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Abstract - Transitions from laminar to turbulent flow associated with a critical level in the stratified shear flow
are related to the critical (gradicnt) Richardson number, Ric, the minimum value of which is Ric =~ 1/4. Based
on the linear theory and a modified Taylor-Goldstein equation, here it is plausibly shown that Ric may slightly
vary from this value if the mcan wind speed profile contains a small curvature (parameterized here) around the
critical level. The modified Ric that depends on the dimensionless curvature a = (U"C/U%) is

Ric(@) = (1 +a/2)fa+ (1 +a/2)/4].

Key word index: Richardson number, critical level, Taylor-Goldstein equation, parameterization.

SaZetak — Kriti¢ni nivo stratificiranoga smicajudega strujanja zdruZen je s prijclazom laminarnoga u
turbulentno strujanje koje ovisi o kritiénom (gradijentnom) Richardsonovu broju. Taj broj ima minimalnu
vrijednost Ric = 1/4. Na temelju lincarne teorije i modificirane Taylor-Goldstein-ove jednadZbe, plauzibilno je
pokazano da Ric moZe odstupati od 1/4 ako srednje strujanje sadrZi zakrivljenost (koja je ovdje parametrizirana)

oko toga kriti¢noga nivoa. Modificirani Ric ovisi o bezdimenzionalnoj zakrivljenosti & = (U"¢/U") kao

Ri@)=(1+a/2a+ 1 +al2)/4)

Klju¢ne rijeci: Richardsonov broj, kriliéni nivo, Taylor-Goldsteinova jednadZba, parametrizacija.

1. INTRODUCTION

The (gradient) Richardson number, Ri, is a principal
and widely used parameter which describes the stability
of shear flows. It is defined as

Ric = (g/©0)(90© / 3z) / (|oU | z|%) (1)

where g is acceleration due to gravity, ©y and © are the
reference and mean potential temperature, respective-
ly, U is the background wind speed, and z is height (e.g.
Gossard and Hooke, 1975). A critical, minimum value
of Ri, henceforth called Ri., determines a sufficient
condition for the linear stability of an inviscid, laminar,
parallel, stratificd flow (Miles!, 1961, 1990). This Ri.
(=1/4) is justified by theory (Howard, 1961), experi-

1 Prof. Miles points out that G. I. Taylor was among the first
to do the analysis in 1915; Rayleigh, Prandtl, Haurwitz and
Richardson were also involved in similar stability analyses.

ments (Thorpe, 1969, 1971; although some experi-
ments reveal a value as low as 0.21), and atmospheric
mecasurements (Browning, 1971; Emmanuel et al
1972; Metcalf, 1975; King et al. 1987).

Kelly and Maslowe (1970) argue in their nonlinear
analysis that a single Richardson number parameter is
inadequate to describe wave-turbulence transitions
near a critical level. The same conclusion follows from
Vinnichenko et al. (1980). Stull (1988, p. 176-177)
discussed a hysteresis phenomenon identified by Ri,;
(=0.21 or 0.25) and Ri,, (=1). A qualitative explana-
tion is given in terms of two conditions needed for
turbulence: instability, which may occur whenever Ri
< Ri.y, where Ri,; is the upper value of Ri., and some
trigger mechanism such as Kelvin-Helmholtz waves
(Ri = Ri,, Ri,; is the lower value of Ri.). The values of
0.25 and 0.5 are sometimes referred to as the criterion
for the onset of instability and its maintenance, respec-
tively (e.g., Turner, 1973).

One may ask whether most variations of Ri. come
from nonlinear effects, measurement errors, €tc., or

o
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whether the linear theory can account for some of Ri;
departures from its well-established value of 1/4. The
aim of this paper is to analytically estimate a range of
values for the critical Richardson number, Ri,, in at-
mospheric shear flows. The validity of the Taylor-Gold-
stein equation (TGE) is assumcd and also that the
curvature and shear of the mean wind speed can be
related in the TGE.

2. AMODIFIED TAYLOR-GOLDSTEIN
EQUATION

a) no critical-layer curvature included

The Miles theorem and its extension are given in
Miles (1961) and Howard (1961) where the derived
value is Ri,=1/4. The form of the TGE that is used
here is:

w” + m’w = 0, )
where m? is defined as
m® = [N*(c-U)? + U”/(c-U)- K7}, (3)

and w is the vertical complex amplitude of a mono-
chromatic wave, N is the Brunt-Viisdld frequency
(N? = Ri U?, typically N° ~ 10-% %), the apostrophes
denote spatial derivatives with respect to z, ¢ is the
horizontal phase speed, and k is the horizontal wave-
number (|w| << |U| by hypothesis). As c approaches
the background speed U, the vertical wavenumber
function m(z) becomes arbitrarily large; hence, (2)
should be locally modified. Based on a scale analysis,
the modified m(z) ncar the critical level is:

m?—> m21= NZ/(C-U)Z 4

It is assumed that the critical level is approached
smoothly. This means that U changes smoothly and
gradually in the vicinity of the critical level, i.e.,

U(E) = Uo + (aUJdE) L,

where { = z-z,,z, is the critical level height, and Uy = ¢
(for details see Booker and Bretherton, 1967; Mobbs
and Darby, 1989). The analysis presented here is con-
cerned only with Ri. After substituting (4) with the
assumed U(Z), (2) becomes

dw | dg* + N*)(dUdE) ¢ w =0. )

Solutions to (5) are given by the method of Frobe-
nius (e.g., Bender and Orszag, 1978; Simmons, 1991).
Ri_ can be obtained by assuming that w « { ; hence,

nn-1)+Ri=0 (6a)
which yields two independent solutions:
ny=05+i(Ri-1/4)". (6b)

Therefore,

Ri. =1/4 7

as a necessary condition for the onsct of instability.
Derivations of Ri, based on an energy argument may
be seen, for example, in Drazin and Reid (1981), and
Miles (1990). If Ri is Iess than Ri,, a nonlinear analysis
is desirable in order to describe the flow.

b) a parameterized critical-layer curvature

The critical level is stretched to a critical layer in
order to examinge Ri, variations due to the wind profile
curvature. The curvature is presumably small and it
docs not dominate but slightly modifies the wind
profile. As a refinement to the previous, brief deriva-
tion, one may try to locally replace (3) so to include the
curvature of U(z). The expansion of U() now includes
the quadratic term, i.e., locally

U©)=Uo+(dU/E) L+ (UML) E 2.

With Up=c,
1o (4) yiclds

a scale analysis for m(z) analogous

m® = m} = N*/ [(dUE)E +(d*UEDE 2]
~(d*UME?) | [(dUE)s +(d*ULEH 2] (8)

The assumed m% comes from the expectation that
the critical layer as a whole affects Ri.. Hence, the
following modification can be viewed as a quasi-non-
local one because the curvature, which includes the
second derivative, is a non-local quantity while the
overall analysis presented here is a local analysis of (2).

The right hand side of (8) suggests that these terms
arc of the same order (otherwise (8) does not hold)
even though the first term (~ | N? |) should be larger
than the sccond one (~|d?U/dg?|) . Therefore,

N>~ U0 G [1+ U E2U)],

where the apostrophes denote derivatives with respect
to {. Based on a heuristic assumption that U” can be
parameterized (U” ~ U’[f), define
a = (U0 (10)

Parameter is a dimensionless measure of the
relative importance for the U({) curvature. The local
wind speed U({) can be easily found from (10). A
preliminary restriction on the range of values for
comes from the requirement that U may only slightly
depart from a straight-line profile at the critical layer.
Hence, that gives a madification for Ri,, i.c., a small
interval for Ri. values. Figure 1 shows a possible and
idealized range of shapes for U at a critical layer. The
realizability of various U-profiles in the atmosphere is
the ultimate restriction for & and this defined U({), ||
ought not to be larger than, roughly, 0.3. A further
analysis of the parameterization (10) and its realiza-
bility has been left for another study.

So far, the only difference between this approach
and that in subsection 2a is the introduction of the
small parameter due to the critical-level stretching into
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Figure 1. An idealized sct of wind profiles in the vicinity of a critical level. They represent stall variations from the
straight-line profile. The small and parameterized wind profile curvature affects the critical Richardson number

Ri. as described by Equation (14).

Slika 1. Idelalizirani profili vjetra u blizini kritinoga nivoa predstavljeni kao male varijacije od pravocrtnog profila.
JednadZba (14) opisuje utjecaj male i parametrizirane zakrivljenosti profila vjetra na kriti¢ni Richardsonov broj

Ri..

the critical layer. Hence, it is expected that the TGE
holds, and using (8), (2) bccomes:

dwldC*+ {N*[(AUIO)E +(d*UIdEDE2) -

~(d*UER[(AUJdE ) +(d UMD 2]} w = 0
(11a)

or in a more compact form:

dwide® + {Ri (1 + af2)? —a(l+a2)} TPw =0
(11b)

Equation (11) is a modified TGE near the critical
level. A resemblance between (5) and (11) is provided
through  being sufficiently small; the former can be
seen as (11) when a - 0 and this plausibly justifics the
modified TGEZ If one assumes that w « {* as be-
fore, then

n(n-1)+Ri (1+a/2) = a (1+a/2)'=0 (12a)

2 The same name, the modified Taylor-Goldstein equation,
may have been used elsewhere and with different meaning.
For instance, in Grisogono (1994) the same name applies to
a fourth-order equation including eddy viscosity for momen-
tum; however, the equation is always associated with wave-
like motion.

and

nyy = 12%i[Ri(1+a/2) - a (1+a/2)*-1/4]*
(12b)

It appears that "simple" waves may dominate if

Ri(a) > (1+a2)[a+(1+a/2)/4]; (13)
therefore,
Ri(a) = (1+a2)[a+(1+a/2)/4] . (14)

Equation (14) gives a lincar-parabolic dependence
of Ri(a) on the parameterized wind speed curvature
and is the main result here. Also note that Ri (0) = 1/4
asin (7).

3. DISCUSSION AND CONCLUDING REMARKS

In reality, it is difficult to obtain any constant value
of « associated with a critical layer. Therefore, an over-
all curvature effect on Ri () is provided here by an
integration over assumed values. Define average Ri,,
Ri., <Ri.>, as

5 _1 b 5
<Ri,> = (b-a)"[’ Ri(a)da (15)
for an expected range a< a < b. Table 1 shows a set of
<Ri.> valueswhen-0.20 < a2 <0and 0 < b =< 0.20.
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From Table 1:
whena = -b, then <Ri.><1/4;
when a<b, then <Ri,><1/4.

Even thougha and b are assigned as an anti-symme-
tric set of values around zero in Table 1, the average
<Ri > is somewhat shifted above Ri (0)=1/4 [sce also
(14)].

Abrupt changes in the stable ABL could be some-
times caused by initially unnoticeable variations in the
wind profile that still contains appreciable changes inits
curvature (e.g., in the upper part of the stable ABL).
This may modify Ri. so that Ri, becomes locally greater
than 1/4 and permits shear instabilitics to develop as
the beginning of a sudden flow collapse from a laminar
to a turbulent regime. The way Ri, is formulated here
suggest an additional form for Ri given in (1), e.g,
Riygw = Ri (1+/2)™ Thus, some non-local cffects on
flow stability would be taken into account. ITowever,
the applicability of the modified TG must be carefully
reconsidered before actual employment.

In conclusion, Ri, may slightly depart from its well-
defined theoretical value of 1/4 if the vertical wind
profile possesses a curvature. This curvature is likely to
occur in atmospheric flows and it contributes to devia-
tions of the actual critical gradicnt Richardson number
Ri.=1/4. Since the curvature effcct is presumably
small, its parameterization via the small parameter in
the TGE is probably acceptable.
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