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Approximation by complex Lorentz polynomials
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Abstract. In this paper we obtain a quantitative estimate in the Voronovskaja’s theorem
and the exact orders in simultaneous approximation by the complex Lorentz polynomi-
als attached to analytic functions in compact disks. Also, we study the approximation
properties of the iterates of these polynomials.
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1. Introduction

In the recent book [1] (see also the papers cited therein), estimates for the con-
vergence in Voronovskaja’s theorem and the approximation orders in simultaneous
approximation for several important classes of complex Bernstein-type operators
attached to an analytic function f in closed disks were obtained.

The goal of the present paper is to extend these types of results to the complex
Lorentz polynomials.

These polynomials were introduced in [2, p. 43, formula (2)] under the name of
degenerate Bernstein polynomials, by the formula attached to any analytic function
f in a domain containing the origin,

Ln(f)(z) =
n∑

k=0

(
n

k

) ( z

n

)k

f (k)(0), n ∈ N.

In the same book [2], on pages 121–124 some qualitative approximation results are
studied.

The plan of the present paper goes as follows. Section 2 deals with upper esti-
mates in simultaneous approximation by these polynomials. In Section 3 we obtain a
Voronovskaja result with a quantitative estimate and in Section 4 one obtains exact
estimates in simultaneous approximation for these operators. Section 5 presents
a quantitative approximation result for the iterates of the complex polynomials
Ln(f)(z). All the quantitative estimates are obtained in compact disks centered
at the origin.
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2. Upper approximation estimates

The main result of this section is the following.

Theorem 1. For R > 1 and denoting DR = {z ∈ C; |z| < R}, suppose that f :
DR → C is analytic in DR, i.e. f(z) =

∑∞
k=0 ckzk, for all z ∈ DR.

(i) Let 1 ≤ r < R be arbitrary fixed. For all |z| ≤ r and n ∈ N, we have the
upper estimate

|Ln(f)(z)− f(z)| ≤ Mr(f)
n

,

where

Mr(f) =
1
2

∞∑

k=2

|ck|k(k − 1)rk < ∞.

(ii) For the simultaneous approximation by complex Lorentz polynomials, we
have: if 1 ≤ r < r1 < R are arbitrary fixed, then for all |z| ≤ r, p ∈ N and
n ∈ N we have

|L(p)
n (f)(z)− f (p)(z)| ≤ p!r1Mr1(f)

n(r1 − r)p+1
,

where Mr1(f) is given as at the above point (i).

Proof. (i) Denoting ej(z) = zj , we easily get that Ln(e0)(z) = 1, Ln(e1)(z) = e1(z)
and that for all j, n ∈ N, j ≥ 2, we have

Ln(ej)(z) =
(

n

j

)
j! · zj

nj
= zj

(
1− 1

n

)(
1− 2

n

)
...

(
1− j − 1

n

)
.

Also, since an easy computation shows that

Ln(f)(z) =
∞∑

j=0

cjLn(ej)(z), for all |z| ≤ r,

and taking Ln(e0)(z) = 1, Ln(e1)(z) = z into account, we immediately obtain

|Ln(f)(z)− f(z)| ≤
∞∑

j=0

|cj | · |Ln(ej)(z)− ej(z)|

≤
∞∑

j=2

|cj |rj

∣∣∣∣
(

1− 1
n

)(
1− 2

n

)
...

(
1− j − 1

n

)
− 1

∣∣∣∣ ,

for all |z| ≤ r.
Taking into account that a simple inequality

1−Πk−1
j=1xj ≤

k−1∑

j=1

(1− xj),
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holds if 0 ≤ xj ≤ 1, for all j = 1, ..., k − 1, by taking xj = 1− j
n we obtain

1−
(

1− 1
n

)(
1− 2

n

)
...

(
1− k − 1

n

)
≤

k−1∑

j=1

[
1− n− j

n

]
=

k(k − 1)
2n

,

which implies the desired estimate.
(ii) Denoting by γ the circle of radius r1 > r and center 0, since for any |z| ≤ r

and v ∈ γ, we have |v − z| ≥ r1 − r, by the Cauchy’s formulas it follows that for all
|z| ≤ r and n ∈ N, we have

|L(p)
n (f)(z)− f (p)(z)| =

p!
2π

∣∣∣∣
∫

γ

Ln(f)(v)− f(v)
(v − z)p+1

dv

∣∣∣∣

≤ Mr1(f)
n

p!
2π

· 2πr1

(r1 − r)p+1
=

Mr1(f)
n

· p!r1

(r1 − r)p+1
,

which proves (ii) and the theorem.

3. Quantitative Voronovskaja type theorem

The following Voronovskaja-type result holds.

Theorem 2. For R > 1, let f : DR → C be analytic in DR, that is f(z) =
∑∞

k=0 ckzk

for all z ∈ DR, and let 1 ≤ r < R be arbitrary fixed. We have

∣∣∣∣Ln(f)(z)− f(z) +
z2

2n
f ′′(z)

∣∣∣∣ ≤
1

2n2

∞∑

k=2

|ck|rk(k−1)2(k−2)2, for all n ∈ N, |z| ≤ r,

where
∞∑

k=2

|ck|rk(k − 1)2(k − 2)2 < ∞.

Proof. We have
∣∣∣∣Ln(f)(z)− f(z) +

z2

2n
f ′′(z)

∣∣∣∣

=

∣∣∣∣∣
∞∑

k=0

ck

[
Ln(ek)(z)− ek(z) +

k(k − 1)
2n

ek(z)
]∣∣∣∣∣

=

∣∣∣∣∣
∞∑

k=2

ckzk

[
(n− 1)(n− 2)...(n− (k − 1))

nk−1
− 1 +

k(k − 1)
2n

]∣∣∣∣∣

≤
∞∑

k=2

|ck|rk

∣∣∣∣
(n− 1)(n− 2)...(n− (k − 1))

nk−1
− 1 +

k(k − 1)
2n

∣∣∣∣ ,

for all |z| ≤ r and n ∈ N.
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In what follows, we will prove by mathematical induction with respect to k that

0 ≤ En,k ≤ (k − 1)2(k − 2)2

2n2
, (1)

for all k ≥ 2 (here n ∈ N is arbitrary fixed), where

En,k =
(n− 1)(n− 2)...(n− (k − 1))

nk−1
− 1 +

k(k − 1)
2n

.

Indeed, for k = 2 it is trivial. Suppose that it is valid for arbitrary k. We are
going to prove that it remains valid for k + 1 too, that is

0 ≤ (n− 1)(n− 2)...(n− k)
nk

− 1 +
k(k + 1)

2n
≤ k2(k − 1)2

2n2
. (2)

For this purpose, we take into account that

En,k+1 =
(n− 1)(n− 2)...(n− k)

nk
− 1 +

k(k + 1)
2n

=
(n− 1)(n− 2)...(n− (k − 1))

nk−1

(
1− k

n

)

−1 +
k(k − 1)

2n
+

k(k + 1)
2n

− k(k − 1)
2n

= En,k +
k

n

(
1− (n− 1)(n− 2)...(n− (k − 1))

nk−1

)
.

By (1) it is immediate that En,k+1 ≥ 0. Also, by the same relationship (1) and
taking into account the simple inequality used at the end of the proof of Theorem 1,
(i), we get

En,k+1 ≤ (k − 1)2(k − 2)2

2n2
+

k

n

(
1− (n− 1)(n− 2)...(n− (k − 1))

nk−1

)

≤ (k − 1)2(k − 2)2

2n2
+

k

n
· k(k − 1)

2n
=

1
2n2

[(k − 1)2(k − 2)2 + k2(k − 1)].

Looking at (2), in fact it remains to prove that

(k − 1)2(k − 2)2 + k2(k − 1) ≤ k2(k − 1)2,

which is after simple calculation equivalent to the inequality 0 ≤ 3k2−8k+4, which
is obviously valid for all k ≥ 2.

In conclusion, (2) is valid, which implies that (1) is valid and this proves the
theorem.

4. Exact approximation estimates

The first main result of this section is the following.
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Theorem 3. Let R > 1, f : DR → C be analytic in DR, that is f(z) =
∑∞

k=0 ckzk

for all z ∈ DR, and 1 ≤ r < R be arbitrary fixed. If f is not a polynomial of degree
≤ 1, then for all n ∈ N and |z| ≤ r we have

‖Ln(f)− f‖r ≥ Cr(f)
n

,

where the constant Cr(f) depends only on f . Here ‖f‖r denotes max|z|≤r{|f(z)|}.
Proof. For all |z| ≤ r and n ∈ N we have

Ln(f)(z)− f(z) =
1
n

{
−z2

2
f ′′(z) +

1
n

[
n2

(
Ln(f)(z)− f(z) +

z2

2n
f ′′(z)

)]}
.

In what follows we will apply to this identity the following obvious property:

‖F + G‖r ≥ | ‖F‖r − ‖G‖r | ≥ ‖F‖r − ‖G‖r.

It follows

‖Ln(f)− f‖r ≥ 1
n

{∥∥∥∥
e2
1

2
f ′′

∥∥∥∥
r

− 1
n

[
n2

∥∥∥∥Ln(f)− f +
e2
1

2n
f ′′

∥∥∥∥
r

]}
.

Since by hypothesis f is not a polynomial of degree ≤ 1 in DR, we get
∥∥∥ e2

1
2 f ′′

∥∥∥
r

> 0.

Indeed, supposing the contrary it follows that z2

2 f ′′(z) = 0 for all z ∈ Dr =
{z ∈ C; |z| ≤ r}, which implies f ′′(z) = 0 for all z ∈ Dr \ {0}. Since f is supposed
to be analytic, from the identity theorem of analytic (holomorphic) functions this
necessarily implies that f ′′(z) = 0, for all z ∈ DR, i.e. that f is a polynomial of
degree ≤ 1, which is a contradiction.

But by Theorem 2 we have

n2

∥∥∥∥Ln(f)− f +
e2
1

2n
f ′′

∥∥∥∥
r

≤ 1
2
·
∞∑

k=2

|ck|rk(k − 1)2(k − 2)2.

Therefore, there exists an index n0 depending only on f and r, such that for all
n > n0 we have

∥∥∥∥
e2
1

2
f ′′

∥∥∥∥
r

− 1
n

[
n2

∥∥∥∥Ln(f)− f +
e2
1

2n
f ′′

∥∥∥∥
r

]
≥ 1

2

∥∥∥∥
e2
1

2
f ′′

∥∥∥∥
r

,

which immediately implies that

‖Ln(f)− f‖r ≥ 1
n
· 1
2

∥∥∥∥
e2
1

2
f ′′

∥∥∥∥
r

, ∀n > n0.

For n ∈ {1, ..., n0} we obviously have ‖Ln(f) − f‖r ≥ Mr,n(f)
n with Mr,n(f) =

n · ‖Ln(f)− f‖r > 0 (if ‖Ln(f)− f‖r would be equal to 0, this would imply that f
is a linear function, a contradiction).
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Therefore, finally we get ‖Ln(f)− f‖r ≥ Cr(f)
n for all n ∈ N, where

Cr(f) = min
{

Mr,1(f), ...,Mr,n0(f),
1
2

∥∥∥∥
e2
1

2
f ′′

∥∥∥∥
r

}
,

which completes the proof.

Combining now Theorem 3 with Theorem 1, (i) we immediately get the following.

Corollary 1. Let R > 1, f : DR → C be analytic in DR, that is f(z) =
∑∞

k=0 ckzk

for all z ∈ DR, and let 1 ≤ r < R be arbitrary fixed. If f is not a polynomial of
degree ≤ 1, then for all n ∈ N we have

‖Ln(f)− f‖r ∼ 1
n

,

where the constants in the equivalence depend on f and r but are independent of n.

Concerning the simultaneous approximation we present the following.

Theorem 4. Let R > 1, f : DR → C be analytic in DR, that is f(z) =
∑∞

k=0 ckzk

for all z ∈ DR, and let 1 ≤ r < r1 < R be arbitrary fixed. Also, let p ∈ N. If f is
not a polynomial of degree ≤ max{1, p− 1}, then for all n ∈ N we have

‖L(p)
n (f)− f (p)‖r ∼ 1

n
,

where the constants in the equivalence depend on f , r, r1 and p but are independent
of n.

Proof. Since by Theorem 1, (ii) we have an upper estimate for ‖L(p)
n (f)− f (p)‖r, it

remains to prove the lower estimate for ‖L(p)
n (f)−f (p)‖r. For this purpose, denoting

by Γ the circle of radius r1 and center 0, we have the inequality |v−z| ≥ r1− r valid
for all |z| ≤ r and v ∈ Γ. The Cauchy’s formula is expressed by

L(p)
n (f)(z)− f (p)(z) =

p!
2πi

∫

Γ

Ln(f)(v)− f(v)
(v − z)p+1

dv.

Now, as in the proof of Theorem 1, (ii), for all v ∈ Γ and n ∈ N we have

Ln(f)(v)− f(v) =
1
n

{
−v2

2
f ′′(v) +

1
n

[
n2

(
Ln(f)(v)− f(v) +

v2

2n
f ′′(v)

)]}
,
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which replaced in the above Cauchy’s formula implies

L(p)
n (f)(z)− f (p)(z) =

1
n

{
p!

2πi

∫

Γ

− v2f ′′(v)
2(v − z)p+1

dv

+
1
n
· p!
2πi

∫

Γ

n2
(
Ln(f)(v)− f(v) + v2

2nf ′′(v)
)

(v − z)p+1
dv





=
1
n

{[
−z2

2
f ′′(z)

](p)

+
1
n
· p!
2πi

∫

Γ

n2
(
Ln(f)(v)− f(v) + v2

2nf ′′(v)
)

(v − z)p+1
dv



 .

Passing now to ‖ · ‖r, for all n ∈ N it follows

‖L(p)
n (f)− f (p)‖r ≥ 1

n

{∥∥∥∥∥
[
−e2

1

2
f ′′

](p)
∥∥∥∥∥

r

− 1
n

∥∥∥∥∥∥
p!
2π

∫

Γ

n2
(
Ln(f)(v)− f(v) + v2

2nf ′′(v)
)

(v − z)p+1
dv

∥∥∥∥∥∥
r



 ,

where by using Theorem 2, for all n ∈ N we get
∥∥∥∥∥∥

p!
2π

∫

Γ

n2
(
Ln(f)(v)− f(v) + v2

2nf ′′(v)
)

(v − z)p+1
dv

∥∥∥∥∥∥
r

≤ p!
2π

· 2πr1n
2

(r1 − r)p+1

∥∥∥∥Ln(f)− f +
e2
1

2n
f ′′

∥∥∥∥
r1

≤ 1
2

∞∑

k=2

rk
1 (k − 1)2(k − 2)2 · p!r1

(r1 − r)p+1
.

But by hypothesis on f , we have
∥∥∥∥−

[
e2
1
2 f ′′

](p)
∥∥∥∥

r

> 0. Indeed, supposing the contrary

it follows that − z2

2 f ′′(z) is a polynomial of degree ≤ p− 1.
Now, if p = 1 and p = 2, then the analyticity of f obviously implies that f

is necessarily a polynomial of degree ≤ 1 = max{1, p − 1}, which contradicts the
hypothesis. If p > 2, then the analyticity of f obviously implies that f is necessarily a
polynomial of degree ≤ p−1 = max{1, p−1}, which again contradicts the hypothesis.

In continuation, reasoning exactly as in the proof of Theorem 3, we immediately
get the desired conclusion.

5. Approximation by iterates

For f analytic in DR that is of the form f(z) =
∑∞

k=0 ckzk, for all z ∈ DR, let
us define the iterates of a complex Lorentz polynomial Ln(f)(z), by L

(1)
n (f)(z) =
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Ln(f)(z) and L
(m)
n (f)(z) = Ln[L(m−1)

n (f)](z), for any m ∈ N, m ≥ 2.
Since we have

Ln(f)(z) =
∞∑

k=0

ckLn(ek)(z),

by recurrence for all m ≥ 1, we easily get that

L(m)
n (f)(z) =

∞∑

k=0

ckL(m)
n (ek)(z),

where L
(m)
n (ek)(z) = 1 if k = 0, L

(m)
n (ek)(z) = z if k = 1 and

L(m)
n (ek)(z) =

(
1− 1

n

)m (
1− 2

n

)m

...

(
1− k − 1

n

)m

zk, for k ≥ 2.

The main result of this section is the following

Theorem 5. Let f be analytic in DR with R > 1, that is f(z) =
∑∞

k=0 ckzk, for all
z ∈ DR. Let 1 ≤ r < R. We have

‖L(m)
n (f)− f‖r ≤ m

n

∞∑

k=2

|ck|k(k − 1)
2

rk,

and therefore if limn→∞ m
n = 0, then

lim
n→∞

‖L(m)
n (f)− f‖r = 0.

Proof. For all |z| ≤ r we easily obtain

|f(z)− L(m)
n (f)(z)| ≤

∞∑

k=2

|ck|rk

[
1−

(
1− 1

n

)m (
1− 2

n

)m

...

(
1− k − 1

n

)m]
.

Denoting Ak =
(
1− 1

n

) (
1− 2

n

)
...

(
1− k−1

n

)
, we get

1−Am
k = (1−Ak)(1 + A + A2 + ... + Am−1) ≤ m(1−Ak)

and therefore since 1−Ak ≤ k(k−1)
2n , for all |z| ≤ r we obtain

|f(z)− L(m)
n (f)(z)| ≤ m

∞∑

k=2

|ck|rk[1−Ak] ≤ m

n

∞∑

k=2

|ck|rk k(k − 1)
2

,

which immediately proves the theorem.
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