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Univalence criteria for general integral operator
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Abstract. Let A be the class of all analytic functions which are analytic in the open unit
disc Y ={z: |z| < 1} and

1+ 2f"(2)/f'(2)
2f'(2)/1(2)

In this paper, we derive sufficient conditions for the integral operator

15 (s )(2) = {7 / oy (20 oy (20)

Gb:{feA:’ 71‘<b, zeu}.

1
t t

to be analytic and univalent in the open unit disc U, when f; € Gy, for alli =1,...,n.
AMS subject classifications: 30C45
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1. Introduction

Let A denote the class of functions of the form :

flz)=2z+ Z anz" (1)
n=2

which are analytic in the open unit disc ¥ ={z: |z| < 1}. Further, by S we shall
denote the class of all functions in .4 which are univalent in U.

In [16], Silverman investigated an expression involving the quotient of the analytic
representation of convex and starlike functions. Precisely, for 0 < b < 1 he considered

the class
_ T+ 2f"(2)/ 1 (2)
= {f e ’ T

Let ay € Cforalli=1,...,n,n €N,y € C with Re(y) > 0. Welet I : A" —
A be the integral operator defined by

—1’<b, zeu}. (2)
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19 (fr, o fo) () = {7 / A ()™ (ff”) ()™ (ft“)) dt} ‘@
0

Here and throughout the sequel every many-valued function is taken with the prin-
cipal branch. The integral operator I (fi,..., fn)(2) was introduced and studied
by Frasin [7] and this integral operator is a generalization of the integral operator

|~

H(z)={~ / et (ﬂ”)ﬁ(f'(t»édt
0

t

introduced by Ovesea in [10].

Many authors studied the problem of integral operators which preserve the class
S (see, for example, [1, 2, 3, 4, 5, 6, 9, 14, 15]).

In the present paper, we derive a sufficient condition for the integral operator
IS (f1, - fa)(2) to be analytic and univalent in U, when f; € Gy, for all i =
1,...,n.

In order to derive our main results, we have to recall here the following univalence
criteria.

Lemma 1 (see [11]). Let v € C with Re(y) > 0. If f € A satisfies

1_ |z\2Re(7)
Re(y)

zf”(z)
f'(2)

L,

for all z € U, then the integral operator

s in the class S.

Lemma 2 (sce [12]). Let § € C with Re(6) > 0. If f € A satisfies

1— ‘Z|2R€(5)

Re(0)

2f"(2)
f'(2)

for all z € U, then, for any complex number ~ with Re(y) > Re(d), the integral
operator

<1,

B =y [0 o
0

s in the class S.
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Lemma 3 (see [13]). Let v € C with Re(y) > 0,c € C with |c|] <1, ¢ # —1. If
feA satisfies

2y 27y Zf/l(z)
clz|”"+ (1 — |z <1,
A+ (1= ) 22
for all z € U, then the integral operator

B2 =7 [0 o

0

is in the class S.
Further, we need the following general Schwarz Lemma.

Lemma 4 (see [8]). Let the function f be regular in the discUr = {z : |z| < R} ,with
|f(2)] < M for fized M. If f(z) has one zero with multiplicity order greater than m
for z =0, then

M m
Rm ‘Z|

1f(2)] <
The equality can hold only if

(z € UR).

f(z) =€’ (M/R™) 2",
where 0 is constant.

2. Univalence conditions for % (fi, ..., f.)(2)

We first prove
Theorem 1. Let v € C and a; € C foralli=1,...,n with

n

Re(7) =) (2|as| bi + 1) (4)
i=1
Ifforalli=1,....,n,fi €Gy; 0<b; <1 and
2fi(2)
Fi(2) —1‘ <1 (zel), (5)

then the integral operator 157 (f1, ..., fn)(2) defined by (3) is analytic and univalent
mU.

Proof. Define

so that, obviously

Fi)™ (f”)] , (6)
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Differentiating both sides of (6) logarithmically, we obtain

T X[

Since f; € Gp,; 0 <b; < 1foralli=1,...,n, from (2) and (5), we obtain

(14280

7o) (7

fi(2)

)

e EOICIES o o EF e
< 3 s 5]+ 5]
s
= z: :lOéi|bi Z]f/((;)) - 1‘ + o] b; + ZJ{/((ZZ)) - 1H
_ i :((ai|bi—|—1) ZJjU((ZZ)) = 1D + Cki|bi:|
< _Zn:@ |ail bi + 1),

which readily shows thal_
2Re() | n 2Re(s) [ n
o : T | S ew : (;(2 i D)

1 n
< Re(7) (Z(Q o] bi + 1))

i=1
<1

Applying Lemma 1 for the function h(z), we prove that IS (f1,..., fa)(z) € S. O

Let o = 1for all i =1,

...,n in Theorem 1,we have

Corollary 1. Let v € C with

If foralli=1,...,

Re(y) > zn:(%i +1).

n, fi €Gp,; 0<b; <1 and

2f{(2)
fi(2)

—1‘<1 (z€el),

(10)
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then the integral operator

L @) = 7 [0 L0

s analytic and univalent in U.
Let n=1, oy =a,b; =band f; = f in Theorem 1, we have

Corollary 2. Let vy € C and o € C with

Re(vy) > 2]ab+ 1. (12)
If feG;0<b<1and
ZJJ:(S) _ 1‘ <1 (zeuw), (13)
then the integral operator defined by
1 () =4 [ore (Z0) e (1)
0

s analytic and univalent in U.
Making use of Lemma 2 and Schwarz Lemma, we prove

Theorem 2. Let a; € C , M; > 1 foralli=1,...,n and § € C with
Re(6) > Z[(|ai| bi + 1) (2M; + 1) + oy | bi]. (15)
i=1

If foralli=1,....n, fi € Gy,;; 0 <b; <1 satisfy

2fi(2)
[fi(2)]?

1‘ <1 (zel) (16)
and
|f1(Z)| < M; (Z Gu,i = 1,...,?7,),

then for any complex number v with Re(y) > Re(d), the integral operator I (fy,...,
fn)(2) defined by (3) is analytic and univalent in U.

Proof. From the proof of Theorem 1, we have

< i K(|ai|bi +1) Zf/(iz)) — 1‘) + Iailbi] : (17)

zh'"(z)
h'(2)
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Thus, we obtain

1- |z|2Re(5) zh(z)
Re(d) W (z)
2Re(s) n /
P _1|;e|(5) 5 Z[((|ai|bi+l) Zf(()) ‘>+|az|b}
i=1
— ZQRG(‘S) - 22 f1(z z
Sil 1|%e|(5) ; [((l i| by +1) [fzj(cz()]g i) +1> +|ai|bi].

Since |fi(2)] < M; (z €U, i=1,...,n),and each f; satisfies condition (16) for all
i=1,...,n, then we have

1— |Z‘2Re(5) 2 (2)
Re(9) W (z)
1 — |Z|2Re(5) n foZ/(z)
< T@); [(|Oéi|bi +1) ( ZOE — 1‘ M; + M; + 1) + | bl}
= )+ lai|b] (2 €U),
=1

which, in the light of hypothesis (15), yields
1— ‘Z|2Re(5)
Re(9)

zh"(2)
h'(2)

Applying Lemma 2 for the function h(z), we prove that IS¢ (f1,..., fo)(z) € S. O

<1 (z€l).

Let a; = 1for alli =1,...,n in Theorem 2, we have

Corollary 3. Let M; > 1 foralli=1,...,n and § € C with
Z (2M; + 1) + b;). (18)

If foralli=1,....,n, fi € Gy,; 0 < b; <1 satisfy

2 fi(2)
[f:(2)]?

1‘ <1 (zel) (19)
and
|fz(2)| < M; (Z ceU,i = 1,...,7’1,),

then for any complex number v with Re(7y) > Re(d), the integral operator I (f1,...,
fn)(2) defined by (11) is analytic and univalent in U .

Let n=1, oy =a,by =b, M; = M and f; = f in Theorem 2, we have
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Corollary 4. Let a € C, M > 1 and § € C with
Re(8) > [(la| b+ 1) (2M + 1) + |a| b]. (20)
If f€Gy; 0<b<1 satisfies

2 f'(2)
[f(2)]?

—1‘<1 (zel) (21)

and
fI <M (zel),

then for any complex number v with Re(vy) > Re(0), the integral operator I (f)(z)
defined by (14) is analytic and univalent in U .

Next, we prove

Theorem 3. Let a; € C foralli=1,...,n andy € C with

2”22‘%“) +1)

and let ¢ € C be such that

3

i=1
If foralli=1,...,n, fi €Gp,; 0<b; <1 , and
2fi(2)
fi(2)

then the integral operator 17 (fi, ..., fn)(2) defined by (3) is analytic and univalent
mU .

1‘ <1 (z€l), (22)

Proof. From (8), we deduce that

2 9, 2" (2) 1— 2> || 20" (2)
C|Z| ’Y+(1_|Z| 7)’}/}7/(2) < |C|+ v h/(z)
12| &
< e+ |2 S @ a1 4 1)
i=1

2”22‘%“) +1)

< |c|+R%mZ<2|ai|bi+1>

i=1
<1

Finally, by applying Lemma 3, we conclude that I3 (f1,..., fn) € S. O
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Let a; = 1for alli =1,...,n in Theorem 3, we have

Corollary 5. Lety e C with
Re(y) > ) (2b; + 1)
i=1

and let ¢ € C be such that

n

1
le] <1— ) > (2b; +1).

i=1
If foralli=1,...,n, fi€Gy,;0<b; <1, and
2fi(z)
fi(z)

then the integral operator I (f1,..., fn)(2)defined by (11) is analytic and univalent
mU.

—1‘<1 (zel), (23)

Let n=1, oy =a,b; =band f; = f in Theorem 3, then we have
Corollary 6. Let « € C and v € C with
Re(v) = (2|afb+1)
and let c € C be such that

1
lef <1 = === (2]a|b+1).

Re(v)
If fe€Gy; 0<b<1 satisfies
Z}fgg) - 1‘ <1 (zel), (24)

then the integral operator IS (f)(z) defined by (14) is analytic and univalent in U.
Finally, we prove
Theorem 4. Let a; € C , M; > 1 foralli=1,....,n andy € C with
n
Re(v) > Z[(|Oéi| bi + 1) (2M; + 1) + |ai| by]. (25)
i=1

and let ¢ € C be such that

el <1-— Rel(v) g[(%‘ bi +1) (2M; + 1) + || by]. (26)
Ifforalli=1,....n, fi €Gp,;0<b; <1 satisfy
2 fi(2)
FOF 1’ <1 (zel), (27)

then the integral operator IS (f1, ..., fn)(2) defined by (3) is analytic and univalent
mU .
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Proof. From the proof of Theorem 2, we have

zh'"(z)
T (2)

Z (|| b +1) (2M; +1) + || bs] (2 € U),
1=1

T (1 [27)

<]

which, in the light of hypothesis (26), yields

2h"(2)
Th'(2)

Applying Lemma 3 for the function h(2), we prove that I$¢ (f1,..., fa)(z) € S. O

M (1- 2P <1 (zel).

Let a; = 1for all i = 1,...,n in Theorem 4, we have

Corollary 7. Let M; > 1 foralli=1,...,n and v € C with

Z ) (2M; + 1) + b (28)
and let ¢ € C be such that
le| <1 Z [(bi + 1) (2M; 4+ 1) + b;]. (29)
’L:1
If foralli=1,...,n, fi € Gp,; b; <1 satisfy
22 f](2) ’
L -1 <1 z€U), 30
TGP (et )

then the integral operator I (f1,..., fn)(2)defined by (11) is analytic and univalent
mU.

Letn=1, ay =a,b; =b, M; = M and f; = f in Theorem 4, then we have
Corollary 8. Leta € C , M >1 and~y € C with
Re(y) > [(|a]b+1) (2M + 1) + |« b]. (31)

and let c € C be such that

1
If feGy;0<b<1 satisfies
2 )
TP 1‘ <1 (zeu) (33)

then the integral operator I (f)(z) defined by (14) is analytic and univalent in U .
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