Univalence criteria for general integral operator

Basem Aref Frasin^{1,*}

Department of Mathematics, Al al-Bayt University, P. O. Box 130 095, Mafraq, Jordan

Received February 24, 2010; accepted June 14, 2010

Abstract. Let \mathcal{A} be the class of all analytic functions which are analytic in the open unit disc $\mathcal{U} = \{z : |z| < 1\}$ and

$$G_b = \left\{ f \in \mathcal{A} : \left| \frac{1 + zf''(z)/f'(z)}{zf'(z)/f(z)} - 1 \right| < b, \quad z \in \mathcal{U} \right\}.$$

In this paper, we derive sufficient conditions for the integral operator

$$I_{\gamma}^{\alpha_{i}}(f_{1},...,f_{n})(z) = \left\{ \gamma \int_{0}^{z} t^{\gamma-1} \left(f'_{1}(t) \right)^{\alpha_{1}} \left(\frac{f_{1}(t)}{t} \right)^{1-\alpha_{1}} ... \left(f'_{n}(t) \right)^{\alpha_{n}} \left(\frac{f_{n}(t)}{t} \right)^{1-\alpha_{n}} dt \right\}^{\frac{1}{\gamma}}$$

to be analytic and univalent in the open unit disc \mathcal{U} , when $f_i \in G_{b_i}$ for all i = 1, ..., n. **AMS subject classifications**: 30C45

Key words: analytic and univalent functions, starlike and convex functions, integral operator

1. Introduction

Let \mathcal{A} denote the class of functions of the form :

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

which are analytic in the open unit disc $\mathcal{U} = \{z : |z| < 1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U} .

In [16], Silverman investigated an expression involving the quotient of the analytic representation of convex and starlike functions. Precisely, for $0 < b \le 1$ he considered the class

$$G_b = \left\{ f \in \mathcal{A} : \left| \frac{1 + zf''(z)/f'(z)}{zf'(z)/f(z)} - 1 \right| < b, \quad z \in \mathcal{U} \right\}. \tag{2}$$

Let $\alpha_i \in \mathbb{C}$ for all $i = 1, ..., n, n \in \mathbb{N}, \gamma \in \mathbb{C}$ with $Re(\gamma) > 0$. We let $I_{\gamma}^{\alpha_i} : \mathcal{A}^n \to \mathcal{A}$ be the integral operator defined by

^{*}Corresponding author. Email address: bafrasin@yahoo.com (B. A. Frasin)

$$I_{\gamma}^{\alpha_{i}}(f_{1},...,f_{n})(z) = \left\{ \gamma \int_{0}^{z} t^{\gamma-1} \left(f_{1}'(t) \right)^{\alpha_{1}} \left(\frac{f_{1}(t)}{t} \right)^{1-\alpha_{1}} ... \left(f_{n}'(t) \right)^{\alpha_{n}} \left(\frac{f_{n}(t)}{t} \right)^{1-\alpha_{n}} dt \right\}^{\frac{1}{\gamma}} (3)$$

Here and throughout the sequel every many-valued function is taken with the principal branch. The integral operator $I_{\gamma}^{\alpha_i}$ $(f_1,...,f_n)(z)$ was introduced and studied by Frasin [7] and this integral operator is a generalization of the integral operator

$$H(z) = \left\{ \gamma \int_{0}^{z} t^{\gamma - 1} \left(\frac{f(t)}{t} \right)^{\beta} (f'(t))^{\delta} dt \right\}^{\frac{1}{\gamma}}$$

introduced by Ovesea in [10].

Many authors studied the problem of integral operators which preserve the class S (see, for example, [1, 2, 3, 4, 5, 6, 9, 14, 15]).

In the present paper, we derive a sufficient condition for the integral operator $I_{\gamma}^{\alpha_i}(f_1,...,f_n)(z)$ to be analytic and univalent in \mathcal{U} , when $f_i \in G_{b_i}$ for all i = 1,...,n.

In order to derive our main results, we have to recall here the following univalence criteria.

Lemma 1 (see [11]). Let $\gamma \in \mathbb{C}$ with $Re(\gamma) > 0$. If $f \in \mathcal{A}$ satisfies

$$\frac{1 - |z|^{2Re(\gamma)}}{Re(\gamma)} \left| \frac{zf''(z)}{f'(z)} \right| \le 1,$$

for all $z \in \mathcal{U}$, then the integral operator

$$F_{\gamma}(z) = \left\{ \gamma \int_{0}^{z} t^{\gamma - 1} f'(t) dt \right\}^{\frac{1}{\gamma}}$$

is in the class S.

Lemma 2 (see [12]). Let $\delta \in \mathbb{C}$ with $Re(\delta) > 0$. If $f \in \mathcal{A}$ satisfies

$$\frac{1 - |z|^{2Re(\delta)}}{Re(\delta)} \left| \frac{zf''(z)}{f'(z)} \right| \le 1,$$

for all $z \in \mathcal{U}$, then, for any complex number γ with $Re(\gamma) \geq Re(\delta)$, the integral operator

$$F_{\gamma}(z) = \left\{ \gamma \int_{0}^{z} t^{\gamma - 1} f'(t) dt \right\}^{\frac{1}{\gamma}}$$

is in the class S.

Lemma 3 (see [13]). Let $\gamma \in \mathbb{C}$ with $Re(\gamma) > 0$, $c \in \mathbb{C}$ with $|c| \leq 1$, $c \neq -1$. If $f \in \mathcal{A}$ satisfies

 $\left| c |z|^{2\gamma} + (1 - |z|^{2\gamma}) \frac{zf''(z)}{\gamma f'(z)} \right| \le 1,$

for all $z \in \mathcal{U}$, then the integral operator

$$F_{\gamma}(z) = \left\{ \gamma \int_{0}^{z} t^{\gamma - 1} f'(t) dt \right\}^{\frac{1}{\gamma}}$$

is in the class S.

Further, we need the following general Schwarz Lemma.

Lemma 4 (see [8]). Let the function f be regular in the disc $U_R = \{z : |z| < R\}$, with |f(z)| < M for fixed M. If f(z) has one zero with multiplicity order greater than m for z = 0, then

$$|f(z)| \le \frac{M}{R^m} |z|^m \qquad (z \in \mathcal{U}_R).$$

The equality can hold only if

$$f(z) = e^{i\theta} \left(M/R^m \right) z^m,$$

where θ is constant.

2. Univalence conditions for $I_{\gamma}^{\alpha_i}$ $(f_1,...,f_n)(z)$

We first prove

Theorem 1. Let $\gamma \in \mathbb{C}$ and $\alpha_i \in \mathbb{C}$ for all i = 1, ..., n with

$$Re(\gamma) \ge \sum_{i=1}^{n} (2 |\alpha_i| b_i + 1). \tag{4}$$

If for all $i = 1, ..., n, f_i \in \mathcal{G}_{b_i}$; $0 < b_i \le 1$ and

$$\left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| < 1 \qquad (z \in \mathcal{U}), \tag{5}$$

then the integral operator $I_{\gamma}^{\alpha_i}$ $(f_1,...,f_n)(z)$ defined by (3) is analytic and univalent in \mathcal{U} .

Proof. Define

$$h(z) = \int_{0}^{z} \prod_{i=1}^{n} \left[\left(f_i'(t) \right)^{\alpha_i} \left(\frac{f_i(t)}{t} \right)^{1-\alpha_i} \right] dt,$$

so that, obviously

$$h'(z) = \prod_{i=1}^{n} \left[\left(f_i'(z) \right)^{\alpha_i} \left(\frac{f_i(z)}{z} \right)^{1-\alpha_i} \right], \tag{6}$$

Differentiating both sides of (6) logarithmically, we obtain

$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} \left[\alpha_i \left(1 + \frac{zf_i''(z)}{f_i'(z)} - \frac{zf_i'(z)}{f_i(z)} \right) + \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right) \right]$$
(7)

Since $f_i \in \mathcal{G}_{b_i}$; $0 < b_i \le 1$ for all i = 1, ..., n, from (2) and (5), we obtain

$$\left| \frac{zh''(z)}{h'(z)} \right| \leq \sum_{i=1}^{n} \left[|\alpha_{i}| \left| 1 + \frac{zf_{i}''(z)}{f_{i}'(z)} - \frac{zf_{i}'(z)}{f_{i}(z)} \right| + \left| \frac{zf_{i}'(z)}{f_{i}(z)} - 1 \right| \right]$$

$$\leq \sum_{i=1}^{n} \left[|\alpha_{i}| b_{i} \left| \frac{zf_{i}'(z)}{f_{i}(z)} \right| + \left| \frac{zf_{i}'(z)}{f_{i}(z)} - 1 \right| \right]$$

$$\leq \sum_{i=1}^{n} \left[|\alpha_{i}| b_{i} \left| \left| \frac{zf_{i}'(z)}{f_{i}(z)} - 1 \right| + 1 \right] + \left| \frac{zf_{i}'(z)}{f_{i}(z)} - 1 \right| \right]$$

$$= \sum_{i=1}^{n} \left[|\alpha_{i}| b_{i} \left| \frac{zf_{i}'(z)}{f_{i}(z)} - 1 \right| + |\alpha_{i}| b_{i} + \left| \frac{zf_{i}'(z)}{f_{i}(z)} - 1 \right| \right]$$

$$= \sum_{i=1}^{n} \left[\left((|\alpha_{i}| b_{i} + 1) \left| \frac{zf_{i}'(z)}{f_{i}(z)} - 1 \right| \right) + |\alpha_{i}| b_{i} \right]$$

$$\leq \sum_{i=1}^{n} (2 |\alpha_{i}| b_{i} + 1), \tag{8}$$

which readily shows that

$$\frac{1 - |z|^{2\operatorname{Re}(\gamma)}}{\operatorname{Re}(\gamma)} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1 - |z|^{2\operatorname{Re}(\gamma)}}{\operatorname{Re}(\gamma)} \left(\sum_{i=1}^{n} (2 |\alpha_i| b_i + 1) \right) \\
\leq \frac{1}{\operatorname{Re}(\gamma)} \left(\sum_{i=1}^{n} (2 |\alpha_i| b_i + 1) \right) \\
\leq 1.$$

Applying Lemma 1 for the function h(z), we prove that $I_{\gamma}^{\alpha_i}$ $(f_1, ..., f_n)(z) \in \mathcal{S}$.

Let $\alpha_i = 1$ for all i = 1, ..., n in Theorem 1,we have

Corollary 1. Let $\gamma \in \mathbb{C}$ with

$$Re(\gamma) \ge \sum_{i=1}^{n} (2b_i + 1). \tag{9}$$

If for all $i = 1, ..., n, f_i \in \mathcal{G}_{b_i}$; $0 < b_i \le 1$ and

$$\left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| < 1 \qquad (z \in \mathcal{U}), \tag{10}$$

then the integral operator

$$I_{\gamma}(f_1, ..., f_n)(z) = \left\{ \gamma \int_0^z t^{\gamma - 1} \prod_{i=1}^n \left(f_i'(t) \right) dt \right\}^{\frac{1}{\gamma}}$$
(11)

is analytic and univalent in U.

Let n = 1, $\alpha_1 = \alpha$, $b_1 = b$ and $f_1 = f$ in Theorem 1, we have

Corollary 2. Let $\gamma \in \mathbb{C}$ and $\alpha \in \mathbb{C}$ with

$$Re(\gamma) \ge 2 |\alpha| b + 1.$$
 (12)

If $f \in \mathcal{G}_b$; $0 < b \le 1$ and

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 \qquad (z \in \mathcal{U}), \tag{13}$$

then the integral operator defined by

$$I_{\gamma}^{\alpha}(f)(z) = \left\{ \gamma \int_{0}^{z} t^{\gamma + \alpha - 2} \left(\frac{f'(t)}{f(t)} \right)^{\alpha} f(t) dt \right\}^{\frac{1}{\gamma}}$$
(14)

is analytic and univalent in \mathcal{U} .

Making use of Lemma 2 and Schwarz Lemma, we prove

Theorem 2. Let $\alpha_i \in \mathbb{C}$, $M_i \geq 1$ for all i = 1, ..., n and $\delta \in \mathbb{C}$ with

$$Re(\delta) \ge \sum_{i=1}^{n} [(|\alpha_i| b_i + 1) (2M_i + 1) + |\alpha_i| b_i].$$
 (15)

If for all i = 1, ..., n, $f_i \in \mathcal{G}_{b_i}$; $0 < b_i \le 1$ satisfy

$$\left| \frac{z^2 f_i'(z)}{[f_i(z)]^2} - 1 \right| < 1 \qquad (z \in \mathcal{U})$$
 (16)

and

$$|f_i(z)| \le M_i \ (z \in \mathcal{U}, i = 1, \dots, n),$$

then for any complex number γ with $Re(\gamma) \geq Re(\delta)$, the integral operator $I_{\gamma}^{\alpha_i}$ $(f_1, \ldots, f_n)(z)$ defined by (3) is analytic and univalent in \mathcal{U} .

Proof. From the proof of Theorem 1, we have

$$\left| \frac{zh''(z)}{h'(z)} \right| \le \sum_{i=1}^{n} \left[\left(\left(\left| \alpha_{i} \right| b_{i} + 1 \right) \left| \frac{zf_{i}'(z)}{f_{i}(z)} - 1 \right| \right) + \left| \alpha_{i} \right| b_{i} \right]. \tag{17}$$

Thus, we obtain

$$\begin{split} &\frac{1-|z|^{2\operatorname{Re}(\delta)}}{\operatorname{Re}(\delta)}\left|\frac{zh''(z)}{h'(z)}\right| \\ &\leq \frac{1-|z|^{2\operatorname{Re}(\delta)}}{\operatorname{Re}(\delta)}\sum_{i=1}^{n}\left[\left(\left(|\alpha_{i}|\,b_{i}+1\right)\left|\frac{zf'_{i}(z)}{f_{i}(z)}-1\right|\right)+\left|\alpha_{i}\right|\,b_{i}\right] \\ &\leq \frac{1-|z|^{2\operatorname{Re}(\delta)}}{\operatorname{Re}(\delta)}\sum_{i=1}^{n}\left[\left(\left(|\alpha_{i}|\,b_{i}+1\right)\left|\frac{z^{2}f'_{i}(z)}{[f_{i}(z)]^{2}}\right|\left|\frac{f_{i}(z)}{z}\right|+1\right)+\left|\alpha_{i}\right|\,b_{i}\right]. \end{split}$$

Since $|f_i(z)| \leq M_i$ $(z \in \mathcal{U}, i = 1, ..., n)$, and each f_i satisfies condition (16) for all i = 1, ..., n, then we have

$$\begin{split} &\frac{1-|z|^{2\operatorname{Re}(\delta)}}{\operatorname{Re}(\delta)} \left| \frac{zh''(z)}{h'(z)} \right| \\ &\leq \frac{1-|z|^{2\operatorname{Re}(\delta)}}{\operatorname{Re}(\delta)} \sum_{i=1}^{n} \left[(|\alpha_{i}| b_{i}+1) \left(\left| \frac{z^{2}f_{i}'(z)}{[f_{i}(z)]^{2}} - 1 \right| M_{i} + M_{i} + 1 \right) + |\alpha_{i}| b_{i} \right] \\ &\leq \frac{1}{\operatorname{Re}(\delta)} \sum_{i=1}^{n} \left[(|\alpha_{i}| b_{i}+1) \left(2M_{i}+1 \right) + |\alpha_{i}| b_{i} \right] \quad (z \in \mathcal{U}), \end{split}$$

which, in the light of hypothesis (15), yields

$$\frac{1 - |z|^{2\operatorname{Re}(\delta)}}{\operatorname{Re}(\delta)} \left| \frac{zh''(z)}{h'(z)} \right| \le 1 \quad (z \in \mathcal{U}).$$

Applying Lemma 2 for the function h(z), we prove that $I_{\gamma}^{\alpha_i}$ $(f_1,...,f_n)(z) \in \mathcal{S}$.

Let $\alpha_i = 1$ for all i = 1, ..., n in Theorem 2, we have

Corollary 3. Let $M_i \geq 1$ for all i = 1, ..., n and $\delta \in \mathbb{C}$ with

$$Re(\delta) \ge \sum_{i=1}^{n} [(b_i + 1)(2M_i + 1) + b_i].$$
 (18)

If for all i = 1, ..., n, $f_i \in \mathcal{G}_{b_i}$; $0 < b_i \le 1$ satisfy

$$\left| \frac{z^2 f_i'(z)}{[f_i(z)]^2} - 1 \right| < 1 \qquad (z \in \mathcal{U})$$
 (19)

and

$$|f_i(z)| \le M_i \ (z \in \mathcal{U}, i = 1, \dots, n),$$

then for any complex number γ with $Re(\gamma) \geq Re(\delta)$, the integral operator $I_{\gamma}(f_1, \ldots, f_n)(z)$ defined by (11) is analytic and univalent in \mathcal{U} .

Let $n=1, \ \alpha_1=\alpha, \ b_1=b, \ M_1=M \ {\rm and} \ f_1=f \ \ {\rm in} \ {\rm Theorem} \ 2,$ we have

Corollary 4. Let $\alpha \in \mathbb{C}$, $M \geq 1$ and $\delta \in \mathbb{C}$ with

$$Re(\delta) \ge [(|\alpha|b+1)(2M+1) + |\alpha|b].$$
 (20)

If $f \in \mathcal{G}_b$; $0 < b \le 1$ satisfies

$$\left| \frac{z^2 f'(z)}{[f(z)]^2} - 1 \right| < 1 \qquad (z \in \mathcal{U})$$
 (21)

and

$$|f(z)| \le M \qquad (z \in \mathcal{U}),$$

then for any complex number γ with $Re(\gamma) \geq Re(\delta)$, the integral operator $I_{\gamma}^{\alpha}(f)(z)$ defined by (14) is analytic and univalent in \mathcal{U} .

Next, we prove

Theorem 3. Let $\alpha_i \in \mathbb{C}$ for all i = 1, ..., n and $\gamma \in \mathbb{C}$ with

$$Re(\gamma) \ge \sum_{i=1}^{n} (2 |\alpha_i| b_i + 1)$$

and let $c \in \mathbb{C}$ be such that

$$|c| \le 1 - \frac{1}{Re(\gamma)} \sum_{i=1}^{n} (2 |\alpha_i| b_i + 1).$$

If for all i = 1, ..., n, $f_i \in \mathcal{G}_{b_i}$; $0 < b_i \le 1$, and

$$\left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| < 1 \qquad (z \in \mathcal{U}), \tag{22}$$

then the integral operator $I_{\gamma}^{\alpha_i}$ $(f_1,...,f_n)(z)$ defined by (3) is analytic and univalent in $\mathcal U$.

Proof. From (8), we deduce that

$$\left| c |z|^{2\gamma} + (1 - |z|^{2\gamma}) \frac{zh''(z)}{\gamma h'(z)} \right| \leq |c| + \left| \frac{1 - |z|^{2\gamma}}{\gamma} \right| \left| \frac{zh''(z)}{h'(z)} \right|
\leq |c| + \left| \frac{1 - |z|^{2\gamma}}{\gamma} \right| \sum_{i=1}^{n} (2 |\alpha_i| b_i + 1)
\leq |c| + \frac{1}{|\gamma|} \sum_{i=1}^{n} (2 |\alpha_i| b_i + 1)
\leq |c| + \frac{1}{\operatorname{Re}(\gamma)} \sum_{i=1}^{n} (2 |\alpha_i| b_i + 1)
\leq 1.$$

Finally, by applying Lemma 3, we conclude that $I_{\gamma}^{\alpha_i}$ $(f_1,...,f_n) \in \mathcal{S}$.

Let $\alpha_i = 1$ for all i = 1, ..., n in Theorem 3, we have

Corollary 5. Let $\gamma \in \mathbb{C}$ with

$$Re(\gamma) \ge \sum_{i=1}^{n} (2b_i + 1)$$

and let $c \in \mathbb{C}$ be such that

$$|c| \le 1 - \frac{1}{Re(\gamma)} \sum_{i=1}^{n} (2b_i + 1).$$

If for all i = 1, ..., n, $f_i \in \mathcal{G}_{b_i}$; $0 < b_i \le 1$, and

$$\left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| < 1 \qquad (z \in \mathcal{U}), \tag{23}$$

then the integral operator $I_{\gamma}(f_1,...,f_n)(z)$ defined by (11) is analytic and univalent in \mathcal{U} .

Let n = 1, $\alpha_1 = \alpha$, $b_1 = b$ and $f_1 = f$ in Theorem 3, then we have

Corollary 6. Let $\alpha \in \mathbb{C}$ and $\gamma \in \mathbb{C}$ with

$$Re(\gamma) \ge (2 |\alpha| b + 1)$$

and let $c \in \mathbb{C}$ be such that

$$|c| \le 1 - \frac{1}{Re(\gamma)} (2 |\alpha| b + 1).$$

If $f \in \mathcal{G}_b$; $0 < b \le 1$ satisfies

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 \qquad (z \in \mathcal{U}), \tag{24}$$

then the integral operator $I_{\gamma}^{\alpha}(f)(z)$ defined by (14) is analytic and univalent in \mathcal{U} .

Finally, we prove

Theorem 4. Let $\alpha_i \in \mathbb{C}$, $M_i \geq 1$ for all i = 1, ..., n and $\gamma \in \mathbb{C}$ with

$$Re(\gamma) \ge \sum_{i=1}^{n} [(|\alpha_i| b_i + 1) (2M_i + 1) + |\alpha_i| b_i].$$
 (25)

and let $c \in \mathbb{C}$ be such that

$$|c| \le 1 - \frac{1}{Re(\gamma)} \sum_{i=1}^{n} [(|\alpha_i| b_i + 1) (2M_i + 1) + |\alpha_i| b_i].$$
 (26)

If for all $i = 1, ..., n, f_i \in \mathcal{G}_{b_i}$; $0 < b_i \le 1$ satisfy

$$\left| \frac{z^2 f_i'(z)}{[f_i(z)]^2} - 1 \right| < 1 \qquad (z \in \mathcal{U}),$$
 (27)

then the integral operator $I_{\gamma}^{\alpha_i}$ $(f_1,...,f_n)(z)$ defined by (3) is analytic and univalent in \mathcal{U} .

Proof. From the proof of Theorem 2, we have

$$\left| c |z|^{2\gamma} + (1 - |z|^{2\gamma}) \frac{zh''(z)}{\gamma h'(z)} \right|
\leq |c| + \frac{1}{\text{Re}(\gamma)} \sum_{i=1}^{n} [(|\alpha_i| b_i + 1) (2M_i + 1) + |\alpha_i| b_i] \quad (z \in \mathcal{U}),$$

which, in the light of hypothesis (26), yields

$$\left| c |z|^{2\gamma} + (1 - |z|^{2\gamma}) \frac{zh''(z)}{\gamma h'(z)} \right| \le 1 \quad (z \in \mathcal{U}).$$

Applying Lemma 3 for the function h(z), we prove that $I_{\gamma}^{\alpha_i}$ $(f_1,...,f_n)(z) \in \mathcal{S}$.

Let $\alpha_i = 1$ for all $i = 1, \dots, n$ in Theorem 4, we have

Corollary 7. Let $M_i \geq 1$ for all i = 1, ..., n and $\gamma \in \mathbb{C}$ with

$$Re(\gamma) \ge \sum_{i=1}^{n} [(b_i + 1)(2M_i + 1) + b_i].$$
 (28)

and let $c \in \mathbb{C}$ be such that

$$|c| \le 1 - \frac{1}{Re(\gamma)} \sum_{i=1}^{n} [(b_i + 1)(2M_i + 1) + b_i].$$
 (29)

If for all $i = 1, ..., n, f_i \in \mathcal{G}_{b_i}$; $0 < b_i \le 1$ satisfy

$$\left| \frac{z^2 f_i'(z)}{[f_i(z)]^2} - 1 \right| < 1 \qquad (z \in \mathcal{U}), \tag{30}$$

then the integral operator $I_{\gamma}(f_1,...,f_n)(z)$ defined by (11) is analytic and univalent in \mathcal{U} .

Let n = 1, $\alpha_1 = \alpha$, $b_1 = b$, $M_1 = M$ and $f_1 = f$ in Theorem 4, then we have

Corollary 8. Let $\alpha \in \mathbb{C}$, $M \geq 1$ and $\gamma \in \mathbb{C}$ with

$$Re(\gamma) \ge [(|\alpha|b+1)(2M+1) + |\alpha|b].$$
 (31)

and let $c \in \mathbb{C}$ be such that

$$|c| \le 1 - \frac{1}{Re(\gamma)} [(|\alpha| b + 1) (2M + 1) + |\alpha| b].$$
 (32)

If $f \in \mathcal{G}_b$; $0 < b \le 1$ satisfies

$$\left| \frac{z^2 f'(z)}{[f(z)]^2} - 1 \right| < 1 \qquad (z \in \mathcal{U})$$
 (33)

then the integral operator I^{α}_{γ} (f)(z) defined by (14) is analytic and univalent in ${\cal U}$.

Acknowledgement

The author would like to thank the referees for their helpful suggestions.

References

- [1] A. BARICZ, B. A. FRASIN, Univalence of integral operators involving Bessel functions, Applied Mathematics Letters 23(2010), 371–376.
- [2] D. Blezu, On univalence criteria, General Math. 14(2006), 77–84.
- [3] D. Blezu, R. N. Pascu, Univalence criteria for integral operators, Glas. Mat. 36(2001), 241-245.
- [4] D. Breaz, N. Breaz, Univalence conditions for certain integral operators, Stud. Univ. Babes–Bolyai Math. **XLVII**(2002), 9–15.
- [5] D. Breaz, V. Pescar, Univalence conditions for some general integral operators, Banach J. Math. Anal. 2(2008), 53–58.
- [6] B. A. Frasin, Univalence of two general integral operator, Filomat 23(2009), 223–229.
- [7] B. A. Frasin, Order of convexity and univalency of general integral operator, J. Franklin Inst., in press.
- [8] Z. NEHARI, Conformal Mapping, McGraw-Hill Book Comp., New York, 1952. (Dover. Publ. Inc., Dover, 1975.)
- [9] G.I. Oros, G. Oros, D. Breaz, Sufficient conditions for univalence of an integral operator, J. Ineq. Appl. (2008), Article ID 127645.
- [10] H. OVESEA, Integral operators of Bazilvic type, Bull. Math. Bucureşti 37(1993), 115–125.
- [11] N. Pascu, On a univalence criterion, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1985. preprint, Vol. 85, Universitatea "Babes-Bolyai", Cluj-Napoca, 1985, 153–154.
- [12] N. PASCU, An improvement of Backer's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Brasov, 1987.
- [13] V. Pescar, A new generalization of Ahlfor's and Becker's criterion of univalence, Bull. Malaysian Math. Soc. (Second Series) 19(1996), 53–54.
- [14] V. Pescar, Univalence of certain integral operators, Acta Univ. Apul. 12(2006), 43–48.
- [15] V. Pescar, On some integral classes of integral operators, General Math. 16(2008), 11–17.
- [16] H. Silverman, Convex and starlike criteria, Int. J. Math. Sci. 22(1999), 75–79.