL
MEASUREMENTS

3.L. Data

The method for the estimation of a correlation
dimension, as formulated by Grassberger and
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Procaccia (1983) has been applied to the long-tem
meteorological measurements of temperature,
cloudiness and solar radiation, carried out at the

Zagreb-Gril Observatory over a period of 130

years. The measurements on the Zagreb hill Grid
(p=45.82", l;16.03'), northwest Croatia, began in
the year 1862 and until December 1995 a series of
1572 monthly mean values was completed. The

climatic data represent a homogeneous series, as

the location of the Observatory has remained un-

changed, and the instruments inside the

Observatory have been only slightly and insignifi-
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cantly changed (Penzar et al.,1992a). Details of
the used time series for the period 1862-1865 are

presented in Fig. 1. The most obvious characteris-

tic is the seasonal cycle, most expressed in the tem-

perature time series. The monthly mean tempera-
tures have been calculated from the daily means,

and the daily means according to the formula:
(t +t14+2t1)14. The data on the quantity of cloudi-
ness are given in tenths, measured visually. Global
solar radiation is expressed in monthly amounts.

The climatic fluctuations in Zagreb have been

analyzed several times in the past. Penzar et al.
(1992b) applied the elementary analysis to the

longest available series examining their linear
trends and 30-years averages. Their results show
that the secular meteorological time series of
Zagreb-Grid contain various climatic variations.
The filtered secular series of temperature at

Zagreb-Gri(. are negatively correlated with the si-

multaneous series of solar radiation and positively
correlated with cloudiness. Sinik (1992) provided a

local climatic model of the temperature-cloudiness

relationship, which can describe both the positive
and negative impacts of cloud radiative forcing
upon surface temperature. Theoretically generated

temperature series prove the prevailing green-
house effect of clouds upon recent climatic varia-
tions in temperature at the Zagreb-Grid stati on.

We are specially interested in the comparison of
the resulrs obtained in Sinik (1992) with the results

of the statistical methods used in this paper.
Therefore, the temperature time series is the most

important in our discussion.

3.2. Application of the Grassberger-Procaccia
algorithm to the Zagreb-Grii time series

The basic problem in the application of the cor-
relation algorithm to the time series of monthly av-

erages is their shortness and high autocorrelation.
The autocorrelation function is presented in Fig. 2.

It shows a high positive correlation between the

months within the same season, and a negative cor-
relation between the summer and winter months.
Because of its periodic shape, it is not possible to
construct independent coordinates of the points on

the attractor. The decorrelation time, used for the

choice of the time delay t, may be defined as the

lag time at which the autocorrelation falls below a

threshold value. This threshold value is not unique-

ly defined, and in general it depends on the prob-

lem in hand and the assumptions about the data set.

In meteorology, this threshold value is commonly
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Figure 1. The time series of monthly mean values of
temperature (a), cloudiness (b), and global solar radia-

tion (c) (details for the period 1862-1865).

Slika 1. Vremenski nizovi mjesednih srednjaka temper-

ature (a), naoblake (b), i globalnog Sundeva zradenja

(c) (detalj za razdoblje 1862-1865).
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Slika 2. Funkcija autokorelacije vremenskih nizova
mjesednih srednjaka temperature (a), naoblake (b), i
globalnog Sundevog zradenja (c) .

Figure 2. The autocorrelation functions of the monthly
mean temperature (a), cloudiness (b), and global solar
radiation (c) time series.

defined as l/e (Tsonis and Elsner, 1988). Because
the autocorrelation function of this particular data
set is periodic and it is not possible to select a

threshold vaiue, we have chosen x=3, a value for
which the autocorrelation function reaches 0 value
for the first time.

In the calculation of sum (8) a constraint l t,-t; I <
t has been used (as described in Section 2.5), i.e.

only pairs that are separated by a time interval
greater than the decorrelation time are included.
Too small number of data N has been showed as

most dangerous for the invalidation of the proce-
dure. In the present case we are not able to ensure
more data than available. Therefore, special care is
paid to the correct interpretation of results.

Fig.3. presents the curves ofthe correlation inte-
gral C(r)versus a distance r, for embedding di-
mensions 3,4, ..., 11. The influence of noise is vis-
ible on the lower part of the curves, particularly at
higher dimensions, but the central and upper part
of the curves are not noise affected. Since the cal-
culation of D for a very small r is dominated by
noise, particularly when dealing with observation-
al data (Fraedrich and Wang, 1993), there is no
convergence of the slope for this very small r. In
practice, for a given m, D is defined in a scaling re-
gion (r1, 12) where the D(nx,r) versus lnr diagram
displays a flat "plateau", i.e. D(m,r) does not
change with r. The existence of such a scaling re-
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Figure 3. Curves of ln C(r) versus ln r for embedding dimensions 3, 4, ...,11, obtained by applying the Grassberger-
Procaccia algorithm to the time series of monthly average temperature, cloudiness, and monthly amounts of solar
radiation at Zagreb-Grid.

Slika 3. Krivulje ln C(r) u ovisnosti o 7n r za dimenzije faznog prostora 3, 4,...,11, dobivene primjenom
Grassberger-Procaccia algoritma na vremenske nizove mjesednih srednjaka temperature, naoblake, i mjesednih
suma globalnog Sundevog zradenja na opservatoriju Zagreb-Grid.
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a)

gion on the correlation integral curve is the basic
constraint for the plausible fit of the straight line to

a plot of /nC(r) versus lnr. An erroneous fit of the

straight line can give spurious values of D. This
fact was discussed in detail by Essex et al. (1987),

and emphasized again by Fraedrich and Wang
(1993). In most studies reporting about attractors

of low dimension there has been no indication of
clear-cut scaling regions displayed in the form of a

slope versus distance diagram.

Fig.4a. displays aD(m1) - lnr diagram, derived
from the conelation integral curves for the temper-

ature time series (Fig. 3a.). The scaling region is

0.83 1.46

indicated by the flat plateau, approximately be-

tween the lnr values 2.4 - 3.4.In Fig. 3a. this re-

gion of lnr values corresponds to the first wavy
part of correlation integral C(r,) curves. The wavy
shape of the correlation integral curves for a tem-

perature and a radiation (less expressed) in their
upper part is the influence of an autocorrelation
function. We have estimated values of D separate-

ly for the first wavy part of the temperature corre-

lation integral curves, and for their lower region. A
dependence of the correlation dimension D on dif-
ferent embedding dimensions m for both the upper

(wavy part) and lower part of the temperature cor-

relation integral is presented in Fig.4b. The cross-

es correspond to the first wavy part of lhe C(r)
curves, i.e. the flat plateau indicated in Fig. 4a.

A steady increase in the correlation dimension D
with embedding dimension m (presented in figure
by circles) would show that a low-dimensional at-

tractor of the Zagreb loca| climate does not exist.

But, there is a clear indication of the existence of a

low-dimensional attractor coming from the upper
part of the same temperature correlation integral
(presented in the figure by crosses). Its dimension

has a value between 2 and 3. The same applies to

the solar radiation correlation integral (Fig. 3b).

Here, we refer again to Eckmann and Ruelle
(1985) and Lorenz (1991). Theoretically, the statis-

tical dimension of the system can be obtained in-
differently from;r,'or any other physical variable of
the system. But, as noted by Eckmann and Ruelle,
experimental uncertainties change this situation.
At the level of accuracy of an experiment, some

degrees of freedom may effectively be driven by
others and, having small amplitudes, pass unno-

ticed. Therefore, as shown by Lorenz (1991), dif-
ferent selected variables can yield different esti-

mates of D. To see how this situation can arise, let

us consider a product dynamic system IxII. Take

an observable x=x1*x2, depending on the subsys-

tems I and II, respectively, and let the amplitude 17

of the signal ;7 be much smaller than that of .r2. In

the range r ( 17 we have statistical information on

the complete system IxII, giving an informational

dimension cr. In the range r )) r'7 wo have statisti-

cal information only on system II, giving an infor-
mational dimension a' (Eckmann and Ruelle,
I 985).

In the present study, a low correlation dimension

between 2 and 3 would indicate the existence of a
underlying climatic subspace with 3 strongly cou-
pled variables. In the climate system the air tem-
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Figure 4. Dimension D as a function of the distance In
r, fol different embedding dimensions nr (a), and

dimension D as a function of the embedding dimen-
sions n (b), for the time series of the monthly average

temperature at Zagreb-Grid.

Slika 4. Dimenzija D u ovisnosti o udaljenosti ln r, za

razlidite dimenzije faznog prostora m (a), i dimenzija D
u ovisnosti o dimeziji faznog prostora nt (b), za vre-
menski niz mjesednih srednjaka temperature na opser-

vatoriju Zagreb-Grid.
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perature is correlated most strongly with the in-
coming solar radiation. According to the results
obtained Uy Sinlt (lgg2), cloudiness is the third
variable coupled in the local climate subsystem.
Sinik evaluated the "cloudy" model of the Zagreb
temperature regime (mentioned in Section 3.1.),
which describes the prevailing influence of solar
radiation, temperature, and cloudiness on the local
climate system.

3.3. Filtering out the solar influence

The variation of solar radiation intensity, which
is the consequence of the Earth's evolution around
the Sun, determines the basic climatic characteris-

a)

empen@ rcl

0.m

b)

globrl radiadoD lwnil

60.m

tics of the climate of any latitude. The great influ-
ence of solar radiation makes it impossible to de-
tect other, less important, influences in the time se-

ries of monthly averages. Seasonal variations of
the monthly mean temperature (also of solar radia-
tion and cloudiness) are responsible for a strong,
periodic autocorrelation. We account the existence
of the three-variable climate subsystem to the cor-
relation influence. If we excluded the seasonal
regime of the monthly averages, the wavy shape of
the correlation integral should disappear, the tem-
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Figure 5. Filtered time series of the monthly mean val-
ues oftemperature (a), cloudiness (b), and global solar
radiation (c) time series (details for the period 1862-
I 865).

Slika 5. Filtrirani vremenski nizovi mjeseinih srednja-
ka temperature (a), naoblake (b), i globalnog Sundeva
zradenja (c) (detalj za r azdoblje I 8 62.- 1 8 65 ).
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Figure 6. The autocorrelation functions of the filtered
monthly mean temperature (a), cloudiness (b), and
global solar radiation (c) time series.

Slika 6. Funkcija autokorelacije filtriranih vremenskih
nizova mjesednih srednjaka temperature (a), naoblake
(b), i globalnog Sundeva zradenja (c) .

r50.m

100.00

$.m

0.00

-50.00

100.00

,rraalr
,t*i \
'* I'



NEDJELJKA BRZOVIC: Is there a Grid Attractor'?

perature and cloudiness time series would not be

any more strongly coupled with solar radiation,
and the detection of the low-dimensional subsys-

tem would not be possible.'

This fact can be tested by a hypothetical series
with the influence of the seasonal cycles filtered
out, theoretically, similarly to the procedure ap-
plied to the large series of daily temperatures by
Zeng et al. (1992). The series were evaluated by
subtracting from each monthly mean value its long
term average value, computed for the whole period
1862-1995. The series obtained have values oscil-
lating around zero, and are presented in Fig. 5.

Autocorrelation in the new series vanishes (Fig. 6),

which allows the application of the correlation al-
gorithm with t=3 to construct linearly independent

coordinates of points in the embedding space. The

small magnitude of the number of data N now be-

comes a dominant problem in the application of the

Grassberger-Procaccia procedure. The correlation

-4.00

-5.00

integral lnC(r) versus lnr diagram (presented only
for the temperature time series in Fig. 7) proves
that the curyes C(r) have lost their wavy parts, and

that the noise spreads over the greatest part of the

curves, making an estimation of D impossible.

4. CONCLUSION

While instability is a fundamental concept in
meteorology (Lorenz, 1984), it is not obvious that
strange attractors have important applications.
Nevertheless, as recommended by the ECMWF
Workshop (1988), the evaluation of the dimension-
ality of atmospheric attractors may have an impact
on the number of elements needed in a Monte Carlo
ensemble forecast of the extended range.

Following new developments and concepts de-

veloped for the evaluation of nonlinear dynamic
systems, we have evaluated the chaotic properties
of the atmosphere from the time series of tempera-

ture, cloudiness and solar radiation measured at the

Zagreb-Grii Observatory. The application of cor-
relation algorithm, as developed by Grassber-eer

and Procaccia (1983, 1984), to the time series of
the monthly averages of the Zagreb-Grid
Observatory did not enable us to obtain the small
value of correlation dimension, which would indi-
cate the existence of low-dimensional undcrlf ing

attractors.

This is in agreemcnt with the results of similar
studies elsewhere, which have also shown that. duc

to the limitations of the GP algorithm for a limited
number of data, the most, if not all, of the previous

estimates of low-dimensional attractors in the at-

mosphere are unreliable.

When a dynamic system is an atmospheric mod-

el, the points on the attractor represent those states

which are compatible with the climate. Although
all scales of atmospheric motion are interconnect-
ed, it is standard practice in investigating the dy-
namics of a particular type of system to disregard
the presence of systems of larger or smaller scale.

Such an approach can yield only partial explana-
tions, but attempts to deal with all scales at once

often yield nothing at all (Lorenz,1984).

The data we deal with in weather and climate are

coarse, and small scale processes are absent. These

large scale coarse data are likely to obey their own
closed dynamics. The low-dimensional subspaces

in the climate system may be characterized by low-
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Figure 7. Curyes of ln C(r) versus ln r for embedding
dimensions 3,4, ...,11, obtained by applying the

Grassberger-Procaccia algorithm to the filtered time
series of monthly average temperature, at Zagreb-Grid.

Slika 7. Krivulje ln C(r) u ovisnosti o ln r za dimenzi-
je faznog prostora 3,4,...,11, dobivene primjenom
Grassberger-Procaccia algoritma na filtrirani vremenski
niz mjeseinih srednjaka temperature na opservatoriju
Zagreb-Grid,.
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dimensional attractors which describe large-ampli-
tude influences ofjust a few governing variables.
The existence of autocorrelations in the time series
of temperature and solar radiation caused the ap-
pearance of wavy deformations on the upper part
of the integral correlation curves lnC(r). This has
enabled the detection of a low-dimensional attrac-
tor, which owes its existence to the seasonal varia-
tions of the monthly mean temperature (or radia-
tion).

This result is in agreement with previous studies
of local climate, which have detected temperature,
cloudiness and solar radiation as a three-variable
system controlling the large amplitude of the local
climate (Sinit, 1992). When the seasonal cycle is
theoretically filtered out ofthe series, the autocor-
relations disappear, as well as the low-dimensional
attractor.
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