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1. Introduction

The interplay between the geometry of Banach spaces and fixed point theory is not
only natural but also proving very fruitful. In particular, geometric properties play a
key role in metric fixed point problems (see [8] and references cited therein). There
exist numerous results banking heavily on geometric properties of Banach spaces
which mark the beginning of a new mathematical field wherein the metric fixed
point theorems are proved with the aid of geometric properties of Banach spaces.
The utility of approximation theory is enormous. By now approximation theory
intersects with almost every other branch of analysis and plays a very fruitful role
in the applied sciences and engineering. Broadly speaking, approximation theory is
concerned with the approximation of a continuous function by a polynomial carried
out in several concrete ways these days. In fixed point theory also the approximation
of a fixed point is carried out and one of the most applied such result of fixed point
approximation is due to Scarf [16]. In the recent past, fixed point theorems have
been extensively applied to best approximation theory and in the course of a last
four decades several interesting results have been established. One may recall that
Meinardus [14] was the first to notice such possibility by using Schauder Fixed
Point Theorem to best approximation theory. Thereafter, Brosowski [4] obtained
celebrated results and generalized the Meinardus’s result. Several authors (e.g. [10,
23, 25]) have further improved the results of Brosowski [4] in several ways. In the
year 1988, Sahab et al. [15] extended the result of Hicks and Humpheries [10] and
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Singh [23] by considering a pair of mappings wherein one is linear and the other
one is nonexpansive.

In 1970, Takahashi [26] introduced the notion of convex metric spaces and proved
some fixed point theorems for nonexpansive mappings in such spaces. Afterwards,
many authors have discussed the existence of a fixed point as well as the convergence
of iterative processes for nonexpansive mappings in such spaces (see [5, 6, 11]). Re-
cently, Beg et al. [3] employed convex metric spaces to prove results on the existence
of the common fixed point and utilize the same to prove the existence of the best
approximant for relatively contractive commuting mappings which also generalize
the core result of Sahab et al. [15] which has witnessed intense research activity
around their result in the last several years.

In this paper, we establish an existence result on the common fixed point for a
contractive subcompatible pair of mappings in the setting of the convex metric space
which is further utilized to prove some results in invariant approximation. In the
process, results due to Beg et al. [3], Al-Thagafi [2], Brosowski [4], Meinardus [14],
Singh [23, 24] and Sahab et al. [15] are also generalized and improved by considering
relatively general classes of noncommuting mappings satisfying a Gregus [7] type
contraction condition in the setting of convex metric spaces.

2. Preliminaries

For the material to be presented here, the following definitions are required:

Definition 1 (see [26]). Let (X , d) be a metric space. A continuous mapping W :
X × X × [0, 1] → X is said to be a convex structure on X , if for all x, y ∈ X and
λ ∈ [0, 1] the following condition is satisfied:

d(u,W(x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y),

for all u ∈ X wherein obviously W(x, x, λ) = x.

A metric space X equipped with a convex structure is called a convex metric
space. Obviously, Banach space and each of its convex subsets are simple examples
of convex metric spaces with W(x, y, λ) = λx + (1− λ)y, but a Fréchet space need
not be a convex metric space. There are many examples of convex metric spaces
which cannot be embedded in any Banach space. For substantiation, the following
two examples can be recalled:

Example 1. Let I be the unit interval [0, 1] and X the family of closed intervals
[ai, bi] such that 0 ≤ ai ≤ bi ≤ 1. For Ii = [ai, bi], Ij = [aj , bj ] and λ(0 ≤ λ ≤ 1), we
define a mapping W by W(Ii, Ij ;λ) = [λai + (1− λ)aj , λbi + (1− λ)bj ] and define a
metric d in X by the Hausdorff distance, i.e.

d(Ii, Ij) = sup
a∈I

{| inf
b∈Ii

{|a− b|} − inf
c∈Ij

{|a− c|}|}.

Example 2. A linear space L equipped with the following two properties is a natural
convex metric space:
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(1) For x, y ∈ L, d(x, y) = d(x− y, 0);

(2) For x, y ∈ L and λ(0 ≤ λ ≤ 1),

d(λx + (1− λ)y, 0) ≤ λd(x, 0) + (1− λ)d(y, 0).

Definition 2. A subset K of a convex metric space (X , d) is said to be convex, if
W(x, y, λ) ∈ K for all x, y ∈ K and λ ∈ [0, 1]. The set K is said to be q-starshaped
if there exists q ∈ K such that W(x, q, λ) ∈ K for all x ∈ K and λ ∈ [0, 1]. Clearly,
q-starshaped subsets of X contain all convex subsets of X as a proper subclass.

Definition 3. A convex metric space (X , d) is said to satisfy the Property (I), if
for all x, y, z ∈ X and λ ∈ [0, 1],

d(W(x, z, λ),W(y, z, λ)) ≤ λd(x, y).

For motivation and further details in respect of Property (I), one can be referred to
Guay et al. [9] (e.g. Definition 3.2).

Definition 4 (see [11, 26]). A continuous function S from a closed convex subset K
of a convex metric space (X , d) into itself is said to be W-affine if S(W(x, y, λ)) =
W(Sx,Sy, λ) whenever λ ∈ [0, 1] ∩ Q and x, y ∈ K, where Q stands for the set of
rational numbers.

Definition 5 (see [23]). Let K be a subset of a metric space (X , d) . Let x0 ∈ X .
An element y ∈ K is called a best approximant to x0 ∈ X , if

d(x0, y) = inf{d(x0, z) : z ∈ K}.

Let PK(x0) be the set of best K−approximants to x0 and so

PK(x0) = {z ∈ K : d(x0, z) = d(x0,K)}.

Definition 6. Let T be a self-map defined on a subset K of a metric space (X , d).
A best approximant y in K to an element x0 in X with T x0 = x0 is an invariant
approximation in X to y if T y = y.

Example 3 (see [24]). Let X = R and K = [0, 1
2 ]. Define T : R→ R as follows:

T x =





x− 1, if x < 0,
x, if 0 ≤ x ≤ 1

2 ,
x+1
2 , if x > 1

2 .
(1)

Clearly, T (K) = K and T (1) = 1 (i.e.x0 = 1). Also

PK(x0) =
{

1
2

}
.

Hence, T has a fixed point in PK(x0) which is a best approximation to x0 in K.
Thus, 1

2 is an invariant approximation.
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Definition 7 (see [12]). A pair (T ,S) of self-mappings of a metric space X is said
to be compatible, if d(T Sxn,ST xn) → 0, whenever {xn} is a sequence in X such
that T xn,Sxn → t ∈ X .

Every commuting pair of mappings is compatible but the converse implication is
not true in general.

Definition 8 (see [19, 20]). Let K be a q-starshaped subset of convex metric space
(X , d) such that q remains fixed under S and invariant under both T and S. Then
T and S are called R-subcommuting on K, if for all x ∈ K there exists a real
number R > 0 such that d(ST x, T Sx) ≤ (Rk )d(seg[T x, q],Sx) for each k ∈ (0, 1]. If
R = 1, then the maps are called 1-subcommuting. S and T are called R-subweakly
commuting on K, if for all x ∈ K there exists a real number R > 0 such that
d(ST x, T Sx) ≤ Rd(Sx, seg[T x, q]), where seg[x, q] = W(x, q, k), 0 ≤ k ≤ 1.

Remark 1.

(i) Notice that commutativity implies R-subcommutativity which in turn implies
R-weak commutativity (see [17, 18, 19]).

(ii) Also, it is straightforward to notice that commuting maps are R-subweakly com-
muting maps whereas R-subweakly commuting maps are R-weakly commuting
but the converse implications are not true in general (see [20]).

To justify some of the above remarks, we cite the following examples (see [19,
20]):

Example 4. Let X = R with norm ‖x‖ = |x| and M = [1,∞). Let T ,S : M→M
be defined by

T x = x2 and Sx = 2x− 1

for all x ∈M. Then T and S are R-weakly commuting with R = 2. However, they
are not R-subcommuting because

|T Sx− ST x| ≤ (
R
k

)|(kT x + (1− k)q)− Sx|

does not hold for x = 2 and k = 2
3 , where q = 1 ∈ Fix(S).

Example 5. Let X = R with norm ‖x‖ = |x| and M = [1,∞). Let T ,S : M→M
be defined by

T x = 4x− 3 and Sx = 2x2 − 1

for all x ∈M. ThenM is 1-starshaped with 1 ∈ Fix(S) and both T and S-invariant.
Also, |T Sx− ST x| = 24(x− 1)2. Further,

|T Sx− ST x| ≤ (
R
k

)|(kT x + (1− k)q)− Sx|

for all x ∈ M, where R = 12 and q = 1 ∈ Fix(S). Thus, T and S are R-
subcommuting on M but not commuting on M.
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Example 6. Let X = R2 with norm ‖(x, y)‖ = max{|x|, |y|}, and let T and S be
defined by

T (x, y) = (2x− 1, y3) and S(x, y) = (x2, y2)

for all (x, y) ∈ X . Then T and S are R-subweakly commuting on K = {(x, y) : x ≥
1, y ≥ 1} but not commuting on K.

Definition 9 (see [1, 13, 21, 22]). Suppose that K is a q-starshaped subset of a
metric space X . For the selfmaps S and T of K with q ∈ Fix(S), define

∧
q(S, T ) =

∩{∧(S, T k) : 0 ≤ k ≤ 1}, where Tkx = seg[T x, q] and
∧

(S, Tk) = {{xn} ⊂
K : limnSxn = limnTkxn = t ∈ K}. Then S and T are called subcompatible, if
limnd(ST xn, T Sxn) = 0 for all sequences xn ∈

∧
q(S, T ).

Obviously, subcompatible maps are compatible but the converse statement does
not hold in general as substantiated by the following example.

Example 7 (see [1, 13]). Let X = R with usual metric and K = [1,∞). Let S(x) =
2x−1 and T (x) = x2, for all x ∈ K. Let q = 1. Then K is q-starshaped with Sq = q.
Note that S and T are compatible. For any sequence {xn} in K with limnxn = 2,
we have limnSxn = limnT 2

3
xn = 3 ∈ K. However, limnd(ST xn, T Sxn) 6= 0. Thus

S and T are not subcompatible maps.

Notice that R-subweakly commuting and R-subcommuting maps are subcom-
patible. The following simple example reveals that the converse statement is not
true in general.

Example 8 (see [1, 13]). Let X = R with usual metric and K = [0,∞). Let S(x) = x
2

if 0 ≤ x < 1 and Sx = x if x ≥ 1, and T (x) = 1
2 if 0 ≤ x < 1 and T x = x2 if x ≥ 1.

Then K is 1-starshaped with S1 = 1 and
∧

q(S, T ) = {{xn} : 1 ≤ xn < ∞}. Note
that S and T are subcompatible but not R-weakly commuting for all R > 0. Thus S
and T are neither R-subweakly commuting nor R-subcommuting maps.

The following result is also needed in the sequel.

Theorem 1 (see [11], Corollary 3.2). Let T and S be a pair of compatible self-maps
on a closed convex subset K of the convex metric space (X , d), satisfying:

d(T x, T y) ≤ ad(Sx,Sy) + (1− a)max{d(T x,Sx), d(T y,Sy)}, (2)

for x, y ∈ K, where 0 < a < 1 is a constant. If T (X ) ⊂ S(X ) and S is W-affine
and continuous, then T and S have a unique common fixed point z ∈ K and T is
continuous at z.

3. Main Result

The following result is a fixed point theorem for a relatively general class of non-
commuting mappings in the framework of a convex metric space.
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Theorem 2. Let K be a nonempty convex subset of a convex metric space (X , d)
satisfying the property (I). Let T and S be a pair of self-maps defined on K which
is subcompatible. Assume that S(K) = K, q ∈ Fix(S), S is W-affine and also con-
tinuous. If T and S satisfy

d(T x, T y) ≤ d(Sx,Sy) + (1−k)
k max{d(seq[T x, q],Sx), d(seq[T y, q],Sy)}, (3)

for all x, y ∈ K where 0 < k < 1, then T and S have a common fixed point provided
K is compact and T is continuous.

Proof. Choose a sequence {kn} ⊂ (0, 1) with kn → 1 as n → ∞. For each n ∈ N,
define Tn : K → K as follows:

Tnx = W(T x, q, kn) (4)

for some q ∈ K. Obviously, for each n, Tn maps K into itself as K is convex.
Subcompatibility of the pair (S, T ), W-affinity of S, q = Sq and the property (I)
(in respect of any {xm} ⊂ K with limm Tnxm = limm Sxm = t ∈ K) together imply
that limm Tnxm = limmW(T xm, q, kn) = limm Tkn

xm = t by the assumption of
Tλ and subcompatibility of T and S.

0 ≤ lim
m

d(TnSxm,ST nxm)

= lim
m

d(W(T Sxm, q, kn),SW(T xm, q, kn))

= lim
m

d(W(T Sxm, q, kn),W(ST xm,Sq, kn))

= lim
m

d(W(T Sxm, q, kn),W(ST xm, q, kn))

≤ kn lim
m

d(T Sxm,ST xm).

Hence {Tn} and S are compatible for each n and xm ∈ K whereas Tn(K) ⊆
K = S(K), S is affine and q ∈ Fix(S). Also, for all x, y ∈ K, one can write (in
view of (3), (4) and the property (I)) that

d(Tnx, Tny) = d(W(T x, q, kn),W(T y, q, kn))

≤ knd(T x, T y)

≤ kn{d(Sx,Sy) + (
1− kn

kn
) max{d(seq[T x, q],Sx), d(seq[T y, q],Sy)}},

i.e.,

d(Tnx, Tny) ≤ knd(Sx,Sy) + (1− kn)max{d(Tnx,Sx), d(Tny,Sy)}, (5)

for all x, y ∈ K and 0 < kn < 1. Since K is compact, therefore using Theorem 1, for
every n ∈ N, Tn and S have a common fixed point xn in K, i.e.,

xn = Tnxn = Sxn. (6)
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As K is compact and {xn} is a sequence in K, so {xn} has a convergent subsequence
{xm} such that xm → y ∈ K. As S, T and W are continuous and

xm = Sxm = Tmxm = W(T xm, q, λm),

so it follows that y = T y = Sy.

We demonstrate Theorem 2 with the help of the following example.

Example 9. Consider the real vector space X = R2 equipped with natural metric
wherein W(x, y, λ) = λx+(1−λ)y. Define self-maps T and S on the convex metric
space (X , d) as follows (for arbitrary (x, y) in X = R2):

S(x, y) = (x, y) and T (x, y) = (−x,−y).

If we take K = {(x, y) : x2 + y2 ≤ 1}, then K satisfies the property (I) and K is
compact together with q = (0, 1) ∈ Fix(S). Also, S is continuous, W-affine and
S(K) = K. Further, the pair (T ,S) is commuting and hence subcompatible besides
T (K) = K and T is continuous. For the verification of condition (3) (for arbitrary
x = (x1, y1) and y = (x2, y2) in K), we have:

d(T (x1, y1), T (x2, y2)) = d((−x1,−y1), (−x2,−y2))
= d(((x2 − x1), (y2 − y1)), (0, 0))

=
√

(x1 − x2)2 + (y1 − y2)2 = d(Sx,Sy)

≤ d(Sx,Sy) + (
1− k

k
)

×max{d(seq[T x, q],Sx), d(seq[T y, q],Sy)}.

Thus all the conditions of Theorem 2 are satisfied. Notice that (0, 0) remains fixed
under T and S both which, in all, substantiates Theorem 2.

The following relatively simple example also illustrates Theorem 2.

Example 10. Consider X = R endowed with usual metric and K = [0, 1] is a
subset of R which is indeed convex. Define T x = 0 (for all x ∈ K) and Sx = x
(for all x ∈ K). Using routine calculations, one can easily show that T and S
satisfy condition (3) together with all other conditions of Theorem 2. Notice that
Fix(T ) ∩ Fix(S) = {0}.

Our next example exhibits that conditions of convexity of K are necessary in
Theorem 2.

Example 11. Let X = R be endowed with usual metric and K = {0, 1, 1− 1
n+1 : n ∈

N}. Define T 0 = 1
2 and T 1 = T (1− 1

n+1 ) = 0 for all n ∈ N. Clearly, K is not convex.
Define Sx = x (for all x ∈ K). Now T and S satisfy (3) together with all other
conditions of Theorem 2 except the convexity of K. Notice that Fix(T )∩Fix(S) = ∅.

As an immediate consequence of Theorem 2, we can have the following.
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Corollary 1. Let K be a nonempty convex subset of a convex metric space (X , d)
satisfying the property (I). Let T and S be a pair of self-maps of K which is R-
subweakly commuting. Suppose that S(K) = K, q ∈ Fix(S), S is W-affine and also
continuous. If T and S satisfy

d(T x, T y) ≤ d(Sx,Sy) + ( 1−k
k )max{d(seq[T x, q],Sx), d(seq[T y, q],Sy)}, (7)

for all x, y ∈ K, where 0 < k < 1, then T and S have a common fixed point, provided
K is compact and T is continuous.

As an application of Theorem 2, we derive a more general result in invariant
approximation theory for subcompatible pairs (a generalized class of noncommuting
pairs) in the framework of the convex metric space.

Theorem 3. Let T and S be self-maps of a convex metric space (X , d) and K a
subset of X such that T (∂K) ⊆ K, where ∂K stands for the boundary of K and
x0 ∈ Fix(T ) ∩ Fix(S), where x0 ∈ X . Suppose D = PK(x0) is nonempty convex
such that S(D) = D, q ∈ Fix(S), S is continuous as well as W-affine and the pair
(T ,S) is subcompatible on D. If T and S satisfy (for all x, y ∈ D′ = D ∪ {x0})

d(T x, T y) ≤





d(Sx,Sx0), if y = x0;

d(Sx,Sy) + ( 1−k
k )

×max{d(seq[T x, q],Sx), d(seq[T y, q],Sy)}, if y ∈ D
(8)

where 0 < k < 1, then T and S have a common fixed point in D, provided D is
compact and T is continuous.

Proof. Firstly, we show that T is a self-map on D, i.e. T : D → D. To do this, let
y ∈ D, then Sy ∈ D as S(D) = D. In case y ∈ ∂K, then T y ∈ K as T (∂K) ⊆ K.
Owing to the fact that T x0 = x0 = Sx0, from (8) one may have

d(T y, x0) = d(T y, T x0) ≤ d(Sy,Sx0) = d(Sy, x0) = d(x0,K),

which shows that T y ∈ D, and in all T and S are self-maps on D. Thus all the
conditions of Theorem 2 are satisfied and hence there exists a z ∈ D such that
T z = z = Sz.

We furnish the following example to demonstrate the validity of the hypotheses
of Theorem 3:

Example 12. Consider the real vector space X = R2 equipped with metric

d((x1, y1), (x2, y2)) =| x1 − x2 | + | y1 − y2 |

wherein W(x, y, λ) = λx+(1−λ)y. Define self-maps T and S on the convex metric
space (X , d) as follows:

S(x, y) = (x, y) and T (x, y) =
{

(x, y), if y ≤ x,
(x, x), if y ≥ x.
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Take K = {(x, x) : x ∈ R} and x0 = (1,−1). Then (1,−1) ∈ Fix(T ) ∩ Fix(S)
and D = PK(x0) is the line segment joining the points (−1,−1) and (1, 1) which is
indeed nonempty and convex. Also T and S are continuous, W-affine, S(D) = D
and (0, 0) ∈ Fix(S). Also, the pair (T ,S) is commuting and hence subcompatible
besides T (∂K) = K ⊆ K. For the verification of condition (8), for arbitrary (x, x)
and (y, y), in K, we distinguish the following two cases:
Case I: If

y = x0 = (1,−1),

then

d(T (x, x), T (1,−1)) = d((x, x), (1,−1)) =| x− 1 | + | x + 1 |= d(Sx,Sx0)

Case II:

d(T (x, x), T (y, y)) = d((x, x), (y, y)) =| x− y | + | x− y |= d(Sx,Sy)

≤ d(Sx,Sy) + (
1− k

k
)max{d(seq[T x, q],Sx), d(seq[T y, q],Sy)}.

Thus all the conditions of Theorem 3 are satisfied. Notice that the segment joining
(−1,−1) and (1, 1) remains fixed under T and S both which in all substantiates
Theorem 3. Notice that K is not compact in this example and hence Theorem 2
cannot be used in the context of this example. However, the set D is compact as
needed.

The following corollary is an immediate consequence of Theorem 3.

Corollary 2. Let T and S be self-maps of a convex metric space (X , d) and K a
subset of X such that T (∂K) ⊆ K, where ∂K stands for the boundary of K and
x0 ∈ Fix(T ) ∩ Fix(S), where x0 ∈ X , where x0 ∈ X . Suppose D = PK(x0) is
nonempty convex such that S(D) = D, q ∈ Fix(S), S is continuous as well as W-
affine and the pair (T ,S) is R-subweakly commuting on D. If T and S satisfy (for
all x, y ∈ D′ = D ∪ {x0})

d(T x, T y) ≤





d(Sx,Sx0), if y = x0;

d(Sx,Sy) + ( 1−k
k )

×max{d(seq[T x, q],Sx), d(seq[T y, q],Sy)}, if y ∈ D
(9)

where 0 < k < 1, then T and S have a common fixed point in D, provided D is
compact and T is continuous.

Before stating our next theorem, we need to define

D∗ = PK(x0) ∩ DSK(x0),

where
DSK(x0) = {x ∈ K : Sx ∈ PK(x0)}.
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Theorem 4. Let T and S be self-maps of a convex metric space (X , d) and K a
subset of X such that T (∂K ∩ K) ⊆ K, where ∂K stands for the boundary of K and
x0 ∈ Fix(T ) ∩ Fix(S), where x0 ∈ X . Suppose D∗ is nonempty convex such that
S(D∗) = D∗, q ∈ Fix(S), S is nonexpansive and W-affine on PK ∪ {x0}, and the
pair (T ,S) is subcompatible on D∗. If T and S satisfy (for all x, y ∈ D∗ ∪ {x0})

d(T x, T y) ≤





d(Sx,Sx0), if y = x0;

d(Sx,Sy) + ( 1−k
k )

×max{d(seq[T x, q],Sx), d(seq[T y, q],Sy)}, if y ∈ D∗
(10)

where 0 < k < 1, then T and S have a common fixed point in PK(x0), provided D∗
is compact and T is continuous.

Proof. Let x ∈ D∗. Then, x ∈ PK(x0) and hence d(x, x0) = d(x0,K). Notice that
for any t ∈ (0, 1),

d(W(x, x0, t), x0) = d(W(x, x0, t),W(x0, x0, t)) ≤ td(x, x0) < d(x0,K).

Now, it follows that the segment {W(x, x0, t) : 0 < t < 1} and the set K are disjoint.
Thus x is not in the interior of K and so x ∈ ∂K ∩ K. Since T (∂K ∩ K) ⊂ K, T x
must be in K. Now, proceeding on the lines of the proof of Theorem 3, we have
T x ∈ PK(x0). As S is nonexpansive on PK(x0) ∪ {x0}, we have

d(ST x, x0) ≤ d(T x, T x0) ≤ d(Sx,Sx0) = d(Sx, x0) = d(x0,K).

Thus ST x ∈ PK(x0) and so T x ∈ DSK(x0). Hence T x ∈ D∗. Consequently, T (D∗) ⊂
D∗ = S(D∗). Now, in view of Theorem 3, PK(x0) ∩ Fix(T ) ∩ Fix(S) 6= ∅.
Remark 2. It is straightforward to notice that Theorem 4 is trivial if x0 ∈ K.
Otherwise the disjointness of K with the segment W(x, x0, t) is no longer necessarily
true if x0 ∈ K (e.g. Example 12).

In what follows, we observe that Example 12 can be utilized to demonstrate
Theorem 4.

Example 13. One can easily notice that the hypotheses of Theorem 4 can be demon-
strated by Example 12 because (∂K ∩ K) = K and T K = K and henceforth T (∂K ∩
K) = K ⊂ K. Also DSK(x0) = K = PK(x0) and D∗ = PK(x0) ∩ DSK(x0) = D. The
detailed verification is already available in Example 12.

Corollary 3. Let T and S be self-maps of a convex metric space (X , d) and K a
subset of X such that T (∂K ∩ K) ⊆ K, where ∂K stands for the boundary of K and
x0 ∈ Fix(T ) ∩ Fix(S), where x0 ∈ X . Suppose D∗ is nonempty convex such that
S(D∗) = D∗, q ∈ Fix(S), S is continuous and W-affine, and the pair (T ,S) is
commuting on D∗. If T and S satisfy (10) for all x, y ∈ D∗ ∪ {x0}, then T and S
have a common fixed point in PK(x0), provided D∗ is compact and T is continuous.

Proof. Let x ∈ D∗, then proceeding as in the proof of Theorem 4, we obtain
T x ∈ PK(x0). Moreover, since T commutes with S on D∗, T and S satisfy (10),
henceforth

d(ST x, x0) = d(T Sx, T x0) ≤ d(S2x,Sx0) = d(Sx, x0) = d(x0,K).
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Thus ST x ∈ PK(x0) and so T x ∈ DSK(x0). Hence T x ∈ D∗. Consequently, T (D∗) ⊂
D∗ = S(D∗). Now, in view of Theorem 3, PK(x0) ∩ Fix(T ) ∩ Fix(S) 6= ∅.
Corollary 4. Let T and S be self-maps of a convex metric space (X , d)and K a
subset of X such that T (∂K ∩ K) ⊆ K, where ∂K stands for the boundary of K and
x0 ∈ Fix(T ) ∩ Fix(S), where x0 ∈ X . Suppose D∗ is nonempty q-starshaped such
that S(DSK(x0)) ∩ D∗ ⊂ S(D∗) ⊂ D∗. Further, q ∈ Fix(S), S is continuous and
W-affine, and the pair (T ,S) is commuting on D∗. If T and S satisfy (10) for all
x, y ∈ D∗ ∪ {x0}, then T and S have a common fixed point in PK(x0), provided D∗
is compact and T is continuous.

Proof. Let x ∈ D∗. Proceeding on the lines of Theorem 4, we obtain T x ∈ D∗, i.e.
T (D∗) ⊂ D∗, x ∈ ∂K ∩ K and so T (D∗) ⊂ T (∂K ∩ K) ⊂ S(K). Therefore, we can
choose y ∈ K such that T x = Sy. As Sy = T x ∈ PK(x0), it follows that y ∈ DSK(x0).
Consequently, T (D∗) ⊂ S(DSK(x0)) ⊂ PK(x0). Therefore, T (D∗) ⊂ S(DSK) ∩ D∗ ⊂
S(D∗) ⊂ D∗. Now, in view of Corollary 3, PK(x0) ∩ Fix(T ) ∩ Fix(S) 6= ∅.
Remark 3. It is straightforward to observe that S(PK(x0)) ⊂ PK(x0) implies
PK(x0) ⊂ DSK(x0) and henceforth D∗ = PK(x0). Consequently, Theorem 4, and
Corollaries 3 and 4 remain valid when D∗ = PK(x0).

Remark 4. Theorem 3 as well as Corollary 4 improve Theorem 6 of Beg [3] owing
to the fact that we have employed a relatively more generalized nonexpansive sub-
compatible pair of mappings as opposed to a relatively contractive commuting pair.

Remark 5. Theorem 3 together with Corollary 4 improves Theorem 3.2 of Al - Tha-
gafi [2], Theorem 3 of Sahab et al. [15] and corresponding relevant results contained
in Singh [23, 24] as we have utilized a relatively more generalized nonexpansive
subcompatible pair of mappings in the setting of the convex metric space.
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