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Abstract. In this paper we study intersections of ruin probability functions for two risk
models. The number of intersection points is determined for some of the most widely used
models. It is also shown that there exist risk processes with ruin probability functions
intersecting in an arbitrary large number of points.
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1. Introduction

Ruin theory has always been a vital part of actuarial mathematics. At first glance,
some of the theoretically derived results seem to have a limited scope in practi-
cal situations. Nevertheless, calculation of and approximation to ruin probabilities
have been a constant source of inspiration and technique development in actuarial
mathematics.

Assume an insurance company is willing to risk a certain amount x in a certain
branch of insurance. Because in some sense this part of the business starts with
the capital x we can safely call x the initial capital. The actuary now has to make
some decisions, for instance which premium should be charged and which type of
reinsurance to take. The premium is often determined by company policies and by
tariffs of rivals. A possible criterion for optimizing the reinsurance treaty would be
to minimize the probability that the risk process ever becomes negative.

We begin our paper with one simple result which was the motivation to start
solving a problem stated by H.J.Furrer in the paper about risk processes perturbed
by α-stable Lévy motion ([1],1998). In Remark 3 at the end of Section 2, Furrer
mentioned an unsolved problem of comparing ruin probabilities as functions of the
initial surplus for the given risk model and for two different stability parameters.
We will consider this problem for a model with two sets of different parameters in
order to decide which model has a smaller probability of ruin for the given initial
surplus. The insurance company could use one model with smaller probability of
ruin up to the intersection of ruin probability functions and change to the other
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available at www.mathos.hr/mc.
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model, i.e. make arrangements for reinsurance in order to minimize the probability
of ruin after it.

Consider a classical risk process X = {Xt : t ≥ 0} taking the form of a compound
Poisson process with arrival rate λ > 0 and negative jumps, corresponding to claims,
having a distribution with finite mean µ as well as a drift c > 0, corresponding to a
steady income due to premiums. More precisely,

Xt = ct−
N(t)∑

i=1

Yi, t ≥ 0,

where c > 0, N(t) is a Poisson process with rate λ > 0 modeling claim arrivals
and {Yi} is a sequence of i.i.d. nonnegative random variables with finite mean µ
modeling individual claims. It is usual to assume the net profit condition c−λµ > 0
which says that the income due to premiums is greater than the expected loss.

In the case of exponentially distributed claims, Yi ∼ Exp(1/µ), one has an
explicit formula for the ruin probability with the initial capital x (see [11, Section
5.3])

φ(x) := P(Xt < 0 for some t ≥ 0|X0 = x) =
λµ

c
e−

(
1
µ−λ

c

)
x. (1)

Assume now that we want to compare ruin probabilities for classical risk processes
with different parameters:

X
(j)
t = cjt−

Nj(t)∑

i=1

Y
(j)
i , t ≥ 0,

where cj > 0 is a positive drift, Nj(t) is a Poisson process with rate λj > 0
and Y

(j)
1 , Y

(j)
2 , ... are i.i.d. random variables with common distribution function

Exp(1/µj), E(Y (j)
1 ) = µj and γj = cj − λjµj > 0, j = 1, 2.

It is elementary to derive from (1) the following simple result.

Proposition 1. Let φj be a ruin probability function for the process X
(j)
t , j = 1, 2.

(i) If λ1µ1
c1

≤ λ2µ2
c2

and 1
µ1
− λ1

c1
≥ 1

µ2
− λ2

c2
, then φ1(x) ≤ φ2(x) for x > 0.

(ii) If λ1µ1
c1

< λ2µ2
c2

and 1
µ1
− λ1

c1
< 1

µ2
− λ2

c2
, then φ1(x) < φ2(x) for x < x0 and

φ1(x) > φ2(x) for x > x0.

Here x0 represents the unique intersection

x0 =
1

1
µ2
− 1

µ1
+ λ1

c1
− λ2

c2

ln
λ2µ2c1

λ1µ1c2

of ruin probability functions φ1 and φ2.

Note that the ruin probability functions φ1 and φ2 either do not intersect or have
precisely one strictly positive point of intersection. Now we give examples for the
cases (i) and (ii).
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Example 1. Let X
(1)
t = 4t − ∑N1(t)

i=1 Y
(1)
i and X

(2)
t = 5t − ∑N2(t)

i=1 Y
(2)
i , t ≥ 0,

where λ1 = 2, λ2 = 4, µ1 = µ2 = 1
2 and let X

(3)
t = 2t − ∑N3(t)

i=1 Y
(3)
i and X

(4)
t =

3t −∑N4(t)
i=1 Y

(4)
i , t ≥ 0, where λ3 = 2, λ4 = 1, µ3 = 1

2 i µ4 = 1. The left part of
Figure 1 shows the ruin probability function for the process X

(1)
t

φ1(x) =
1
4
e−

3
2 x

and the process X
(2)
t

φ2(x) =
2
5
e−

6
5 x

and the right part represents the ruin probability functions for the process X
(3)
t

φ3(x) =
1
2
e−x

and the process X
(4)
t

φ4(x) =
1
3
e−

2
3 x.

Here the x-axis represents the initial capital and the y-axis stands for the value of
the probability of ruin.

Figure 1: The ruin probability functions for two classical risk processes with exponential claims

In the last few years there were many papers concerning spectrally negative Lévy
processes (see [2] and [9]) and it has become standard to model the generalized risk
process by a spectrally negative Lévy process (see for example [3, 4, 7] and [10]). In
this paper we will also consider spectrally negative Lévy processes. These are the
Lévy processes with no positive jumps which are not the negative of a subordinator.
Namely, for Lévy processes with jumps in only one direction many calculations can
be carried out explicitly. To be more specific, we will consider α-stable spectrally
negative Lévy processes. A random variable Y is said to have a stable distribution
if for all n ≥ 1 it observes the distributional equality

Y1 + ... + Yn = anY + bn
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where Y1, ..., Yn are independent copies of Y , an > 0 and bn ∈ R. It turns out that
necessarily an = n1/α for α ∈ (0, 2].

In this paper we compare ruin probabilities with respect to the initial surplus for
the α-stable spectrally negative Lévy processes with two different positive drifts, for
two α-stable spectrally negative Lévy processes with two different stability param-
eters α ∈ (1, 2], two scale parameters and positive drifts, and for two classical risk
processes perturbed by α-stable spectrally negative Lévy motion. For those models
the point zero is regular for (−∞, 0), hence ruin with zero initial surplus is certain
(see [8, p.142]). As a consequence, if φ(x) denotes the ruin probability for a process
in this model, it holds that φ(0) = 1. Hence, ruin probability functions for any two
processes within this model will intersect at zero. We give conditions on parameters
of compared models under which the point zero is the only intersection point and
conditions under which there is at least one additional intersection point. Numerical
computations for considered models strongly suggest that when there exists a strictly
positive intersection point, it is unique, i.e. there are no other positive intersection
points. We have not been able to analytically determine this fact. The approximate
value for the positive intersection can be determined by using MATHEMATICA c©

or any similar programming package.
The fact that numerical computations suggest that in the considered models

there are at most two intersection points led us to consider the following problem:
do two ruin probabilities as functions of the initial surplus for two arbitrary risk
models always have only two points in common. The answer to this question turned
out to be negative. In Theorem 5 we prove that given any positive integer n, there
are two risk models with ruin probability functions intersecting in at least n points.

In the remaining part of the introduction we set up notations and recall some
facts that will be needed in the rest of the paper.

Let {Xt : t ≥ 0} be a spectrally negative Lévy process. The Laplace exponent of
X is defined by

ψ(λ) :=
1
t

lnE(eλXt),

and is finite at least for all λ ≥ 0. The function ψ : [0,∞) → R is zero at zero and
tends to infinity at infinity. It is infinitely differentiable and strictly convex. The
first passage time below a level x = 0 is defined by

τ−0 = inf{t > 0 : Xt < 0}

and the ruin probability function by

φ(x) = Px(τ−0 < ∞),

where Px = P(.|X0 = x). It represents the probability for a process to fall below
the level x = 0 when it started at x > 0.

A key object in the fluctuation theory of spectrally negative Lévy processes
and their applications is the scale function. From [8, Theorem 8.1], it follows that
for every spectrally negative Lévy process {Xt : t ≥ 0} there exists the function
W : R → [0,∞), called a scale function characterized as follows. It is a unique
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function such that W (x) = 0 for x < 0, it is strictly increasing and continuous on
[0,∞) and with Laplace transform given by

∫ ∞

0

e−λxW (x)dx =
1

ψ(λ)
, λ > 0. (2)

Theorem 8.1 in [8] also gives the relation between the ruin probability function φ
and the scale function:

φ(x) =
{

1− ψ′(0+)W (x), ψ′(0+) > 0
1, ψ′(0+) ≤ 0.

(3)

We will need the scale function W (x) for the α-stable spectrally negative Lévy
process Zα

t with positive drift c > 0 : Xt = Zα
t + ct, where α ∈ (1, 2] is the stability

parameter (see e.g. [2]):

W (x) =
1
c

(
1− Eα−1(−cxα−1)

)
, (4)

where

Eα−1(z) =
∞∑

k=0

zk

Γ(1 + (α− 1)k)
(5)

is the Mittag-Leffler function with index α− 1 and

Γ(x) =
∫ ∞

0

tx−1e−tdt, x > 0

is the Gamma function for which Γ(n) = (n− 1)!, n ∈ N.
Our proofs use the Tauberian theorem and the monotone density theorem (see for

example Theorems 5.13 and 5.14 from [8]). Suppose that U is a measure supported
on [0,∞) with Laplace transform

Λ(θ) =
∫ ∞

0

e−θxU(dx), θ ≥ 0.

Remark 1. The notation f ∼ g for functions f and g means that lim f(x)
g(x) = 1.

Theorem 1. Suppose L > 0, ρ ≥ 0 are positive constants and U is a measure on
[0,∞) with Laplace transform Λ.

(a) (Tauberian theorem) The following two statements are equivalent:

(i) Λ(θ) ∼ Lθ−ρ, as θ → 0,

(ii) U(x) ∼ L
Γ(1+ρ)x

ρ, as x →∞, where U(x) = U([0, x])

(b) (monotone density theorem) Suppose ρ > 0 and that the measure U has a
monotone density u. Then the following two statements are equivalent:

(i) Λ(θ) ∼ Lθ−ρ, as θ → 0,
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(ii) u(x) ∼ L
Γ(ρ)x

ρ−1, as x →∞.

Remark 2. The statements of Theorem 1 are still valid when the limits in parts (i)
and (ii) are simultaneously changed to θ →∞ and x → 0.

Our paper is organized as follows. In Section 2 we give proofs that intersections
for two ruin probabilities as functions of the initial surplus in already mentioned
models exist. For some of the risk models we include pictures of the intersections.
Those pictures were made by using MATHEMATICA c©. In Section 3 for any positive
integer n we construct two ruin probability functions which intersect in at least n
positive points.

2. The models

First we compare the ruin probability functions for two processes which differ only
in constant positive drift. Consider

X
(1)
t = Xt + c1t

and
X

(2)
t = Xt + c2t,

where X = {Xt : t ≥ 0} is an arbitrary spectrally negative Lévy process with
positive drift c1 > 0 and positive drift c2 > 0. Let φ1(x) and φ2(x) be the ruin
probability functions for X(1) and for X(2), respectively. Suppose that 0 < c1 < c2.
Then it holds that

φ1(x) > φ2(x)

for every x > 0. This is because X
(2)
t > X

(1)
t Px − a.s. and it is evident that the

ruin probability functions for these processes do not have positive intersections. The
case 0 < c2 < c1 can be treated in the same way.

Let Xt = σYt + ct be the scaled spectrally negative Lévy process with drift,
where σ > 0 is a scale parameter and c > 0 a positive drift. Also let φYt+c1t be the
ruin probability function for the spectrally negative Lévy process with drift Yt + c1t,
c1 > 0, and φXt the ruin probability function for the process Xt.

Lemma 1. The ruin probability function for the process X satisfies

φXt(x) = φYt+
c
σ t

(
x

σ

)
. (6)

Proof. We calculate

φXt(x) = Px(Xt < 0) = Px(σYt + ct < 0 for some t > 0)

= P x
σ

(
Yt +

c

σ
t < 0 for some t > 0

)
= φYt+

c
σ t

(
x

σ

)
.

2
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2.1. Two α-stable spectrally negative Lévy processes

We consider {Xt : t ≥ 0}, Xt = Zα
t + ct, where c > 0 is a positive drift and Zα

t an
α-stable spectrally negative Lévy process with stability parameter α ∈ (1, 2], where
the case α = 2 corresponds to Brownian motion with double speed. The Laplace
exponent for the process Xt equals:

ψ(x) = xα + cx. (7)

Using relations (3),(4),(5) and (7) we get the ruin probability function φ for the
process Xt:

φ(x) =
∞∑

k=0

(−1)k ckx(α−1)k

Γ(1 + (α− 1)k)
= Eα−1(−cxα−1) (8)

where Eα−1 is the Mittag-Leffler function with index α− 1.
In the Brownian motion case, α = 2, the ruin probability function is equal to

φ(x) = E1(−cx) = e−cx.
Let {Xt : t ≥ 0}, Xt = σZα

t + ct be a scaled α-stable spectrally negative Lévy
process with drift, where σ > 0 is a scale parameter, c > 0 a positive drift and
α ∈ (1, 2] a stability parameter. Using (6) and (8) we calculate the ruin probability
function for the process Xt:

φXt(x) = φZα
t + c

σ t

(
x

σ

)
=

∞∑

k=0

(−1)k ( c
σα )kx(α−1)k

Γ(1 + (α− 1)k)
= Eα−1

(
− c

σα
xα−1

)
. (9)

We determine the Laplace exponent for the process Xt:

ψXt(x) =
1
t

ln E(exXt) = ψZα
t + c

σ t(xσ) = (σx)α + cx. (10)

Lemma 2. The ruin probability function φ for the process Xt satisfies

φ(x) ∼ σαx−(α−1)

cΓ(1− (α− 1))
, x →∞. (11)

Proof. Using (2),(3) and (10) we calculate Laplace transform for the ruin probabil-
ity function

Lφ(λ) =
∫ ∞

0

e−λxφ(x)dx =
∫ ∞

0

e−λx(1− cW (x))dx

=
1
λ
− c

ψ(x)
=

1
λ
− c

(σλ)α + cλ
=

σαλα

σαλα+1 + cλ2
=

λα−2

λα−1 + c
σα

.

We see that
Lφ(λ) ∼ σα

c
λα−2, λ → 0.

Now (11) follows from the monotone density theorem. 2
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We define the survival probability function for the process Xt by

χ(x) := 1− φ(x),

where φ is the probability of ruin.

Lemma 3. The probability of survival χ for the process Xt satisfies

χ(x) ∼ cxα−1

σαΓ(α)
, x → 0. (12)

Proof. From (8) we calculate the survival probability function for the process Xt:

χ(x) = 1− φ(x) =
∞∑

k=1

(−1)k−1 ( c
σα )kx(α−1)k

Γ(1 + (α− 1)k)
.

Now we find the Laplace transform for the measure dχ(x):

Lχ(λ) =
∫ ∞

0

e−λxdχ(x)

=
∞∑

k=1

(−1)k−1 ( c
σα )k(α− 1)k

Γ(1 + (α− 1)k)

∫ ∞

0

e−λxx(α−1)k−1dx

=
∞∑

k=1

(−1)k−1 ( c
σα )k(α− 1)k

Γ(1 + (α− 1)k)
Γ((α− 1)k)

λ(α−1)k
=

∞∑

k=0

(−1)k ( c
σα )k+1

λ(α−1)(k+1)

=
c

σαλα−1

∞∑

k=0

(
− c

σαλα−1

)k

=
c

σαλα−1

σαλα−1

σαλα−1 + c
=

c

σαλα−1 + c
,

where λ > 1
σ ( c

σ )
1

α−1 , and we used
∫ ∞

0

e−λxxρdx =
Γ(1 + ρ)

λ1+ρ
.

We conclude that
Lχ(λ) ∼ c

σα
λ−(α−1), λ →∞.

Now (12) follows from the Tauberian theorem and Remark 2. 2

We consider the processes

X
(1)
t = σ1Z

α1
t + c1t (13)

and
X

(2)
t = σ2Z

α2
t + c2t, (14)

where Zα1
t and Zα2

t are spectrally negative Lévy processes with stability parameters
α1, α2 ∈ (1, 2], σ1, σ2 > 0 are scale parameters and c1, c2 > 0 are positive drifts,
respectively.
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Proposition 2. Suppose α1 = α2 = α. Let φ1 and φ2 be ruin probability functions
for processes X(1) and X(2), respectively.

(a) If c1
σα
1

< c2
σα
2
, then φ1(x) > φ2(x) for all x > 0.

(b) If c1
σα
1

= c2
σα
2
, then φ1(x) = φ2(x) for all x > 0.

Proof. Let Xt = Zα
t + t. The ruin probability function for the process Xt is given

by φ(x) = Eα−1(−xα−1) and according to (9), the ruin probability functions for the
processes X

(1)
t and X

(2)
t satisfy

φ1(x) = Eα−1

(
− c

σα
1

xα−1

)

and

φ2(x) = Eα−1

(
− c

σα
2

xα−1

)

for x > 0, respectively. Then we have

φ1(x) = φ

(
c1

σα
1

x

)

and

φ2(x) = φ

(
c2

σα
2

x

)
.

(a) Let c1
σα
1

< c2
σα
2
. The ruin probability function φ is decreasing, hence

φ1(x) = φ

(
c1

σα
1

x

)
> φ

(
c2

σα
2

x

)
= φ2(x)

for x > 0.

(b) In the case c1
σα
1

= c2
σα
2

the processes X
(1)
t and X

(2)
t have the common ruin

probability function.

2

The next theorem shows that the ruin probability functions for processes X
(1)
t

and X
(2)
t in case α1 6= α2 do have a positive intersection.

Theorem 2. Suppose α1 6= α2. Then the ruin probability functions for the processes
X

(1)
t and X

(2)
t given by (13) and (14) have a positive intersection point.

Proof. Let α1 < α2. According to Lemma 3, the survival probability functions χ1

and χ2 for the processes X
(1)
t and X

(2)
t , respectively, satisfy

χ1(x) ∼ c1x
α1−1

σα1
1 Γ(α1)

, x → 0
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and

χ2(x) ∼ c2x
α2−1

σα2
2 Γ(α2)

, x → 0.

We conclude that χ1(x) > χ2(x) when x > 0 is small enough. Then the ruin
probability functions for the processes (13) and (14), respectively, satisfy

φ1(x) < φ2(x)

if x > 0 is small enough. From Lemma 2 it follows that

φ1(x) ∼ σα1
1 x−α1+1

c1Γ(2− α1)
, x →∞

and

φ2(x) ∼ σα2
2 x−α2+1

c2Γ(2− α2)
, x →∞

where φ1 and φ2 are ruin probability functions for the processes X
(1)
t and X

(2)
t ,

respectively. Then the ruin probability functions satisfy

φ1(x) > φ2(x)

when x is large enough. Ruin probability functions are continuous; hence there
exists a positive intersection x > 0. The case α1 > α2 can be proved in the same
way. 2

We can see that the existence of more than one intersection depends only on the
parameter α. If the processes (13) and (14) have a common stability parameter α,
the ruin probability functions have one intersection in zero and when the stability
parameters are not the same there also exists a positive intersection for ruin prob-
ability functions. Scale parameters and drift parameters are important only in the
case when α1 = α2 = α and c1

σα
1

= c2
σα
2
. Then the processes X

(1)
t and X

(2)
t have the

common ruin probability function.

Example 2. Let X
(1)
t = Z1.6

t +0.7t and X
(2)
t = 0.8Z1.8

t +0.5t, t ≥ 0, be two processes
where Z1.6

t is a stable spectrally negative Lévy process with stability parameter α = 1.6
and Z1.8

t is a stable spectrally negative Lévy process with stability parameter α = 1.8.
Figure 2 shows ruin probability functions for the process X(1)

φ1(x) =
∞∑

k=0

(−1)k 0.7kx0.6k

Γ(1 + 0.6k)

and the process X(2)

φ2(x) =
∞∑

k=0

(−1)k 0.75kx0.8k

Γ(1 + 0.8k)
.
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Figure 2: The ruin probability functions for two α-stable spectrally negative Lévy processes with
drift

2.2. Two classical risk processes perturbed by an α-stable spec-
trally negative Lévy process

Recall that the classical Cramér-Lundberg risk process corresponds to a spectrally
negative Lévy process X taking the form of a compound Poisson process with arrival
rate λ > 0 and negative jumps, corresponding to claims, having common distribution
function F with finite mean µ as well as a drift c > 0, corresponding to a steady
income due to premiums. It is usual to assume the net profit condition c − λµ > 0
which says nothing other than ψ′(0+) > 0. Furrer (1998) added an α-stable Lévy
motion to the classical risk process which expresses either an additional uncertainty
of the aggregate claims or of the premium income.

We consider the classical risk processes perturbed by an α-stable spectrally neg-
ative Lévy motion

Xt = Zα
t + ct−

N(t)∑

i=1

Yi,

where Zα
t is a spectrally negative Lévy process with stability parameter α ∈ (1, 2),

c > 0 is a positive drift, N(t) is a Poisson process with intensity λ > 0 and Y1, Y2, ...
are i.i.d. random variables with common distribution function F , E(Y1) = µ. We
assume the net profit condition γ := c− λµ > 0.

Lemma 4. The survival probability χ for the process Xt satisfies

χ(x) ∼ γxα−1

Γ(α)
, x → 0. (15)

Proof. The Laplace exponent for the process Xt is given by

ψ(x) = xα + cx− λ

∫ ∞

0

(1− e−xt)F (dt).

Then ψ′(0+) = γ > 0. Using (2) and (3) we calculate the Laplace transform for



60 T. Slijepčević-Manger

survival probability function χ = γW

Lχ(x) = γ

∫ ∞

0

e−xtW (t)dt =
γ

ψ(x)
=

γ

xα + cx− λ
∫∞
0

(1− e−xt)F (dt)
.

Therefore
Lχ(x) ∼ γx−α, x →∞.

Now (15) follows from the monotone density theorem and Remark 2. 2

The next theorem shows that two classical risk processes perturbed by an α-
stable Lévy motion for different stability parameters α have a positive intersection.

We consider the processes

X
(1)
t = Zα1

t + c1t−
N1(t)∑

i=1

Y
(1)
i (16)

and

X
(2)
t = Zα2

t + c2t−
N2(t)∑

i=1

Y
(2)
i , (17)

where t ≥ 0, Zα1
t and Zα2

t are spectrally negative Lévy processes with stability
parameters α1, α2 ∈ (1, 2], α1 6= α2, ci > 0 are positive drifts, Ni(t) are Poisson
processes with intensities λi > 0, Y

(i)
1 , Y

(i)
2 , ... are i.i.d. random variables with com-

mon distribution function Fi, E(Y (i)
1 ) = µi and we assume the net profit condition

γi = ci − λiµi > 0, i = 1, 2.

Theorem 3. The ruin probability functions for the processes X
(1)
t and X

(2)
t given

by (16) and (17) have a positive intersection point.

Proof. Let α1 < α2. According to Lemma 4, the survival probability functions χ1

and χ2 for processes X
(1)
t and X

(2)
t , respectively, satisfy

χ1(x) ∼ γ1x
α1−1

Γ(α1)
, x → 0

and

χ2(x) ∼ γ2x
α2−1

Γ(α2)
, x → 0.

We conclude that ruin probability functions satisfy φ1(x) < φ2(x) for x > 0 small
enough.

Furrer showed ([1, Theorem 4]) that ruin probability functions φ1 and φ2 for
processes X

(1)
t and X

(2)
t satisfy

φ1(x) ∼ x−α1+1

γ1Γ(2− α1)
, x →∞
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and

φ2(x) ∼ x−α2+1

γ2Γ(2− α2)
, x →∞.

We see that ruin probability functions satisfy φ1(x) > φ2(x) when x is big enough.
Since ruin probability functions are continuous, we conclude that there must be a
positive intersection. The case α1 > α2 can be treated in the same way. 2

3. Ruin probability functions with n intersections

In this section we will show that there exist two spectrally negative Lévy processes
such that their ruin probability functions have at least n positive intersections for
an arbitrary positive integer n.

Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process with the Laplace
exponent ψ and scale function W . We assume that X drifts to +∞, which means
that ψ′(0+) > 0. A function η : [0,∞) → R is a Bernstein function if η(λ) ≥ 0 and
(−1)n−1η(n)(λ) ≥ 0 for every n ∈ N and every λ. A function ν : [0,∞) → R is
completely monotone if ν is continuous on [0,∞), infinitely differentiable on (0,∞)
and satisfies (−1)nν(n)(λ) ≥ 0 for all nonnegative integers n and for all t > 0.

Lemma 5. Let µ be a probability measure on [0,∞) such that µ({0}) = 0. Then
the function

φ(x) :=
∫

[0,∞)

e−xtµ(dt) = Lµ(x)

is the ruin probability function of a spectrally negative Lévy process which drifts to
+∞.

Proof. Let η(x) := 1 − φ(x). Then η is a Bernstein function. Following [9] we are
going to show that there exists a spectrally negative Lévy process X with the scale
function equal to η. Let f(x) := x2Lη(x). Then f is a complete Bernstein function
(see for example [5], p. 192). Now f∗(x) := x/f(x) is a complete Bernstein and
there exists a Bernstein function η∗ such that f∗(x) := x2Lη∗(x). According to [9,
Corollary 2 in Section 5], W (x) := η∗(x) and W ∗(x) := η(x) are scale functions for
spectrally negative Lévy processes X and X∗ with Laplace exponents

ψ(x) =
x2

f∗(x)
= xf(x) and ψ∗(x) =

x2

f(x)
= xf∗(x).

Then we have

(ψ∗)′(0+) = lim
x→0

ψ∗(x)
x

= f∗(0+) = lim
x→0

x

f(x)
= lim

x→0

1
xLη(x)

.

When (ψ∗)′(0+) > 0, the spectrally negative Lévy process X∗ drifts to infinity and
η is its scale function. Now we calculate

Lη(x) =
∫ ∞

0

e−xtdt− L(Lµ)(x)

=
1
x
−

∫

[0,∞)

1
x + t

µ(dt).
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Then limx→0 xLη(x) = 1−µ({0}). Since µ({0}) = 0, we know that η := 1−φ is the
scale function for a spectrally negative Lévy process which drifts to +∞. Let X∗ be
this spectrally negative Lévy process with Laplace exponent ψ∗ and scale function
W ∗. Then W ∗(x) = η(x) = 1− φ(x), (ψ∗)′(0+) = 1 and we conclude that

Px(τ−0 < ∞) = 1− (ψ∗)′(0+)W ∗(x) = 1− η(x) = φ(x)

equals the ruin probability for the process X∗. 2

Now we explain a result by Karlin and Shapley from [6]. Consider probability
measures µ on [0, 1]. The measure δt0 is a point mass distribution on [0, 1] for every
0 ≤ t0 ≤ 1. Consider a convex combination of point masses on [0, 1]

µn =
n∑

j=1

ajδtj , 0 ≤ t1 < t2 < ... < tn ≤ 1, aj > 0,

n∑

j=1

aj = 1. (18)

Let D be the set of all probability measures on [0, 1] and DA the set of all convex
combinations of point masses on [0, 1]. The moment of n-th order mn(µ) for measure
µ ∈ D is defined as

mn(µ) =
∫ 1

0

tnµ(dt), n = 0, 1, 2, ....

Let Dn = {(m1(µ), ...,mn(µ)) : µ ∈ D} be the space of the moments of n-th order
and Dn

A = {(m1(µ), ..., mn(µ)) : µ ∈ DA} its subset for convex combinations of point
masses.

Karlin and Shapley showed in [6] that

Lemma 6. Dn
A = Dn.

For our readers’ convenience we sketch the proof following Karlin and Shapley.

Proof. Let Cn be the curve traced out by x(t) = (t, t2, ..., tn) as t runs between 0
and 1. It is clear from (18) that Dn

A is exactly the set of points spanned by Cn.
Moreover, Dn

A is a closed set, since Cn is closed and bounded. Further, for any µ in
D there is a sequence of point masses µn ∈ DA such that

lim
n→∞

∫ 1

0

f(t)µn(dt) =
∫ 1

0

f(t)µ(dt)

for every continuous function f . Taking f(t) = tk, k = 1, ..., n we see that Dn is the
closure of its subset Dn

A. But Dn
A is already closed; hence Dn = Dn

A. 2

Our next theorem solves the problem of n positive intersections.

Theorem 4. For every n ∈ N there exist two different spectrally negative Lévy
processes which drift to +∞ with ruin probability functions φ1 and φ2, respectively,
such that φ1 and φ2 have at least n positive intersections.
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Proof. Let 0 < ε < 1
2 and µ = 1

1−2ε l, where l is the Lebesgue measure on [0, 1].
Then the probability measure µ on [ε, 1− ε] is in D and according to Lemma 6, for
every n ∈ N there exists a convex combination of point masses ν(n) ∈ DA such that

∫ 1−ε

ε

xkν(n)(dx) =
∫ 1−ε

ε

xkµ(dx)

=
1

1− 2ε

∫ 1−ε

ε

xkdx

=
1

1− 2ε

(1− ε)k+1 − εk+1

k + 1
, k = 0, 1, ..., n− 1.

Now we extend the measures ν(n) and µ on (0, 1]. We put ν(n) = µ = 0 on (0, ε) and
on (1− ε, 1]. Let ν̂(n)(dt) and µ̂(dt) be the image measures on [0,∞) of the measure
ν(n)(dx) and the measure µ on (0, 1], respectively, under the map t = − ln x. We
define

φ1(λ) =
∫ ∞

0

e−λtµ̂(dt) =
∫ 1

0

xλµ(dx)

and

φ2(λ) =
∫ ∞

0

e−λtν̂(n)(dt) =
∫ 1

0

xλν(n)(dx).

According to Lemma 5, φ1 and φ2 are ruin probability functions for two spectrally
negative Lévy processes drifting to +∞. The measure ν(n) is constructed to satisfy
φ1(k) = φ2(k), k = 0, 1, ..., n− 1. 2

The next example is based on the construction given in Theorem 5.

Example 3. Let ε = 1
10 and µ = 5

4 l, where l is the Lebesgue measure on [0, 1].
Than µ is the probability measure on [ 1

10 , 9
10 ]. Let µ = 0 on (0, 1

10 ) and on ( 9
10 , 1].

We define the function

φ1(x) =
∫ 1

0

sxµ(ds) =
5
4

∫ 9
10

1
10

sxds =
5
4

( 9
10 )x+1 − ( 1

10 )x+1

x + 1
,

where x ≥ 0. Under the map s = − ln t the measure µ on (0, 1] becomes an image
measure µ̂(dt) on [0,∞) and φ1(x) is given as

φ1(x) =
∫ ∞

0

e−xtµ̂(dt).

According to Lemma 5, φ1 is the ruin probability function for a spectrally negative
Lévy process which drifts to +∞. Let ν be a probability measure on (0, 1], ν = 0 on
(0, 1

10 ) and on ( 9
10 , 1]. We define

φ2(x) =
∫ 1

0

sxν(ds).
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Let us find the measure ν on (0, 1] such that the 0th, 1st and 2nd moments for ν and
for µ are equal. We know that

∫ 1

0
s1µ(ds) = 1

2 ,
∫ 1

0
s2µ(ds) = 91

300 and
∫ 1

0
s3µ(ds) =

41
200 . We assume

ν = α1δ 3
4

+ α2δ 1
2

+ α3δ 1
4
,

where α1, α2 and α3 are positive real numbers. From equality of moments it follows
that positive constants α1, α2 and α3 satisfy the linear system

3
4
α1 +

1
2
α2 +

1
4
α3 =

∫ 1

0

s0ν(ds) =
1
2
,

9
16

α1 +
1
4
α2 +

1
16

α3 =
∫ 1

0

s1ν(ds) =
91
300

,

81
64

α1 +
1
16

α2 +
1
64

α3 =
∫ 1

0

s2ν(ds) =
41
200

.

This system has a unique solution α1 = 32
75 , α2 = 11

75 and α3 = 32
75 so that ν is given

by

ν =
32
75

δ 3
4

+
11
75

δ 1
2

+
32
75

δ 1
4
.

Under the map t = − ln s the measure ν becomes an image measure ν̂ on [0,∞)

ν̂ =
32
75

δln 4
3

+
11
75

δln 2 +
32
75

δln 4.

Let us find the function φ2(x)

φ2(x) =
∫ 1

0

sxν(ds) =
∫ ∞

0

e−xtν̂(dt) =
32
75

(
4
3

)−x

+
11
75

2−x +
32
75

4−x.

According to Lemma 5, we conclude that φ2 is a ruin probability function for some
spectrally negative Lévy process which drifts to +∞. It is easy to see that φ1(0) =
φ2(0) = 1

2 , φ1(1) = φ2(1) = 91
300 and φ1(2) = φ2(2) = 41

200 . Now we have two ruin
probability functions with at least three nonnegative intersections.
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