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Abstract. We calculated the optimal values of the real parameters a and b in such a way
that the asymptotic formula

n! ∼ e−a
(n + a

e

)n √
2π(n + b) (as n →∞)

gives the best accurate values for n!. Our estimations improve the classical Stirling and
Burnside’s formulas and their several recent improvements due to the author and C. Mor-
tici. Apart from their simplicities and beauties our formulas give very accurate values for
factorial n. Also, our results lead to new upper and lower bounds for the gamma function
and recover some published inequalities for the gamma function.
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1. Introduction

The gamma function defined by the improper integral

Γ(z) =
∫ ∞

0

uz−1e−udu (z > 0)

has numerous applications in mathematics and sciences and it occurs e.g. in the
expression of various mathematical constants. For instance, the formula for the
volume of the unit ball in Rn involves the gamma function, see the recent papers
[2, 18, 7] and its monotonicity properties have been studies in [7, 9]. It is also
notable that the author used the gamma function to evaluate the sum of some series
involving reciprocals of binomial coefficients, see [5, 6]. The gamma function and
the factorials are related with Γ(n + 1) = n!, n ∈ N. The logarithmic derivative
of the gamma function is called the digamma (or psi) function and denoted by ψ.
The derivatives ψ′, ψ′′, ψ′′′... are called polygamma functions in the literature. The
Stirling’s formula

n! ≈ nne−n
√

2πn = αn (1)
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is used to estimate factorial n and has many applications in statistical physics,
probability theory and number theory. Actually it was discovered by A. De Moivre
(1667-1754) in the form

n! ≈ C · nne−n
√

n,

and Stirling (1692-1770) identified the constant C precisely
√

2π. After the Stirling’s
formula has been published, many formulas to approximate n! have appeared in the
literature but most of them are complicated and do not have a simple form. E. A.
Karatsuba [11] answered a question posed by S. Ponnusamy and M. Vuorinen [15,
Conjecture 2.35, p.293] motivated by a notebook of S. Ramanujan (1887-1920). She
proved in [11] the following asymptotic expansion (for additional terms see [11, Eq.
(5.5)]

Γ(x + 1) ≈ √
πxxe−x 6

√
8x3 + 4x2 + x +

1
30
− 11

240x
+ · · · = φx.

The accuracy of this and some other asymptotic expansions for the gamma function
have been recently investigated by G. Nemes [14]. Undoubtedly in the literature
there exist much better approximation formulas to approximate the gamma function
or n! like this than (1), but in this work we are interested only in formulas having
a simple form. The most well known simple estimation for n! after the Stirling’s
formula is

n! ≈
√

2π

(
n + 1/2

e

)n+ 1
2

= βn, (2)

which was published by Burnside [8] in 1917. It is known from [8] that this formula
is better than (1). Very recently the author [3] and C. Mortici [12] published the
following simple estimations for n!:

n! ≈
√

2π

e

(
n + 1

e

)n+ 1
2

= γn, (C. Mortici [12]), (3)

n! ≈
√

2πe · e−ω

(
n + ω

e

)n+ 1
2

= δn, (C. Mortici [12]), (4)

where ω = (3−√3)/6,

n! ≈
√

2π · nne−n

√
n +

1
6

= θn, (N. Batir [3]). (5)

The aim of this work is to improve all these known estimations keeping their sim-
plicities. If we carefully look at these formulas, we see that all are special cases of
the following asymptotic formula: For real numbers a, b ≥ 0

n! ∼ e−a

(
n + a

e

)n √
2π(n + b), (as n →∞). (6)

Indeed, (1) is obtained from (6) for (a, b) = (0, 0); (2) is obtained for (a, b) =
(1/2, 1/2); (3) is obtained for (a, b) = (1, 1), (4) is obtained for (a, b) = (ω, ω)
(ω = (3 − √3)/6), and finally (5) is obtained from (6) for (a, b) = (0, 1/6). Hence
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it is natural to look for the best possible constant pairs (a, b) such that formula (6)
gives the best accurate values for factorial n. We prove that the best approximations
are obtained for the constant pairs (a, b) = (a1, b1) and (a, b) = (a2, b2), where

a1 =
1
3

+
λ

6
− 1

6

√
6− λ2 + 4/λ = 0.540319070367..., (7)

and

a2 =
1
3

+
λ

6
+

1
6

√
6− λ2 + 4/λ = 0.950108831378..., (8)

which are the real roots of the quartic equation 3a4 − 4a3 + a2 + 1
12 = 0, and

b1 = a2
1 +

1
6

= 0.458611364468... and b2 = a2
2 +

1
6

= 1.069373458129..., (9)

where λ =
√

2 + 22/3 + 24/3. The following lemmas are key in our proofs. The first
lemma was proved in [13].

Lemma 1. If (ωn)n≥1 is convergent to zero and there exists the limit

lim
n→∞

nk · (ωn − ωn+1) = c ∈ R,

with k > 1, then there exists the limit

lim
n→∞

nk−1 · ωn =
c

k − 1
.

This lemma, despite its simple appearance, is a strong tool to accelerate and
measure the speed of convergence of some sequences having limit equal to zero. It
is evident from this lemma that the speed of convergence of the sequence (ωn) is
as higher as the value of k is greater. The next lemma, as far as we know, was
first used in [10] (without proof) to establish some monotonicity results for the
gamma function and later used by the author [4] and F. Qi and B-N Guo [16, 17] to
prove some monotonicity and complete monotonicity properties of the polygamma
functions.

Lemma 2. Let f be a function defined on an interval I and lim
x→∞

f(x) = 0. If

f(x + 1) − f(x) > 0 for all x ∈ I, then f(x) < 0 . If f(x + 1) − f(x) < 0, then
f(x) > 0.

Proof. Let f(x + 1)− f(x) > 0 for all x ∈ I. By mathematical induction we have
f(x) < f(x + n) for all n ∈ N. Letting n → ∞, we get f(x) < 0. The proof of the
second part of the lemma follows from the same argument.

The numerical and algebraic computations have been carried out with the com-
puter program MATHEMATICA 5.
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2. Main results

For real numbers a, b ≥ 0 and n ∈ N, we define

σn(a, b) = log(n!)− 1
2

log(2π) + n + a− n log(n + a)− 1
2

log(n + b). (10)

Using the Stirling’s formula (1) we see that

lim
n→∞

σn = 0. (11)

Now we are ready to state and prove our main results.

Theorem 1.

(i) If b 6= a2 + 1
6 , then the speed of convergence of (σn) is n−1.

(ii) If a 6= a1, a2 and b = a2 + 1
6 , then the speed of convergence of (σn) is n−2.

(iii) If (a, b) = (a1, b1) or (a, b) = (a2, b2), then the speed of convergence of (σn) is
n−3.

Here ai, bi(i = 1, 2) are as given in (7), (8) and (9).

Proof. For real numbers x ≥ 0, we define

Ha,b(x) = log Γ(x + 1)− 1
2

log(2π) + x + a− x log(x + a)− 1
2

log(x + b).

Differentiation gives

H ′
a,b(x) = ψ(x + 1)− log(x + a) +

a

x + a
− 1

2(x + b)
,

H ′′
a,b(x) = ψ′(x + 1)− 1

x + a
− a

(x + a)2
+

1
2(x + b)2

,

and

H ′′
a,b(x + 1)−H ′′

a,b(x) =
Pa,b(x)
Qa,b(x)

, (12)
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where we have used the functional relation ψ′(x + 1)− ψ′(x) = −1/x2, and

Pa,b(x) = (− 2− 12a2 + 12b)x6 + (−8− 8a− 48a2 − 16a3 + 40b

+48ab− 48a2b + 24b2)x5 + (−12− 28a− 88a2 − 56a3 − 4a4

+48b + 136ab− 96a2b− 64a3b + 72b2 + 96ab2 − 72a2b2

+16b3)x4 + (−8− 36a− 96a2 − 80a3 − 12a4 + 24b + 136ab

−64a2b− 144a3b− 16a4b + 76b2 + 240ab2 − 72a2b2 − 96a3b2

+40b3 + 64ab3 − 48a2b3 + 4b4)x3 + (−2− 20a− 62a2 − 60a3

−14a4 + 4b + 56ab− 28a2b− 120a3b− 28a4b + 32b2 + 208ab2 (13)
+56ab + 36a2b2 − 144a3b2 − 24a4b2 + 32b3 + 128ab3 − 24a2b3

−64a3b3 + 8b4 + 16ab4 + 12a2b4)x2 + (−4a− 20a2 − 24a3 − 8a4

+8ab− 16a2b− 48a3b− 16a4b + 4b2 + 72ab2 + 48a2b2 − 64a3b2

−24a4b2 + 8b3 + 24ab4 − 16a3b4)x− 2a2 − 4a3 − 2a4 − 4a2b

−8a3b− 4a4b + 8ab2 + 8a2b2 − 8a3b2 − 4a4b2 + 16ab3

+16a2b3 − 16a3b3 − 8a4b3 + 8ab4 + 8a2b4 − 8a3b4 − 4a4b4,

and Q(x) = 2(x + 1)2(x + a)2(x + b)2. Utilizing Stirling’s formula and the the
following asymptotic formulas

ψ(x) ∼ log x− 1
2x

− 1
12x2

+ · · ·. (as x →∞),

ψ′(x) ∼ 1
x

+
1

2x2
+

1
6x3

+ · · · (as x →∞),

(see [1, p.259]), we obtain

lim
x→∞

Ha,b(x) = lim
x→∞

H ′
a,b(x) = lim

x→∞
H ′′

a,b(x) = 0. (14)

(i) If b 6= a2 + 1
6 , using (12), (14) and l’Hospital rule, we obtain

lim
n→∞

n2 · (σn − σn+1) = lim
n→∞

Ha,b(n)−Ha,b(n + 1)
1/n2

= lim
n→∞

H ′
a,b(n)−H ′

a,b(n + 1)
−2/n3

= −1
6

lim
n→∞

n4[H ′′
a,b(n + 1)−H ′′

a,b(n)]

= −1
6

lim
n→∞

n4Pa,b(n)
Qa,b(n)

= a2 +
1
6
− b. (15)

Since (11) holds, an application of Lemma 1 yields

lim
n→∞

n · σn = a2 +
1
6
− b 6= 0 (16)
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This proves (i). (ii) Let b = a2 + 1
6 and a 6= a1, a2. Then, the coefficient of x6 in

(13) vanishes, so using Stirling’s formula we get

lim
n→∞

n3 · (σn − σn+1) = lim
n→∞

Ha,b(n)−Ha,b(n + 1)
1/n3

= lim
n→∞

H ′
a,b(n)−H ′

a,b(n + 1)
−3/n4

= − 1
12

lim
n→∞

n5[H ′′
a,b(n + 1)−H ′′

a,b(n)]

= − 1
12

lim
n→∞

n5Pa,b(n)
Qa,b(n)

=
1
3
(1 + a + 6a2 + 2a3 − 5b− 6ab + 6a2b− 3b2). (17)

If we set b = a2 + 1
6 in the last line, we get

lim
n→∞

n3 · (σn − σn+1) =
1
3

(
3a4 − 4a3 + a2 +

1
12

)
.

By virtue of Lemma 1, we find that

lim
n→∞

n2 · σn =
1
6

(
3a4 − 4a3 + a2 − 1

12

)
6= 0, (18)

since a 6= a1, a2, this proves (ii). Now we shall prove (iii). Let (a, b) = (a1, b1). In
this case the coefficients of x6 and x5 in (13) vanish, thus by Stirling’s formula we
obtain

lim
n→∞

n4 · (σn − σn+1) = lim
n→∞

Ha,b(n)−Ha1, b1(n + 1)
1/n4

= lim
n→∞

H ′
a1, b1

(n)−H ′
a1, b1

(n + 1)
−4/n5

= − 1
20

lim
n→∞

n5[H ′′
a1, b1(n + 1)−H ′′

a1,b1(n)]

= − 1
20

lim
n→∞

n6Pa,b(n)
Qa,b(n)

= −0.014723740642427497..., (19)

which implies by Lemma 1

lim
n→∞

n3 · σn(a1, b1) = −0.004907913547475832. (20)

In the same way we find that

lim
n→∞

n3 · σn(a2, b2) = 0.005746538709721112. (21)
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If we set (a, b) = (a1, b1) and (a, b) = (a2, b2) in (13), respectively, we obtain

Pa1, b1(x) = −0.393886− 1.93247x− 3.31813x2 − 2.35329x3

−0.58895x4 < 0 (22)

and

Pa2, b2(x) = 1.47415 + 5.06985x + 6.40706x2 + 3.50099x3

+0.689585x4 > 0, (23)

and H ′′
a1, b1

(x + 1) − H ′′
a1, b1

(x) < 0 and H ′′
a2, b2

(x + 1) − H ′′
a2, b2

(x) > 0 by (12) for
all x ≥ 0. Utilizing (14) and Lemma 2 we see that H ′′

a1, b1
(x) > 0 and H ′′

a2, b2
(x) < 0

for all x ≥ 0. From (14) it results that Ha1, b1 is strictly decreasing and Ha2, b2 is
strictly increasing on [0, ∞), thus we have

0 = lim
x→∞

Ha1, b1(x) < Ha1, b1(x) ≤ Ha1, b1(0) = −1
2

log(2π) + a1 − 1
2

log b1

and

−1
2

log(2π) + a2 − 1
2

log b2 = Ha2, b2(0) ≤ Ha2, b2(x) < lim
x→∞

Ha2, b2(x) = 0.

These can be written equivalently as follows:

Theorem 2. For all reals x ≥ 0 the following double inequalities hold:

α · e−x−a1(x + a1)x
√

x + b1 < Γ(x + 1) ≤ β · e−x−a1(x + a1)x
√

x + b1 (24)

where the constants

α =
√

2π = 2.5066282746 . . . and β =
ea1

√
b1

= 2.5347503081133245 . . .

are the best possible constants; and

α∗ · e−x−a2(x + a2)x
√

x + b2 < Γ(x + 1) ≤ β∗ · (x + a2)xe−x−a2
√

x + b2 (25)

where the constants

α∗ =
ea2

√
b2

= 2.5007041931433194 . . . and β∗ =
√

2π = 2.506628274 . . .

are the best possible constants, and ai, bi(i=1,2) are as given in (7), (8) and (9).

Remark 1. If we set (a, b) = (ω, ω)(ω = 3−√3
6 ) and (a, b) = (ς, ς)(ς = 3+

√
3

6 ) in
(13), respectively, we get

Pω, ω(x) = −0.05772− 0.69205x− 2.79458x2 − 4.45859x3 − 3.07122x4

−0.7698x5 < 0



112 N.Batir

and

Pς, ς(x) = 1.31081 + 6.32168x + 11.8316x2 + 10.6808x3

+4.62678x4 + 0.7698x5 > 0,

that is, Hω, ω(x + 1) −Hω, ω(x) < 0 and Hς, ς(x + 1) −Hς, ς(x) > 0 by (12) for all
x ≥ 0. Hence by Lemma 2 and (14), Hω, ω is strictly decreasing and Hς, ς is strictly
increasing on [0, ∞). It results that

lim
x→∞

Hω, ω(x) = 0 ≤ Hω, ω(x) < −1
2

log(2ωπ) + ω = Hω, ω(0),

and
Hς, ς(0) = −1

2
log(2ςπ) + ς < Hς, ς(x) ≤ 0 = lim

x→∞
Hς, ς(x).

These lead to the following double inequalities:

√
2πe · e−ω

(
x + ω

e

)x+ 1
2

< Γ(x + 1) < α ·
√

2πe · e−ω

(
x + ω

e

)x+ 1
2

,

where α = eω√
2πω

, and

β ·
√

2πe · e−ς

(
x + ς

e

)x+ 1
2

< Γ(x + 1) <
√

2πe · e−ς

(
x + ς

e

)x+ 1
2

,

where β = eς√
2πς

. Precisely, these are the main results obtained in [12].

Remark 2. Equations (15) and (18) enable us to measure the speed of convergence
of the approximations n! ≈ αn, n! ≈ βn, n! ≈ γn, n! ≈ δn and n! ≈ θn from (1)-(5):
we obtain from (16)

lim
n→∞

n · log(n!/αn) = lim
n→∞

n · σn(0, 0) =
1
6
,

lim
n→∞

n · log(n!/βn) = lim
n→∞

n · σn(1/2, 1/2) =
1
12

,

lim
n→∞

n · log(n!/γn) = lim
n→∞

n · σn(1, 1) =
1
6
,

and from (19) for a = 0

lim
n→∞

n2 · log(n!/θn) = lim
n→∞

n2 · σn(0, 1/6) =
1
72

= 0.0138888 . . . ,

and finally

lim
n→∞

n2 · log(n!/δn) = lim
n→∞

n2 · σn(ω, ω) = 0.01603750 . . . .

We let

ρn = e−a1

(
n + a1

e

)n √
2π(n + b1)
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and

τn = e−a2

(
n + a2

e

)n √
2π(n + b2).

Then from (20) and (21) we obtain

lim
n→∞

n3 · log(n!/ρn) = −0.0049079 . . . and lim
n→∞

n3 · log(n!/τn) = 0.005746538 . . . .

These prove theoretically the great superiority of our estimations n! ≈ ρn and n! ≈ τn

over n! ≈ θn, which is the best of (1)-(5). We conclude our paper with a numerical
comparison between our estimations n! ≈ τn, n! ≈ ρn and n! ≈ θn, n! ≈ φn, where
φn is Karatsuba’s asymptotic formula for Γ(n + 1) given on the second page.

n |θn−n!| |τn−n!| |ρn−n!| |φn−n!|
1 0.00397819 0.0003378 0.0006483 0.0003037
2 0.0026369 0.00020675 0.00029994 0.000026
10 239.175 7.81549 7.67069 0.017993
25 1.688×1020 2.534×1018 2.294×1018 7.841×1014

50 8.36204×1058 6.587×1056 5.794×1056 4.789×1052

100 4.33×10151 2.602×10149 2.256×10149 4.585×10144
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