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l.INTRODUCTION

The (gradient) Richardson numbcr,J?i, is a principal
and widcly used parameter which dcscribcs the stability
of shear flows. It is dcfincd as

Ri" = (g / @o)( a@ I az) I (l aU I azl2) (l)

where g is acceleration due to gravity, @p and @ are lhe
reference and mean potential temperature, respective-
ly, U is the background wind speed, and z is height (e.g.

Gossard and Hooke, 1975). A critical, minimum value
of Ri, henceforth called 1?i., determincs a sufficicnt
condition for the linear stability of an inviscid, laminar,
parallel, stratificd flow (Milcsl, 1961, 1990). This-Rr"
(=U4) is justified by theory (Howard, 1961), experi-

1 Prof. Miles points out that G. I. Taylorwas among the first
to do the analysis in 1915; Rayleigh, Prandtl, Haurwitz and
Richardson were also involved in similar stability analyses.
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mcnts (Thorpe, 1969, 1971; although some expcri-
ments reveal a value as low as 0.21), and atmospheric
mcasurcmcnts (Browning, 1971; Emmanuel et al.

1972;Metcalf,1975; King et al. 1987).

Kelly and Maslowe (1970) argue in their nonlinear
analysis that a single Richardson numbcr parameter is
inadequate to describe wavc-turbulcnce transitions
near a crilical level. The same conclusion follows from
vinnichenko er al. (1980). srull (1988, p. 176-177)
discusscd a hystercsis phcnomenon idcntificd by Ri.1

(=0.2t or 0.25) and Ri,2 (= l). A qualitative explana-

tion is given in terms of two conditions needed for
turbulcnce: instability, which may occur whenever Ri
< R1"2, where fti.2 is the upper value of Rr", and some

triggcr mcchanism such as Kelvin-Ilelmholtz waves

(Ri = llia,Ri,1 is the lowervalue of Rr.). The values of
0.25 and 0.5 are sometimes referred to as the criterion
for the onset of instability and its maintenance, respec-
tively (e.g., Turner, 1973).

One may ask whether most variations of .RL come

from nonlinear effects, measurement errors, etc., or
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whether the linear thcory can account for some of Rr.
departures from its well-established value of 1/4. The
aim of this paper is to analytically estimate a range of
values for the critical Richardson number, Ri., in at-
mospheric shear flows.'fhe validity of the Taylor-Gold-
stein equation (TGE) is assumed and also that the
curvature and shear of the mean wind speed can be

related in the TGE.

2. A MODIFIED TAYI,OR.GOLDSTEIN
EQUATION

a) no critical-llyer curvltrtre irrcluded

The Miles theorem and its extension are given in
Miles (1961) and lloward (1961) whcre the derived
value is Ri"=114. The form of the 'IGE that is used

here is:

w" + m2w = 0, (2)

where m2 is defined as

*z = gtizl(c-tJ)z + ()',11c-U1- k2), (3)

and w is the vertical complex amplitude of a mono-
chromatic wave, N is the Brunt-Viiisiild frequency
(N2 : -Rt u2,typically A/2 - 10-3s-2), the apostrophes
denote spatial derivatives with respect to z, c is the
horizontal phase speed, and k is the horizontal wave-
number ( l* I < < lU I by hypothesis). As c approaches
the background speed U, the vcrtical wavenumber
function m(z) becomes arbitrarily large; hence, (2)
should be locally modified. Based on a scale analysis,

the modified m (z) near the critical level is:

m2 - tnzL= tf tG-u)t (4)

It is assumed that the critical level is approached
smoothly. This means that U changes smoothly and
gradually in the vicinity of the critical level, i.e.,

u(E) = uo + (duae)e ,

where ( = z - zc, zcis the critical level height, and Us - c

(for details see Booker and Bretherton, 1967; Mobbs
and Darby, 1989). The analysis presented here is con-
cerned only with Ri. After substituting (4) with the
assumed U (E), (2) becomes

dzwld(2+Ifl@u4qz{zw=0. (5)

Solutions to (5) are given by the method of Frobe-
nius (e.g., Bender and Orszag, 1978; Simmons, 1991).

Rr" can be obtained by assuming that lt * ( n; hence,

n(n-t)*.Ri=0
which yields two independent solutions:

nLz=0.5 t i(Ri- 114)t/t.

Therefore,

Ri, -u4

(6a)

(6b)

(7)

as a neccssary condition for the onset of instability.
I)erivations of 1li" based on an energy argument may
be seen, for example, in Drazin and Reid (1981), and
Miles (1990). If Ri is less than Ri., a nonlinear analysis

is desirable in order to describe the flow.

b) a parameterized critical-layer curvature

'lhe critical level is stretched to a critical layer in
order to examine Ill" variations due to the wind profile
curvaturc. the curvature is prcsumably small and it
docs not dominate but slightly modifies the wind
profile. As a refinement to the previous, brief deriva-
tion, one may try to locally replace (3) so to include the
curvature of U(z).Theexpansion of U(() nowincludes
the quadratic term, i.e., locally

u(e)=U o+ (d.u ldq e + (f u ldll e2 2.

With U0 = c, a scale analysis for m(z) analogous
to (4) yiclds

tnL - ,n'z= tt2 tKaude)E+(fukle\ez\l2-

-(t2u kt1 t t(tu ktge + (dzu Me\ez 2l (8)

The assumed m22co:rTcs from the expectation that
the critical layer as a whole affects Rr". I-Ience, the
following modification can be viewed as a quasi-non-

local one becausc the curvature, which includes the
second derivative, is a nonlocal quantity while the
overall analysis presented here is a local analysis of (2).

The right hand side of (B) suggests that these terms
are of the same order (otherwisc (8) does not hold)
even though the first term (- | M | ) should be largcr
than the sccond one (-ld'1U4e2D. Therefore,

N2 - U"U',E lt+U',e K2U)1,

where the apostrophes denote dcrivatives with respcct
to (. Ilased on a heuristic assumption that U" can be

parameterized (U" - U'[),define

c = (u"eu') (10)

Parameter is a dimensionless measure of the

relative importance for the U(() curvature. The local
wind speed U(() can be easily found from (10). A
prcliminary restriction on the range of values for a
comes from the requirement that U may only slightly
depart from a straightJine profrle at the critical layer.
Ilence, that gives a modification for Ri., i.e., a small
interval for Rr. values. Figure 1 shows a possible and
idealized range of shapes for (/ at a critical layer. The
realizability of various U-profiles in the atmosphere is

the ultimate restriction fora and this defined U(E), lol
ought not to be larger than, roughly, 0.3. A further
analysis of the parameterization (10) and its realiza-

bility has been left for another study.

So far, the only difference between this approach

and that in subsection 2a is the introduction of the

smalt parameter due to the critical-level stretching into
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Figure 1. An idealized sct of wind profiles in the vicinity of a critical level. They represent sifiall variations from the
straightJine profile. The small and parameterized wind profile curvature affects the critical Richardson number
Ri" as described by Equation (14).

Slika 1. Idelalizirani profili vjetra u blizini kritidnoga nivoa predstavljeni kao male varijacije od pravoctnog prolila.
JednadZba (14) opisuje utjecaj male i parametrizirane zakrivljenosti prolila vjetra na kritidni Richardsonov broj
RL
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the critical layer. I-Ience, it is expected that the TGE
holds, and using (8), (2) bccomcs:

azw Hez + {N2 tt@ u H 0e + (t' u HE\e' /zl' -
-(d2uk42)t\(,ut(tc)C +@zukqte' tzly * = s

(1 la)

or in a more compact form:

dzwld(z + {Rl (1 + al2)-2 - a(1,+aD)-L} (-2 w = o
(1lb)

Equation (11) is a modified TGE near the critical
level. A resemblance between (5) and ( 1 1) is provided
through being sufficiently small; the former can be

seen as (11) when a - 0 and this plausibly justifies the
modified TGEz. If one assumes that lr o< f" as be-

fore, then

n(n-t)+Ri (l+aB)a- a (l+a21-1=g

2 Th" 
"un " 

name, the modified Taylor-Goldstein equation,
may have been used elsewhere and with different meaning.
For instance, in Grisogono (1994) the same name applies to
a fourth-order equation including eddyviscosity for momen-
tum; however, the equation is always associated with wave-
like motion.

and

n 1,2 = | 2ltfRi(l + a l2)-z - a {L + a 2)-1 -U 4)uz
(tzb)

It appears that "simple" waves may dominate if

Ri(a) > (r + a l2)la + (1 + a 12)14);

therefore,

Ri.(a) = (t + aZ)fa + (l + a2)lal .

Equation (14) gives a linear-parabolic dependence
of .Iii"(a) ori the parameterized wind speed curvature
and is the main result here. Also note that Ri"(O) = Il4
as in (7).

3. DISCUSSION AND CONCLUDING REMARKS

In reality, it is difficult to obtain any constant value
ofa associated with a critical layer. Therefore, an over-
all curvature effect on Rt.(a) is provided here by an
integration over assumed values. Define average Ri",
RL, <fti">, as

<RL> = @-tft[l Ri"(a)da (ls)

for an expected range a < a < b. Table L shows a set of
<Ri.> valueswhen-0.20 <a <O and0 < b <0-20-

(13)

(14)

(12a)
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From Table 1:

when a > -b, then <,lli.> < 1/4;

when a1b, thcn <11i"> < 1/4.

Even though a and D are assigncd as an anti-symmc-

tric set of values around zero in 'l-able 1, the average

<Rl.> is somewhat shiftcd nbovc 1li.(0)= 1/4 lsce also

(14)1.

Abrupt changes in the stable AIIL could be some-

times caused by initially unnoticeable variations in the
wind profile that still contains appreciable changcs in its

curvature (e.g., in the upper part of the stable ABL).
This may modify /?i. so that IlL bcconrcs locally greater

than U4 and permits shear instabilities to dcvclop as

the beginning of a sudden llow collapsc from a laminar
to a turbulent regime. The way Ri" is formulated here

suggest an additional form for lli given in (1), e.g.,

Riypey= Ri (l+czl2)-2.1'hus, somc non-local cficcts on

flow stability would be taken into ilccount. Ilowever,
the applicability of the modificd TGll must be carefully
reconsidcred before actual enrploymcnt.

In conclusion, Ri. may slightly dcpart from its wcll-
defined theoretical valuc of 114 if Lhe vertical wind
profile posscsses a curvature. This curvature is likely to
occur in atmospheric flows and it contributes to devia-

tions oIthe actual critical gradicnt Richardson numbcr
Ri"-114. Sincc the curvature effect is presumably

small, its paramcterization via thc snlall parameter in
the TGE is probably acceptable.
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