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Approximation by complex Lorentz polynomials
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Abstract. In this paper we obtain a quantitative estimate in the Voronovskaja’s theorem
and the exact orders in simultaneous approximation by the complex Lorentz polynomi-
als attached to analytic functions in compact disks. Also, we study the approximation
properties of the iterates of these polynomials.
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1. Introduction

In the recent book [1] (see also the papers cited therein), estimates for the con-
vergence in Voronovskaja’s theorem and the approximation orders in simultaneous
approximation for several important classes of complex Bernstein-type operators
attached to an analytic function f in closed disks were obtained.

The goal of the present paper is to extend these types of results to the complex
Lorentz polynomials.

These polynomials were introduced in [2, p. 43, formula (2)] under the name of
degenerate Bernstein polynomials, by the formula attached to any analytic function
f in a domain containing the origin,

L(NE) =Y (Z) (2) ro@mnen.

k=0

In the same book [2], on pages 121-124 some qualitative approximation results are
studied.

The plan of the present paper goes as follows. Section 2 deals with upper esti-
mates in simultaneous approximation by these polynomials. In Section 3 we obtain a
Voronovskaja result with a quantitative estimate and in Section 4 one obtains exact
estimates in simultaneous approximation for these operators. Section 5 presents
a quantitative approximation result for the iterates of the complex polynomials
L,(f)(2). All the quantitative estimates are obtained in compact disks centered
at the origin.
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2. Upper approximation estimates
The main result of this section is the following.

Theorem 1. For R > 1 and denoting Dr = {z € C;|z| < R}, suppose that f :
Dg — C is analytic in Dg, i.e. f(2) = peqckz®, for all z € Dp.

(i) Let 1 < r < R be arbitrary fized. For all |z| < r and n € N, we have the
upper estimate

where

M,(f) = %Z ek |k(k —1)r* < co.
k=2

(i) For the simultaneous approzimation by complex Lorentz polynomials, we
have: if 1 < r < ry < R are arbitrary fized, then for all |z| < r, p € N and

n € N we have
plry My, (f)
n(ry —r)ptt’

ILP(f)(2) = [P ()] <
where M, (f) is given as at the above point ().

Proof. (i) Denoting e;(z) = 27, we easily get that L, (e9)(z) = 1, L,(e1)(2) = e1(2)
and that for all j,n € N, 7 > 2, we have

Ln(e;)(2) = <?> ik % = (1 - i) <1 - Z) (1 - ‘7_nl> .

Also, since an easy computation shows that
La(f)(2) = > ¢jLa(ej)(2), for all |2 <,
§=0

and taking L, (ep)(z) = 1, L,(e1)(z) = z into account, we immediately obtain

for all |z| <.
Taking into account that a simple inequality
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holdsif 0 <z; <1,forall j=1,..,k -1, by taking 2; =1 — % we obtain

(o)D)

which implies the desired estimate.

(ii) Denoting by ~ the circle of radius r; > r and center 0, since for any |z| < r
and v € 7, we have |v — z| > r; — r, by the Cauchy’s formulas it follows that for all
|z| <r and n € N, we have

1

1> Skz[lnn]} :k(k;;l),

—

<

LY - 0] = 2| [ LD I,

27 (v — z)ptl v
< M, (f) Yi 2mry _ M, (f) ] plr1
- n 21 (ry—r)pt! n (ry —r)ptl’
which proves (ii) and the theorem. O

3. Quantitative Voronovskaja type theorem

The following Voronovskaja-type result holds.
Theorem 2. For R > 1, let f : Dp — C be analytic in Dg, that is f(z) = > peq ek 2"
for all z € Dg, and let 1 < r < R be arbitrary fired. We have

L (f)(2) — f()+ f” %i ler|r®(k—1)%(k—2)%, for alln € N, |z| <,
k=2

Z lewlr®(k —1)%(k - 2)* <

Proof. We have

LD - 1)+ 5.07(2)
= kZ:oCk [Ln(ek)(z) —er(z) + k(g; 1)ek(z)}

7 Ooczk (n=1Dn-=2)..(n—(k=1) E(k—1)
= kZZQ k { oy 1+ o ]|
s n—1)(n-2)..(n— (k-1 E(k—1
Skz_z|‘fk|7”k( )( naH( (k-1) (2n )’

for all |z| <r and n € N.
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In what follows, we will prove by mathematical induction with respect to k that

(k= 1)2(k — 2)°

O S En,k S 2n2 )

(1)
for all k > 2 (here n € N is arbitrary fixed), where

(=D =2).(n—(k=1) | k(1)

Enk = nk—1 2n

Indeed, for k = 2 it is trivial. Suppose that it is valid for arbitrary k. We are
going to prove that it remains valid for k + 1 too, that is

(n—1)(n —2)..(n — k) k(k+1) _ k2 (k—1)*

< _
0= nk 1 2n 2n2 2)
For this purpose, we take into account that
(n—1)(n—2)...(n — k) k(k+1)
By k1 = o -1+ o
n=1)n—-2)...(n—(k—-1)) ( k‘)
= 1 -
nk—1 n
k(k—1) k(k+1) kk-1)
L+ 2n * 2n 2n
Bt k <1 B (n—1)(n-— 21_1(n— (k— 1))> .
n n

By (1) it is immediate that E,, x+1 > 0. Also, by the same relationship (1) and
taking into account the simple inequality used at the end of the proof of Theorem 1,
(i), we get

En,k+1 S

E—12k—-2)?2 &k n—1Hn-2)..(n— (k-1
( )271(2 )+n(1( )( nl_l( ( )))
<(k—1)2(l€—2)2+ﬁ.k(l€—1)

< o3 = #[(kfl)z(k72)2+k2(l€fl)].
Looking at (2), in fact it remains to prove that

(k=1 (k-2 + k*(k— 1) < k*(k — 1),
which is after simple calculation equivalent to the inequality 0 < 3k? — 8k + 4, which
is obviously valid for all k > 2.

In conclusion, (2) is valid, which implies that (1) is valid and this proves the
theorem. O

4. Exact approximation estimates

The first main result of this section is the following.
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Theorem 3. Let R > 1, f: D — C be analytic in Dg, that is f(z) = > peq ckz”
for all z € Dg, and 1 < r < R be arbitrary fized. If f is not a polynomial of degree
<1, then for alln € N and |z| < r we have

1Lu(h) — £l = )

n

where the constant C,.(f) depends only on f. Here || f||, denotes max.|<,{|f(2)|}.

Proof. For all |z| <r and n € N we have

L)@ - 16) = {210+ 1 [0 (e - 16+ 26|

In what follows we will apply to this identity the following obvious property:

1E+Glle = 1 Fllr = Gl | 2 [1F[lr = 1G]

1
_[na
, N

Since by hypothesis f is not a polynomial of degree < 1 in Dy, we get ‘

It follows

2
it

1 " e% 1
I2ar) - 12 {2 Lif)~f+ 5

I

2
%f//

Indeed, supposing the contrary it follows that % f'(z) =0 forall z € D, =
{z € C;|z| < r}, which implies f”(z) = 0 for all z € D,. \ {0}. Since f is supposed
to be analytic, from the identity theorem of analytic (holomorphic) functions this
necessarily implies that f”(z) = 0, for all z € Dg, i.e. that f is a polynomial of
degree < 1, which is a contradiction.

But by Theorem 2 we have

> 0.

r

LS el (= 1)2(k — 2)2.

=3
T k=2

ci

2n

n2

Ln(f)=f+ 51"

Therefore, there exists an index ng depending only on f and r, such that for all
n > ng we have

2 2 2
€1 ,n 1] o e1 ,u 1ilet .,
Ll == 2 |Lalh) = £+ 21| | =512
il nPl (- f+5ks J_Q il
which immediately implies that
1 1 e% 1/

For n € {1,...,n0} we obviously have ||L,(f) — fl|l» > M%‘(f) with M, ,(f) =

- || Ln(f) = fllr > 0 (f || Ln(f) — fl|» would be equal to 0, this would imply that f
is a linear function, a contradiction).
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Therefore, finally we get || L, (f) — fl» > &l for all n € N, where

n
} 7
T

which completes the proof. O

2
ﬁf/l

Cr(f) min{MT‘,l(f)7---7MT’-,7LO(f)7; 2

Combining now Theorem 3 with Theorem 1, (i) we immediately get the following.

Corollary 1. Let R > 1, f : Dp — C be analytic in Dg, that is f(z) = > pe cx2”
for all z € Dr, and let 1 < r < R be arbitrary fized. If f is not a polynomial of
degree < 1, then for all n € N we have

1ZalF) =l ~

where the constants in the equivalence depend on f and r but are independent of n.
Concerning the simultaneous approximation we present the following.

Theorem 4. Let R > 1, f: Dr — C be analytic in Dg, that is f(z) = Y e cp2”
for all z € DR, and let 1 < r < r; < R be arbitrary fived. Also, let p € N. If f is
not a polynomial of degree < max{1l,p — 1}, then for alln € N we have

1
1) = FPl ~ =,

where the constants in the equivalence depend on f, r, r1 and p but are independent
of n.

Proof. Since by Theorem 1, (ii) we have an upper estimate for ||L7(1p)(f) — f®)],., it
remains to prove the lower estimate for ||L§Lp )( f)— f®]|,.. For this purpose, denoting
by T the circle of radius 7 and center 0, we have the inequality |v — z| > r; —r valid
for all |z| < r and v € I'. The Cauchy’s formula is expressed by

LP(H)(z) = fP(z) = v.

2 [ L0 S,
r

2mi (v — z)ptl

Now, as in the proof of Theorem 1, (ii), for all v € T" and n € N we have

L)) - 50) = 1 {=5 0w + L[ (a0 - 0+ 27w ) |,
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which replaced in the above Cauchy’s formula implies

L&”(f)(z)—f(w(z):l{zﬂ /- M "

n | 2me
1 op (BeD) = F0) + 5 7W)
" o o CERL "

1o (L) = 1) + 5 w))
n 2mi /F (v — z)ptl Y
Passing now to || - ||, for all n € N it follows
(») () 1 e "
120 - 12l 2 24 -G
e 7 (L0 - F0)+ 510)
n %/F (v — z)ptl v ’

where by using Theorem 2, for all n € N we get

i w2 (La(£)(®) = F(0) + 5" ())

27 Jp (v — z)ptt Y
p! 2771 n? e? .,
= =1 NL.(f) - 1

— 2 (rp —r)ptt (H—-T1+ an .

1S & 9 9 plry
=) Sk —2)2. P
25 S (ry —r)ptt

IN

> (. Indeed, supposing the contrary

T

} (»)

2
_ |:%f”

it follows that féf”(z) is a polynomial of degree < p — 1.

Now, if p = 1 and p = 2, then the analyticity of f obviously implies that f
is necessarily a polynomial of degree < 1 = max{1,p — 1}, which contradicts the
hypothesis. If p > 2, then the analyticity of f obviously implies that f is necessarily a
polynomial of degree < p—1 = max{1, p—1}, which again contradicts the hypothesis.

In continuation, reasoning exactly as in the proof of Theorem 3, we immediately
get the desired conclusion. O

But by hypothesis on f, we have

5. Approximation by iterates

For f analytic in Dp that is of the form f(z) = > po,cxz”, for all z € Dg, let
us define the iterates of a complex Lorentz polynomial L, (f)(z), by L%l)(f)(z) =
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L (f)(z) and L™ (f)(2) = La[LS" 7V ()](2), for any m € N, m > 2.

Since we have -
= cxLn(er)(2)
k=0

by recurrence for all m > 1, we easily get that
LU (f Z e L0™ (e,

where L%m)(ek)(z) =1ifk=0, Lglm)(ek)(z) =zif k=1 and

ngm)(ek)(z):<1—l> <1—2> ...(l—k_1> 2F, for k > 2.
n n n

The main result of this section is the following

Theorem 5. Let f be analytic in Dp with R > 1, that is f(z) =Y, cp2®, for all
z€Dg. Let 1 <r < R. We have

o me=, k(k—1)
LG (f) = fllr < gz ICkITT'“7

k=2

and therefore if lim, ., 7+ =0, then
Tim LGV (f) = Sl =

Proof. For all |z| < r we easily obtain

() — LU (F)(2)] < ,i exlrt [1 _ (1 _ i)m (1 _ i)m <1 _ ’tl)m} |

Denoting Ay = (1 — %) (1 — %) (1 — %), we get

1—AP = (1 - AN+ A+ A2+ .+ A" <m(1— Ap)

k(k 1)

and therefore since 1 — Ay < , for all |z| <r we obtain

1) = L (NG < m Yl - 4] < %Dc D),

k=2

which immediately proves the theorem. O
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