PREVENTION OF EXPOSURE TO MYCOTOXINS FROM FOOD AND FEED

Maja Peraica¹, Ana–Marija Domijan¹, Željko Jurjević², and Bogdan Cvetković²

Institute for Medical Research and Occupational Health, Zagreb¹, Faculty of Agriculture, University of Zagreb, Zagreb², Croatia

Received May 2002

Mycotoxins are metabolites of moulds that may be found in food and feed of plant and animal origin. This paper gives a short review of the agronomical methods and food and feed storage recommendations for the prevention of mould contamination. It describes the practical methods of feed decontamination and the use of feed additives where mycotoxin contamination prevention has failed. However, these methods should be avoided as much as possible because they may increase the cost of production, reduce the nutritional value of feed, and leave residues of mycotoxins or their toxic metabolites. Since there is no universal and reliable method of feed decontamination for all mycotoxins, the paper stresses the importance of preventive measures.

KEY WORDS: aflatoxins, decontamination, ergot alkaloids, fumonisins, ochratoxins, trichothecenes

According to the evaluation of the Food and Agriculture Organization (FAO), 25% of the world cereal production is contaminated by mycotoxins (1). Food and feed are usually contaminated by more than one mycotoxin, because a certain strain of moulds may produce different mycotoxins. Residues of mycotoxins may also be found in food of animal origin (meat, milk, eggs, and cheese) as the consequence of feed contamination. Mycotoxins are toxic compounds, and some of them are also mutagenic, genotoxic, carcinogenic, or teratogenic. In mild climates, the most frequent toxicogenic moulds in food and feed are the species of genera Fusarium and Penicillium. Some Fusarium species produce fumonisins (fumonisin B₁ – FB₁, fumonisin B₂ – FB₂, and fumonisin B₃ – FB₃), trichothecenes (T–2 toxin, nivalenol – NIV, deoxynivalenol – DON, diacetoxyscirpenol – DAS), and zearalenone (ZEA). Ochratoxins (the most important is ochratoxin A – OTA), citrinin, and penicillic acid are produced by some Penicillium and Aspergillus moulds (2). Ergot alkaloids (ergotamine and ergocristine) are the products of fungi of genus Claviceps and some strains of Penicillium, Aspergillus, and Rhizopus that contaminate cereals (mainly rye, barley, and wheat) (3). Aflatoxins (aflatoxin B₁ – AFB₁, aflatoxin B₂ – AFB₂, aflatoxin G₁ – AFG₁, and aflatoxin G₂ – AFG₂) are the metabolic products of Aspergillus species that contaminate cereals and other commodities mostly in tropical countries. The prevention of mycotoxin production should include all phases of food and feed production, because the mould contamination may occur in the field, during storage, as well as in transport (4).

PREVENTION OF MYCOTOXIN PRODUCTION

The most important arable crops in the Republic of Croatia are wheat and maize. They are frequently contaminated by Penicillium and Fusarium moulds which, in favourable conditions, may produce mycotoxins (5). This contamination may be avoided
by the use of mould–resistant wheat cultivars and maize hybrids (6–8).

Agrotechnical measures may also help to combat the maize and wheat ear diseases. The sowing time determines the harvesting time, which can have a significant influence on the appearance of disease. This is particularly important when late FAO maize hybrids are used, because they are readily contaminated by moulds in wet autumns. Mould contamination is more pronounced if wheat is sown after maize or vice versa. Multi–field crop rotation in which rape, sugar beet, sunflower or soya–beans are present reduces the infection. Fertilization with nitrogen increases plants’ sensitivity to moulds (9), and balanced fertilization based on nutrition analysis is required. Climatic conditions, such as temperature and humidity, are not under human control, but they may be crucial in contamination with moulds. Fungicides applied before blossoming decrease contamination with *Fusarium* and the related production of mycotoxins (10). Delayed harvest particularly favours contamination with *Fusarium*. Mechanically damaged and shrivelled grains are regularly contaminated by moulds, and mouldy grains can partially be removed by separators (11). The humidity of grain and the relative air humidity are very important in processing and transport (12). The kernel must be desiccated as soon as possible, and optimal humidity maintained. It is particularly important not to allow increases in humidity after desiccation, as they strongly favour contamination. During long–term storage, the kernel is exposed to oscillations in temperature and humidity, and insects of species *Sithohilus*, *Tribolium*, *Trogodermma*, *Oryzaephilus* can be vectors for mould contamination (13). Adequate storage with optimal temperature and humidity of grains and relative humidity and the hygiene in silos may decrease the growth of toxicogenic moulds (14). It should be emphasised that at the end of the storage period grains can not be less contaminated with mycotoxins than at the beginning. The entrance of mycotoxins in the nutritional chain can not be less contaminated with mycotoxins or in food products obtained from animals fed decontaminated feed; 2. not produce or leave toxic, carcinogenic or mutagenic residues in final products or in food products obtained from animals fed decontaminated feed; 3. retain the nutritive value and acceptability of the product; 4. not significantly alter important technological properties, and 5. destroy fungal spores and mycelia which could, under favourable conditions, proliferate and form new toxins. The US Food and Drug Administration requires additional data on the environmental impact of the method (15).

This paper gives an overview of methods used in industrial decontamination of food and feed. It also addresses the possibilities of the use of adsorbents as farm animal feed additives. We have not addressed specific methods characteristic for certain foods, such as the decontamination of trichothecenes or OTA in brewing barley for beer production (16) or the effect of milk processing on the aflatoxin M₁ (AFM₁) concentration (17).

PHYSICAL METHODS OF DECONTAMINATION

There are several physical methods of decontamination of agricultural products known to us such as the removal of damaged grains or of a part of contaminated crop, washing procedures, radiation, ultrasound and extraction with organic solvents. The removal of damaged parts of a crop (usually mould–contaminated) is possible when contamination is uneven or partial. Physical removal of discoloured, damaged, or inadequately developed peanut kernels significantly decreases the concentration of aflatoxins, fumonisins and ergot alkaloids (15). Although this is the most widely used decontamination technique in the peanut and pistachio industry (18), it is not practical for maize and cottonseed (15). Blanching and electronic eye colour sorting of raw peanuts contaminated by *Aspergillus flavus*, and damaged peanut kernels decrease the concentration of aflatoxins down to under 5 µg/kg (19). Fluorescent sorting can be used for maize and cottonseed and dried figs, but it is ineffective for the decontamination of peanuts (15). Fluorescent properties of kojic acid, the metabolic product of *Aspergillus flavus* and
other fungi, are used for sorting maize contaminated by aflatoxins. False negative results obtained using this method are possible when the maize is contaminated by aflatoxins, but kojic acid is not present (15). Sieving could decrease the concentration of fumonisins in maize, because damaged maize has a ten times higher concentration of fumonisins than undamaged maize (20). The removal of maize kernels smaller than 3 mm may reduce the fumonisin level by 70% (21).

Flotation may lower high concentrations of aflatoxins in contaminated maize and peanuts by as much as 90%, because contaminated seeds float on water (22). Rinsing grain with water or sodium carbonate water solution could lower the concentration of mycotoxins DON, ZEA and fumonisins in wheat and maize (23). These methods are limited by the cost of seed drying, and they are used only before wet milling and brewing.

Most mycotoxins are heat resistant, and high temperatures are not used in the decontamination of cereals and other agricultural products.

Different types of radiation (γ, X-ray, UV, VIS, microwave) were tested for the detoxification of mycotoxins. In wheat, γ-radiation successfully reduces the concentration of T–2 toxin, ZEA, DON (15). Unfortunately, radiation produces AFB₁ metabolites, and the radiation is effective in decontamination only when applied to a thin layer of grain. It is found that sun light is the most effective detoxifier of AFB₁ and could be used in tropics to detoxify coconuts, peanuts and maize (24).

Organic solvents (ethanol, isopropanol, methoxymethane) effectively remove aflatoxins from different types of food products. In addition to the limiting high cost of organic solvents, these compounds are not practical for industrial use because they themselves are removed from the treated products with difficulty (22, 25).

Table 1 summarises the physical methods of decontamination.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Mycotoxin</th>
<th>Product</th>
<th>Efficiency</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>automated removal of damaged kernels</td>
<td>aflatoxins</td>
<td>peanuts</td>
<td>++</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pistachio</td>
<td>++</td>
<td>18</td>
</tr>
<tr>
<td>fluorescence sorting</td>
<td>aflatoxins</td>
<td>maize, cottonseed, dried figs</td>
<td>++</td>
<td>15</td>
</tr>
<tr>
<td>sieving</td>
<td>fumonisins</td>
<td>maize</td>
<td>+</td>
<td>21</td>
</tr>
<tr>
<td>flotation</td>
<td>aflatoxins</td>
<td>maize, peanuts</td>
<td>++</td>
<td>22</td>
</tr>
<tr>
<td>rinsing</td>
<td>DON, ZEA</td>
<td>wheat, maize</td>
<td>+</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>fumonisins</td>
<td>wheat, maize</td>
<td>+</td>
<td>23</td>
</tr>
<tr>
<td>wet–milling</td>
<td>aflatoxins</td>
<td>maize</td>
<td>+/-</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>ZEA</td>
<td>maize</td>
<td>+/-</td>
<td>26</td>
</tr>
<tr>
<td>roasting</td>
<td>aflatoxins</td>
<td>coffee, maize, peanuts</td>
<td>+ or –</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>OTA</td>
<td>coffee</td>
<td>+</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>OTA</td>
<td>coffee</td>
<td>–</td>
<td>29</td>
</tr>
<tr>
<td>heat processing</td>
<td>OTA</td>
<td>flour</td>
<td>+</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>trichothecenes</td>
<td>all food</td>
<td>–</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>DON</td>
<td>all food</td>
<td>–</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>FB₁</td>
<td>maize–based food</td>
<td>–</td>
<td>32</td>
</tr>
<tr>
<td>γ–radiation</td>
<td>T–2 toxin, ZEA, DON</td>
<td>wheat</td>
<td>+</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>aflatoxins</td>
<td>wheat</td>
<td>+</td>
<td>15</td>
</tr>
<tr>
<td>sunlight</td>
<td>aflatoxins</td>
<td>wheat</td>
<td>++*</td>
<td>24</td>
</tr>
</tbody>
</table>

+++ elimination 90–100%; ++ elimination 50–90%; + elimination 10–50%; +/- mycotoxin is eliminated from certain fractions, but concentrated in others; + or – mycotoxin elimination depends on how the procedure is carried out; * procedure leaves behind residual metabolites
CHEMICAL METHODS OF DECONTAMINATION

Compounds such as acids (formic and propionic acids), alkaline compounds (ammonium, sodium hydroxide), oxidizing compounds (hydrogen peroxide, ozone), reducing compounds (bisulphite) and chlorinating (chloride) compounds were tested for their efficacy in mycotoxin decontamination. Chemical detoxification is very effective, but it does not meet the FAO requirements, because some compounds leave behind their toxic metabolites and others reduce the nutritional value of treated food and feed.

Propionic acid is used to inhibit mould growth. Its disadvantage is that it is a corrosive, which makes it dangerous for handling (33). Hydrogen peroxide can destroy a large amount of FB₁ in maize (34) and detoxify aflatoxins containing peanut (35). Hydrogen peroxide and ammonia are mostly used to remove aflatoxins from feed. It has been shown that these methods do not leave toxic metabolites of mycotoxins in feed, but the ammonia reduces its nutritional value by decreasing lysine and sulphur-containing amino acids (15). The animal readily accepts the ammoniated product, if adequate aeration is allowed to remove residual ammonia. The concentration of AFM₁, metabolic product of AFB₁, is considerably reduced in milk of lactating cows fed ammoniated peanut meals naturally contaminated by AFB₁ (36). Ammoniation is considered safe and practical for the decontamination of aflatoxins in feed, and it is used in some states of the USA, Mexico, France, Senegal, Sudan, and Brazil (27, 37). Ammoniation under increased pressure (60 psi) with ambient temperature, or under normal pressure with increased temperature reduces the concentration of FB₁ in wheat by 79% (38). The disadvantages of ammoniation are the relatively long period of aeration and its cost which can increase the price of the product by 5–20% (39). Ammoniation is not recommended for detoxifying OTA–contaminated grains and feeds (40). Monomethylamine or ammonia solutions with calcium hydroxide used at 96 °C were shown to decompose OTA in swine feed (41). Sodium bisulphite is a common food additive that can significantly reduce DON and AFB₁ in maize–based pig feed (42). Sodium chloride reduces the concentration of aflatoxins in unshelled peanuts cooked under pressure (31).

The efficiency of the described methods in mycotoxin removal is shown in Table 2.

Table 2: Chemicals for mycotoxin decontamination applied in food industry

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Mycotoxin</th>
<th>Product</th>
<th>Efficiency</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium hydroxide for tortilla preparation</td>
<td>FB₁</td>
<td>maize</td>
<td>++</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>ZEA</td>
<td>maize</td>
<td>++</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>DON</td>
<td>maize</td>
<td>+</td>
<td>44</td>
</tr>
<tr>
<td>hydrogen peroxide</td>
<td>aflatoxins</td>
<td>peanut</td>
<td>+++</td>
<td>15</td>
</tr>
<tr>
<td>hydrogen peroxide/sodium bicarbonate</td>
<td>FB₁</td>
<td>maize</td>
<td>+++</td>
<td>12</td>
</tr>
<tr>
<td>sodium bisulphite</td>
<td>DON, AFB₁</td>
<td>feed</td>
<td>+++</td>
<td>42</td>
</tr>
<tr>
<td>sodium chloride</td>
<td>aflatoxins</td>
<td>peanuts</td>
<td>+++</td>
<td>31</td>
</tr>
<tr>
<td>ammonia</td>
<td>aflatoxins</td>
<td>maize</td>
<td>+++</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>aflatoxins</td>
<td>peanut meal</td>
<td>+++</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>fumonisins</td>
<td>maize</td>
<td>+</td>
<td>45</td>
</tr>
<tr>
<td>ammonia with calcium hydroxide (at 96 °C)</td>
<td>OTA</td>
<td>swine feed</td>
<td>+++</td>
<td>40</td>
</tr>
<tr>
<td>ammonia with increased pressure and ambient temperature</td>
<td>aflatoxins</td>
<td>cottonseed</td>
<td>+++</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>aflatoxins</td>
<td>maize, peanut meal</td>
<td>+++</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>fumonisins</td>
<td>maize</td>
<td>+</td>
<td>38</td>
</tr>
<tr>
<td>ammonia with atmospheric pressure and increased temperature</td>
<td>aflatoxins</td>
<td>peanut meal</td>
<td>+++</td>
<td>47</td>
</tr>
</tbody>
</table>

+++ elimination 90–100%; ++ elimination 50–90%; + elimination 10–50%; * procedure leaves behind equally toxic metabolites
THE USE OF FEED ADDITIVES

Feed additives have been introduced recently, and their purpose is to reduce mycotoxin bioavailability by binding them in the gastrointestinal system (48). Although a number of adsorbents are shown to be active in vitro, this is not predictive for their activity in vivo (49, 50). Hydrated sodium calcium aluminosilicates (HSCAS), zeolites, bentonite, active charcoal, clays (such as kaolin and sepiolitic clay), synthetic anion exchange resins (cholestyramine), and aluminosilicates have already established their efficiency.

The best aflatoxin adsorbent seems to be HSCAS, which not only prevents aflatoxicosis in domestic animals (51), but also reduces the concentration of AFM in cow and goat milk (52). Unfortunately, HSCAS poorly absorbs other mycotoxins such as fumonisins, DON, T–2 toxin, and OTA (48, 53). Zeolites are hydrated aluminic aluminosilicates that adsorb AFB1, DON, T–2 toxin, and OTA (48, 53). Zeolites are not NIV and ZEA (53). Mannanoligosaccharides, the effective are those which contain sodium or calcium; more effective are those which contain sodium (58). Bentonites effectively adsorb aflatoxins (59), but not NIV and ZEA (53). Mannanoligosaccharides, the extracts of yeast cell walls, are very effective in the adsorption of aflatoxins, ZEA, and FB1 in vitro, and do not affect the absorption of minerals and vitamins (53). Their effect on OTA and toxins of Fusarium moulds is less pronounced. Polyvinylpyrrolidone is a synthetic resin which reduces the absorption of fumonisins in the gastrointestinal system of experimental animals (60). Active charcoal is not widely used because it is not known whether its long–term use might lead to mineral and vitamin deficiency in domestic animals. Cholestyramine adsorbs ZEA, OTA and FB1, from feed (50, 53), and reduces the nephrotoxic effect of OTA (61). High cost of active charcoal and cholestyramine limits their use on farms. It was also found that Fuller earth effectively absorbs AFB1 from peanut oil. In India, this method is successfully applied in industry (27). So far, no single adsorbent has been proven effective against most types of mycotoxins (49).

DECONTAMINATION IN FOOD PREPARATION

The content of mycotoxins may be reduced in the preparation of food, or concentrated in certain parts of food. The fate of mycotoxins during food preparation depends on the way of contamination (natural or experimental spiking), their concentration, on the type of food, humidity and temperature. The sampling of mycotoxins for analysis is a complex problem, and it gets even more complex in double sampling: before and after food preparation.

Although most mycotoxins are resistant to heat, some ergot alkaloids are completely destroyed when bread is baked. Others, like OTA, are more heat–resistant, and the reduction of its concentration by baking is not significant (30). However, the reduction of OTA concentrations correlates with the baking temperature, and inversely correlates with the content of moisture in bread (62). It has been shown that heating flour at 250 °C for 40 minutes lowers OTA concentration by 76% (31). Coffee roasting raised a controversy about its effect on OTA concentrations. While some authors believe that this procedure considerably reduces the OTA concentration (28), others disagree (29). Processing coffee, maize, and peanuts at high temperatures seems to reduce aflatoxin contamination only partially (27). FB1 is heat resistant, and it takes baking or frying at temperatures >150 °C to reduce it substantially.

Water solution of calcium hydroxide {Ca(OH)2} is used to soften the shells of maize kernels prior to further processing into maize flour for tortillas, but it also happens to remove FB1. This procedure partially hydrolyses FB1 into aminopentol and tricarboxilic acid (43), and partially converts it to hydroxy–FB1, whose toxicity is equal to that of FB1 (20). The removal of FB1 is more rapid and extensive in alkaline or acid environments than at pH neutral (63). Calcium hydroxide effectively reduces ZEA (59–100 %) and DON (72–82 %) (44).

Fumonisins proved resistant to baking, and frying did not significantly reduce FB1 in artificially contaminated maize muffins (32). However, the reduction was significantly greater at the surface than in the core of the muffins. The reaction between fumonisins and reducing sugars (glucose or fructose) yielded products that were non–toxic (64).

AFB1 is completely eliminated by the refinement of oil (31), and wet milling of maize eliminates starch together with fumonisins, ZEA, and aflatoxins (15).
PREVENTION OF MYCOTOXIN TOXICITY AND FOOD DECONTAMINATION ON THE EXPERIMENTAL LEVEL

In addition to the described methods that can be applied on the industrial level, there is a number of interesting experimental methods devised to decontaminate food and feed containing mycotoxins and to protect humans and animals from mycotoxin toxicity.

Some mycotoxins damage the lipid layer of the cell membrane through increased lipid peroxidation. This is why antioxidants such as selenium and vitamins were tested for their protective efficiency in experimental conditions. The results of these investigations as well as the effect of various food components have been reviewed by Galvano and co–workers (53).

Protection targeted at specific mycotoxins was also investigated. Creppy and co–workers (65) have found that amino acid phenylalanine protects experimental animals from OTA, as it increases the urinary and hepatobiliary route of OTA excretion. The effect of artichoke extracts on vaccinal immunity and on the health of broilers chickens was studied by Stoev and co–workers (66). These methods of protection from OTA toxicity are not in industrial use.

Some authors found that *Fusarium subglutinans* and *Fusarium graminearum* were competitive, which led to a decrease in trichothecenes production by *Fusarium graminearum* (67). However, *Fusarium subglutinans* itself may produce other types of mycotoxins. Other authors tested the efficiency of antimicrobial food additives in the inhibition of moulds *Aspergillus sulphureus* and *Penicillium viridicatum* and their production of OTA (68). They found that potassium sorbate, sodium propionate, methyl paraben, and sodium bisulphite efficiently reduced their growth and the production of OTA. Except for parabens, this effect was pH–dependent; the efficiency of antimicrobial food additives generally increases with lower pH.

CONCLUSION

Mycotoxins are widespread toxins in cereals produced all over the world. In order to protect crops from contamination by mycotoxins, it is of the utmost importance to follow preventive agrotechnical measures that counteract mould growth. There is no ideal method of mycotoxin decontamination of food and feed, one which would destroy all mycotoxins without leaving their residues or metabolites and without changing the nutritional value of food and feed. All methods of decontamination increase the cost of production and should be used only in cases when preventive measures have failed.

REFERENCES

64. Whole cottonseed and cottonseed products: Toxins 2008;5:229–237.

Sažetak

SPREČAVANJE IZLOŽENOSTI MIKOTOKSINIMA IZ HRANE I KRMIVA

Mikotoksinši su metaboliti plijesni koji se nalaze u namirnicama biljnog i životinjskog podrijetla i u stočnoj hrani. Najčešće plijesni koje kontaminiraju žitarice u umjerenoj klimatskoj zoni iz rodova su *Fusarium* i *Penicillium*. U krajevima s umjerenom klimom, s toksikološkog su gledišta najvažniji mikotoksinši fumonizini, trihoteceni i zearalenon koje proizvode neki biotipovi vrsta *Fusarium* i okratoksinši, citrinin i penicilinska kiselnina koje proizvode neki biotipovi *Penicilliuma* i *Aspergillus* a. U tropskim i suptropskim krajevima čest je nalaz aflatoksina, metaboličkih produkata nekih biotipova vrsta *Aspergillus*. Zbog međunarodne trgovine hranom postoji mogućnost izloženosti ljudi i životinja aflatoksinima i izvan tropskih područja. Iznese su agronomske metode i preporuke za skladištenje hrane biljnog podrijetla i krmiva koje su nužne za sprečavanje kontaminacije plijesnima i njihovim produktima. Opisane su metode dekontaminacije krmiva kao i uporaba dodataka krmiva koje se mogu rabiti kada zakažu metode prevencije onečišćenja mikotoksinšima. Ove metode treba izbjegavati koliko god je to moguće jer povećavaju cijenu proizvodnje i mogu smanjiti prehrambenu vrijednost krmiva. Metodama dekontaminacije mikotoksinši se ne mogu potpuno ukloniti, a primjenom nekih metoda mogu nastati njihovi toksičniji metaboliti. Budući da nema jedinstvene i pouzdane metode za dekontaminaciju mikotoksinšina u krmivu, naglašava se važnost preventivnih mjera.

KLJUČNE RIJEČI: aflatoksinši, alkaloidi snijeti, dekontaminacija, fumonizini, okratoksinši, trihoteceni