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Abstract. We prove the stability of the cubic functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x)

in the setting of various spaces.
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1. Introduction

The study of stability problems for functional equations is related to a question
of Ulam [34] concerning the stability of group homomorphisms and affirmatively
answered for Banach spaces by Hyers [11]. Subsequently, the result of Hyers was
generalized by Aoki [1] for additive mappings and by Th. M. Rassias [25] for linear
mappings by considering an unbounded Cauchy difference. The paper [25] of Th. M.
Rassias has provided a lot of influence in the development of what we now call Hyers–
Ulam–Rassias stability of functional equations. We refer the interested readers for
more information on such problems to the papers [3, 6, 12, 14, 23, 24, 26, 27, 33].

The functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x) (1)

is said to be the cubic functional equation. In particular, every solution of a cubic
functional equation is said to be a cubic mapping. The stability problem for a cubic
type functional equation was proved by K. W. Jun and H. M. Kim [13] for mappings
f : X −→ Y , where X is a real normed space and Y is a Banach space.
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Recently some authors, see [4], [15]-[19], [21, 22, 30] and [35], investigated the sta-
bility of some functional equations in the settings of fuzzy, probabilistic and random
normed spaces.

In this paper, we investigate the stability of the cubic functional equation (1) at a
non-Archimedean random normed space and intuitionistic Random normed Spaces.

2. Preliminaries

In this section we recall some definitions and results which will be used later on in
the paper.

A triangular norm (shorter t-norm) is a binary operation on the unit interval
[0, 1], i.e., a function T : [0, 1] × [0, 1] → [0, 1] such that for all a, b, c ∈ [0, 1] the
following four axioms are satisfied:

(i) T (a, b) = T (b, a) (commutativity);
(ii) T (a, (T (b, c))) = T (T (a, b), c) (associativity);
(iii) T (a, 1) = a (boundary condition);
(iv) T (a, b) ≤ T (a, c) whenever b ≤ c (monotonicity).
Basic examples are the ÃLukasiewicz t-norm TL, TL(a, b) = max(a+b−1, 0) ∀a, b ∈

[0, 1] and the t-norms TP , TM , TD, where TP (a, b) := ab, TM (a, b) := min{a, b},

TD(a, b) :=
{

min(a, b), if max(a,b)=1;
0, otherwise.

If T is a t-norm, then x
(n)
T is defined for every x ∈ [0, 1] and n ∈ N ∪ {0} by 1, if

n = 0 and T (x(n−1)
T , x), if n ≥ 1. A t-norm T is said to be of Hadžić-type (denoted

by T ∈ H) if the family (x(n)
T )n∈N is equicontinuous at x = 1 (cf. [8]).

Other important triangular norms are (see [9]):
-the Sugeno-Weber family {TSW

λ }λ∈[−1,∞], defined by TSW
−1 = TD, TSW

∞ = TP

and

TSW
λ (x, y) = max

(
0,

x + y − 1 + λxy

1 + λ

)

if λ ∈ (−1,∞).
-the Domby family {TD

λ }λ∈[0,∞], defined by TD, if λ = 0, TM , if λ = ∞ and

TD
λ (x, y) =

1
1 + (( 1−x

x )λ + ( 1−y
y )λ)1/λ

if λ ∈ (0,∞).
-the Aczel-Alsina family {TAA

λ }λ∈[0,∞], defined by TD, if λ = 0, TM , if λ = ∞
and

TAA
λ (x, y) = e−(|log x|λ+|log y|λ)1/λ

if λ ∈ (0,∞).
A t-norm T can be extended (by associativity) in a unique way to an n-array

operation taking for (x1, ..., xn) ∈ [0, 1]n the value T (x1, ..., xn) defined by

T0
i=1xi = 1,Tn

i=1xi = T (Tn−1
i=1 xi, xn) = T (x1, ..., xn).
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T can also be extended to a countable operation taking for any sequence (xn)n∈N

in [0, 1] the value
T∞i=1xi = lim

n→∞
Tn

i=1xi. (2)

The limit on the right-hand side of (2) exists since the sequence (Tn
i=1xi)n∈N is

nonincreasing and bounded from below.

Proposition 1 (see [9]).

(i) For T ≥ TL the following implication holds:

lim
n→∞

T∞i=1xn+i = 1 ⇐⇒
∞∑

n=1

(1− xn) < ∞.

(ii) If T is of Hadžić-type, then

lim
n→∞

T∞i=1xn+i = 1

for every sequence (xn)n∈N in [0, 1] such that limn→∞ xn = 1.

(iii) If T ∈ {TAA
λ }λ∈(0,∞) ∪ {TD

λ }λ∈(0,∞), then

lim
n→∞

T∞i=1xn+i = 1 ⇐⇒
∞∑

n=1

(1− xn)α < ∞.

(iv) If T ∈ {TSW
λ }λ∈[−1,∞), then

lim
n→∞

T∞i=1xn+i = 1 ⇐⇒
∞∑

n=1

(1− xn) < ∞.

In the sequel we adopt the usual terminology, notations and conventions of the
theory of random normed spaces, as in [5, 15, 16, 31, 32]. Throughout this paper,
∆+ is the space of all measure (probability) distribution functions, that is, the space
of all mappings F : R ∪ {−∞,+∞} −→[0, 1], such that F is left-continuous, non-
decreasing on R, F (0) = 0 and F (+∞) = 1. D+ is a subset of ∆+ consisting of
all functions F ∈ ∆+ for which l−F (+∞) = 1, where l−f(x) denotes the left limit
of the function f at the point x, that is, l−f(x) = limt→x− f(t). The space ∆+ is
partially ordered by the usual pointwise ordering of functions, i.e., F ≤ G if and
only if F (t) ≤ G(t) for all t in R. The maximal element for ∆+ in this order is the
distribution function ε0 given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 1 (see [32]). A random normed space (briefly, RN-space) is a triple
(X,µ, T ), where X is a vector space, T is a continuous t-norm, and µ is a mapping
from X into D+ such that the following conditions hold:
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(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) µαx(t) = µx

(
t
|α|

)
for all x ∈ X, α 6= 0;

(RN3) µx+y(t + s) ≥ T (µx(t), µy(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 2. Let (X, µ, T ) be an RN-space.
(1) A sequence {xn} in X is said to be convergent to x in X if for every ε > 0

and λ > 0 there exists a positive integer N such that µxn−x(ε) > 1 − λ whenever
n ≥ N .

(2) A sequence {xn} in X is called Cauchy if for every ε > 0 and λ > 0 there
exists a positive integer N such that µxn−xm

(ε) > 1− λ whenever n ≥ m ≥ N .
(3) An RN-space (X, µ, T ) is said to be complete if every Cauchy sequence in X

is convergent to a point in X.

Theorem 1 (see [31]). If (X, µ, T ) is an RN-space and {xn} is a sequence such that
xn → x, then limn→∞ µxn

(t) = µx(t) almost everywhere.

3. Non-Archimedean random normed spaces

By a non-Archimedean field we mean a field K equipped with a function (valuation)
| · | from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r| |s|, and
|r + s| ≤ max{|r|, |s|} for all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all
n ∈ N. By the trivial valuation we mean the mapping | · | taking everything but 0
into 1 and |0| = 0. Let X be a vector space over a field K with a non-Archimedean
non-trivial valuation | · |, i.e., that there is an a0 ∈ K such that |a0| is not in {0, 1}.

The most important examples of non-Archimedean spaces are p-adic numbers.
In 1897, Hensel [10] discovered the p-adic numbers as a number theoretical analogue
of power series in complex analysis. Fix a prime number p. For any nonzero rational
number x, there exists a unique integer nx ∈ Z such that x = a

b pnx , where a and b
are integers not divisible by p. Then |x|p := p−nx defines a non-Archimedean norm
on Q. The completion of Q with respect to the metric d(x, y) = |x− y|p is denoted
by Qp, which is called the p-adic number field.

A function ‖ · ‖ : X → [0,∞) is called a non-Archimedean norm if it satisfies the
following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) for any r ∈ K, x ∈ X, ‖rx‖ = |r|‖x‖;
(iii) the strong triangle inequality (ultrametric); namely,

‖x + y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ ≤ max{‖xj+1 − xj‖ : m ≤ j ≤ n− 1} (n > m),

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space we
mean one in which every Cauchy sequence is convergent.
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Definition 3. A non-Archimedean random normed space (briefly, non-Archimedean
RN-space) is a triple (X, µ, T ), where X is a linear space over a non-Archimedean
field K, T is a continuous t–norm, and µ is a mapping from X into D+ such that
the following conditions hold:

(NA-RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;

(NA-RN2) µαx(t) = µx

(
t
|α|

)
for all x ∈ X, t > 0, α 6= 0;

(NA-RN3) µx+y(max{t, s}) ≥ T (µx(t), µy(s)) for all x, y, z ∈ X and t, s ≥ 0.
It is easy to see that, if (NA-RN3) holds, then so is
(RN3) µx+y(t + s) ≥ T (µx(t), µy(s)).

As a classical example, if (X, ‖.‖) is a non-Archimedean normed linear space,
then the triple (X,µ, TM ), where

µx(t) =
{

0 t ≤ ‖x‖
1 t > ‖x‖

is a non-Archimedean RN-space.

Example 1. Let (X, ‖ · ‖) be a non-Archimedean normed linear space. Define

µx(t) =
t

t + ‖x‖ , ∀x ∈ X, t > 0.

Then (X, µ, TM ) is a non-Archimedean RN-space.

Definition 4. Let (X, µ, T ) be a non-Archimedean RN-space. Let {xn} be a sequence
in X. Then {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞

µxn−x(t) = 1

for all t > 0. In that case, x is called the limit of the sequence {xn}.
A sequence {xn} in X is called Cauchy if for each ε > 0 and each t > 0 there

exists n0 such that for all n ≥ n0 and all p > 0 we have µxn+p−xn(t) > 1− ε.

Remark 1 (see [20]). Let (X, µ, TM ) be a non-Archimedean RN-space, then

µxn+p−xn(t) ≥ min{µxn+j+1−xn+j (t) : j = 0, 1, 2, ...p− 1}.

So, the sequence {xn} is Cauchy if for each ε > 0 and t > 0 there exists n0 such
that for all n ≥ n0 we have

µxn+1−xn(t) > 1− ε.

If each Cauchy sequence is convergent, then the random normed space is said
to be complete and the non-Archimedean RN-space is called a non-Archimedean
random Banach space.
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4. Random Hyers–Ulam–Rassias stability for cubic functional
equation

Let K be a non-Archimedean field, X a vector space over K and (Y, µ, T ) a non-
Archimedean random Banach space over K.

We investigate the stability of the cubic functional equation (1) where f is a
mapping from X to Y and f(0) = 0. It is known that a mapping f satisfies the
above functional equation if and only if it is cubic (see [13]).

Next we define a random approximately cubic mapping. Let Ψ be a distribution
function on X ×X × [0,∞) such that Ψ(x, y, ·) is nondecreasing and

Ψ(cx, cx, t) ≥ Ψ
(

x, x,
t

|c|
)

(x ∈ X, c 6= 0).

Definition 5. A mapping f : X → Y is said to be Ψ-approximately cubic if

µf(2x+y)+f(2x−y)−2f(x+y)−2f(x−y)−12f(x)(t) ≥ Ψ(x, y, t) (x, y ∈ X, t > 0). (3)

In this section, we assume that 2 6= 0 in K (i.e. characteristic of K is not 2). Our
main result in this section is the following:

Theorem 2. Let K be a non-Archimedean field, X a vector space over K and
(Y, µ, T ) a non-Archimedean random Banach space over K. Let f : X → Y be a
Ψ-approximately cubic function. If |2| 6= 1 and for some α ∈ R, α > 0, and some
integer k, k ≥ 2 with |2k| < α,

Ψ(2−kx, 2−ky, t) ≥ Ψ(x, y, αt) (x ∈ X, t > 0) (4)

and

lim
n→∞

T∞j=nM

(
x,

αjt

|2|kj

)
= 1 (x ∈ X, t > 0) (5)

then there exists a unique cubic mapping C : X → Y such that

µf(x)−C(x)(t) ≥ T∞i=1M

(
x,

αi+1t

|2|ki

)
, (6)

for all x ∈ X and t > 0, where

M(x, t) := T (Ψ(x, 0, t), Ψ(2x, 0, t), . . . , Ψ(2k−1x, 0, t)) (x ∈ X, t > 0).

Proof. First, we show by induction on j that for each x ∈ X, t > 0 and j ≥ 1,

µf(2jx)−8jf(x)(t) ≥ Mj(x, t) := T (Ψ(x, 0, t), . . . , Ψ(2j−1x, 0, t)). (7)

Put y = 0 in (3) to obtain

µ2f(2x)−16f(x)(t) ≥ Ψ(x, 0, t) (x ∈ X, t > 0),

µf(2x)−8f(x)(t) ≥ Ψ(x, 0, 2t) ≥ Ψ(x, 0, t) (x ∈ X, t > 0).
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This proves (7) for j = 1. Let (7) hold for some j > 1. Replacing y by 0 and x by
2jx in (3), we get

µf(2j+1x)−8f(2jx)(t) ≥ Ψ(2jx, 0, t) (x ∈ X, t > 0).

Since |8| ≤ 1, then

µf(2j+1x)−8j+1f(x)(t) ≥ T
(
µf(2j+1x)−8f(2jx)(t), µ8f(2jx)−8j+1f(x)(t)

)

= T
(
µf(2j+1x)−8f(2jx)(t), µf(2jx)−8jf(x)

(
t

|8|
) )

≥ T
(
µf(2j+1x)−8f(2jx)(t), µf(2jx)−8jf(x) (t)

)

≥ T (Ψ(2jx, 0, t),Mj(x, t))
= Mj+1(x, t)

for each x ∈ X. Thus (7) holds for all j ≥ 1. In particular

µf(2kx)−8kf(x)(t) ≥ M(x, t) (x ∈ X, t > 0). (8)

Replacing x by 2−(kn+k)x in (8) and using inequality (4) we obtain

µf( x

2kn )−8kf( x

2kn+k )(t) ≥ M
( x

2kn+k
, t

)
(9)

≥ M(x, αn+1t) (x ∈ X, t > 0, n = 0, 1, 2, . . . ).

Then,

µ
(23k)nf

(
x

(2k)n

)
−(23k)n+1f

(
x

(2k)n+1

)(t) ≥ M

(
x,

αn+1

|(23k)n| t
)

(10)

≥ M

(
x,

αn+1

|(2k)n| t
)

for x ∈ X, t > 0, n = 0, 1, 2, . . . . Hence,

µ
(23k)nf

(
x

(2k)n

)
−(23k)n+pf

(
x

(2k)n+p

)(t) ≥ Tn+p
j=n

(
µ

(23k)jf
(

x

(2k)j

)
−(23k)j+pf

(
x

(2k)j+p

)(t)
)

≥ Tn+p
j=nM

(
x,

αj+1

|(2k)j | t
)

for x ∈ X, t > 0, n = 0, 1, 2, . . . . Since,

lim
n→∞

T∞j=nM

(
x,

αj+1

|(2k)j | t
)

= 1 (x ∈ X, t > 0),

{
(23k)nf

(
x

(2k)n

)}
n∈N

is a Cauchy sequence in the non-Archimedean random Ba-

nach space (Y, µ, T ). Hence, we can define a mapping C : X → Y such that

lim
n→∞

µ
(23k)nf

(
x

(2k)n

)
−C(x)

(t) = 1 (x ∈ X, t > 0). (11)
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Next, for each n ≥ 1, x ∈ X and t > 0,

µ
f(x)−(23k)nf

(
x

(2k)n

)(t) = µ∑n−1
i=0 (23k)if

(
x

(2k)i

)
−(23k)i+1f

(
x

(2k)i+1

)(t)

≥ Tn−1
i=0

(
µ

(23k)if
(

x

(2k)i

)
−(23k)i+1f

(
x

(2k)i+1

)(t)
)

≥ Tn−1
i=0 M

(
x,

αi+1t

|23k|i
)

≥ Tn−1
i=0 M

(
x,

αi+1t

|2k|i
)

.

Therefore,

µf(x)−C(x)(t) ≥ T

(
µ

f(x)−(23k)nf
(

x

(2k)n

)(t), µ
(23k)nf

(
x

(2k)n

)
−C(x)

(t)
)

≥ T

(
Tn−1

i=0 M

(
x,

αi+1t

|2k|i
)

, µ
(23k)nf

(
x

(2k)n

)
−C(x)

(t)
)

.

By letting n →∞ we obtain

µf(x)−C(x)(t) ≥ T∞i=1M

(
x,

αi+1t

|2k|i
)

.

This proves (6).
As T is continuous, from a well known result in the probabilistic metric space

(see e.g., [31], Chapter 12) it follows that

lim
n→∞

µ(23k)nf(2−kn(2x+y))+(23k)nf(2−kn(2x−y))

−2(23k)nf(2−kn(x+y))−2(23k)nf(2−kn(x−y))−12(23k)nf(3−knx)(t)
= µC(2x+y)+C(2x−y)−2C(x+y)−2C(x−y)−12C(x)(t)

for almost all t > 0. On the other hand, replace x, y by 2−knx, 2−kny in (3) and use
(NA-RN2) and (4) to get

µ(23k)nf(2−kn(2x+y))+(23k)nf(2−kn(2x−y))

−2(23k)nf(2−kn(x+y))−2(23k)nf(2−kn(x−y))−12(23k)nf(2−knx)(t)

≥ Ψ
(

2−knx, 2−kny,
t

|2k|n
)

≥ Ψ
(

x, y,
αnt

|2k|n
)

for all x, y ∈ X and all t > 0. Since limn→∞Ψ
(
x, y, αnt

|2k|n
)

= 1, we infer that C is a
cubic mapping.

If C ′ : X → Y is another cubic mapping such that µC ′(x)−f(x)(t) ≥ M(x, t) for
all x ∈ X and t > 0, then for each n ∈ N , x ∈ X and t > 0,

µC(x)−C ′(x)(t) ≥ T

(
µ

C(x)−(23k)nf
(

x

(2k)n

)(t), µ
(23k)nf

(
x

(2k)n

)
−C ′(x)

(t)
)

.
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Thanks to (11), we conclude that C = C ′.

Corollary 1. Let K be a non-Archimedean field, X a vector space over K and
(Y, µ, T ) a non-Archimedean random Banach space over K under a t-norm T ∈ H.
Let f : X → Y be a Ψ-approximately cubic function. If for some α ∈ R, α > 0,
|2| 6= 1 and some integer k, k ≥ 2 with |2k| < α,

Ψ(2−kx, 2−ky, t) ≥ Ψ(x, y, αt) (x ∈ X, t > 0)

then there exists a unique cubic mapping C : X → Y such that

µf(x)−C(x)(t) ≥ T∞i=1M

(
x,

αi+1t

|2|ki

)
,

for all x ∈ X and t > 0, where

M(x, t) := T (Ψ(x, 0, t), Ψ(2x, 0, t), . . . , Ψ(2k−1x, 0, t)) (x ∈ X, t > 0).

Proof. Since

lim
n→∞

M

(
x,

αjt

|2|kj

)
= 1 (x ∈ X, t > 0)

and T is of Hadžić type, from Proposition 1 it follows that

lim
n→∞

T∞j=nM

(
x,

αjt

|2|kj

)
= 1 (x ∈ X, t > 0).

Now we can apply Theorem 2.

5. Intuitionistic random normed spaces

Definition 6. A non-measure distribution function is a function ν : R → [0, 1]
which is right continuous on R, non-increasing and inft∈R ν(t) = 0, supt∈R ν(t) = 1.

We will denote by B the family of all non-measure distribution functions and by
G a special element of B defined by

G(t) =

{
1 if t ≤ 0,

0 if t > 0.

If X is a nonempty set, then ν : X −→ B is called a probabilistic non-measure
on X and ν(x) is denoted by νx.

Lemma 1 (see [2, 7]). Consider the set L∗ and operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},
(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1, x2 ≥ y2, ∀(x1, x2), (y1, y2) ∈ L∗.

Then (L∗,≤L∗) is a complete lattice.
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We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0). Classically, a triangular
norm ∗ = T on [0, 1] is defined as an increasing, commutative, associative mapping
T : [0, 1]2 −→ [0, 1] satisfying T (1, x) = 1 ∗ x = x for all x ∈ [0, 1]. A triangular
conorm S = ¦ is defined as an increasing, commutative, associative mapping S :
[0, 1]2 −→ [0, 1] satisfying S(0, x) = 0 ¦ x = x for all x ∈ [0, 1].

Using the lattice (L∗,≤L∗), these definitions can be straightforwardly extended.

Definition 7 (see [7]). A triangular norm (t–norm) on L∗ is a mapping T :
(L∗)2 −→ L∗ satisfying the following conditions:

(a) (∀x ∈ L∗)(T (x, 1L∗) = x) (boundary condition);
(b) (∀(x, y) ∈ (L∗)2)(T (x, y) = T (y, x)) (commutativity);
(c) (∀(x, y, z) ∈ (L∗)3)(T (x, T (y, z)) = T (T (x, y), z)) (associativity);
(d) (∀(x, x′, y, y′) ∈ (L∗)4)(x ≤L∗ x′ and y ≤L∗ y′ =⇒ T (x, y) ≤L∗ T (x′, y′))

(monotonicity).

Let {xn} be a sequence in L∗ converging to x ∈ L∗ (equipped order topology).
The t-norm T is said to be a continuous t–norm if

lim
n→∞

T (xn, y) = T (x, y),

for each y ∈ L∗.

Definition 8 (see [7]). A continuous t–norm T on L∗ is said to be continuous t–
representable if there exist a continuous t–norm ∗ and a continuous t–conorm ¦ on
[0, 1] such that for all x = (x1, x2), y = (y1, y2) ∈ L∗,

T (x, y) = (x1 ∗ y1, x2 ¦ y2).

For example,
T (a, b) = (a1b1, min{a2 + b2, 1})

and
M(a, b) = (min{a1, b1}, max{a2, b2})

for all a = (a1, a2), b = (b1, b2) ∈ L∗ are continuous t–representable.

Now, we define a sequence T n recursively by T 1 = T and

T n(x(1), · · · , x(n+1)) = T (T n−1(x(1), · · · , x(n)), x(n+1)), ∀n ≥ 2, x(i) ∈ L∗.

Definition 9 ([28, 29]). A negator on L∗ is any decreasing mapping N : L∗ −→ L∗

satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If N (N (x)) = x for all x ∈ L∗,
then N is called an involutive negator. A negator on [0, 1] is a decreasing mapping
N : [0, 1] −→ [0, 1] satisfying N(0) = 1 and N(1) = 0. Ns denotes the standard
negator on [0, 1] defined by

Ns(x) = 1− x, ∀x ∈ [0, 1].
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Definition 10. Let µ and ν be a measure and a non-measure distribution function
from X × (0, +∞) to [0, 1] such that µx(t) + νx(t) ≤ 1 for all x ∈ X and t > 0
where X is a real vector space. The triple (X,Pµ,ν , T ) is said to be an intuitionistic
random normed space (briefly IRN-space) if X is a real vector space, T a continuous
t–representable and Pµ,ν a mapping X × (0,+∞) → L∗ satisfying the following
conditions: for all x, y ∈ X and t, s > 0,

(a) Pµ,ν(x, 0) = 0L∗ ;
(b) Pµ,ν(x, t) = 1L∗ if and only if x = 0;

(c) Pµ,ν(αx, t) = Pµ,ν

(
x, t

|α|
)

for all α 6= 0;
(d) Pµ,ν(x + y, t + s) ≥L∗ T (Pµ,ν(x, t),Pµ,ν(y, s)).

In this case, Pµ,ν is called an intuitionistic random norm. Here,

Pµ,ν(x, t) = (µx(t), νx(t)).

Example 2. Let (X, ‖·‖) be a normed space. Let T (a, b) = (a1b1, min(a2+b2, 1)) for
all a = (a1, a2), b = (b1, b2) ∈ L∗ and µ, ν be measure and non-measure distribution
functions defined by

Pµ,ν(x, t) = (µx(t), νx(t)) =
( t

t + ‖x‖ ,
‖x‖

t + ‖x‖
)
, ∀t ∈ R+.

Then (X,Pµ,ν , T ) is an IRN-space.

Definition 11. (1) A sequence {xn} in an IRN-space (X,Pµ,ν , T ) is called a
Cauchy sequence if for any ε > 0 and t > 0 there exists n0 ∈ N such that

Pµ,ν(xn − xm, t) >L∗ (Ns(ε), ε), ∀n,m ≥ n0,

where Ns is the standard negator.
(2) The sequence {xn} is said to be convergent to a point x ∈ X (denoted by

xn
Pµ,ν−→ x) if Pµ,ν(xn − x, t) −→ 1L∗ as n −→∞ for every t > 0.
(3) An IRN-space (X,Pµ,ν , T ) is said to be complete if every Cauchy sequence

in X is convergent to a point x ∈ X.

6. A stability result in intuitionistic random normed spaces

Theorem 3. Let X be a real linear space and (Y,Pµ,ν , T ) a complete IRN-space.
Let f : X −→ Y be a mapping with f(0) = 0 for which there are ξ, ζ : X2 −→ D+

(ξ(x, y) is denoted by ξx,y and ζ(x, y) is denoted by ζx,y, further, (ξx,y(t), ζx,y(t)) is
denoted by Qξ,ζ(x, y, t)) with the property:

Pµ,ν(f(2x + y) + f(2x− y)− 2f(x + y)− 2f(x− y)− 12f(x), t)
≥L∗ Qξ,ζ(x, y, t). (12)

If

T ∞i=1(Qξ,ζ(2n+i−1x, 0, 23n+2i+1t)) = 1L∗ (13)



142 R. Saadati, S.M.Vaezpour and C.Park

and

lim
n→∞

Qξ,ζ(2nx, 2ny, 23nt) = 1L∗ (14)

for every x, y ∈ X and t > 0, then there exists a unique cubic mapping C : X −→ Y
such that

Pµ,ν(f(x)− C(x), t) ≥L∗ T ∞i=1

(
Qξ,ζ

(
2i−1x, 0, 22i+1t

))
. (15)

Proof. Putting y = 0 in (12), we have

Pµ,ν

(
f(2x)

8
− f(x), t

)
≥L∗ Qξ,ζ

(
x, 0, 24t

) ≥L∗ Qξ,ζ(x, 0, 23t). (16)

Therefore, it follows that

Pµ,ν

(
f(2k+1x)
23(k+1)

− f(2kx)
23k

,
t

23k

)
≥L∗ Qξ,ζ

(
2kx, 0, 23t

)
, (17)

which implies that

Pµ,ν

(
f(2k+1x)
23(k+1)

− f(2kx)
23k

, t

)
≥L∗ Qξ,ζ

(
2kx, 0, 23(k+1)t

)
, (18)

that is,

Pµ,ν

(
f(2k+1x)
23(k+1)

− f(2kx)
23k

,
t

2k+1

)
≥L∗ Qξ,ζ(2kx, 0, 22(k+1)t) (19)

for all k ∈ N and t > 0. As 1 > 1/2 + ... + 1/2n, by the triangle inequality it follows

Pµ,ν

(f(2nx)
8n

− f(x), t
)
≥L∗ T n−1

k=0

(
Pµ,ν

(
f(2k+1x)
23(k+1)

− f(2kx)
23k

,

n−1∑

k=0

1
2k+1

t

))

≥L∗ T n
i=1(Qξ,ζ(2i−1x, 0, 22i+1t)). (20)

In order to prove convergence of the sequence { f(2nx)
8n }, we replace x by 2mx in (20)

to find that for m,n > 0

Pµ,ν

(f(2n+mx)
8(n+m)

− f(2mx)
8m

, t
)
≥L∗ T n

i=1(Qξ,ζ(2i+m−1x, 2i+m−1x, 22i+m+1t)).(21)

Since the right hand-side of the inequality tends to 1L∗ as m tends to infinity,
the sequence { f(2nx)

23n } is a Cauchy sequence. Therefore, we may define C(x) =
limn−→∞

f(2nx)
23n for all x ∈ X.

Now, we show that C is a cubic map. Replacing x, y by 2nx and 2ny, respectively
in (12) then it follows that

Pµ,ν

(f(2n+1x + 2ny)
23n

+
f(2n+1x− 2ny)

23n
− 2

f(2nx + 2ny)
23n

−2
f(2nx− 2ny)

23n
− 12

f(2nx)
23n

, t
)

≥L∗ Qξ,ζ(2nx, 2ny, 23nt). (22)
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Taking the limit as n −→∞, we find that C satisfies (1) for all x, y ∈ X.
To prove (15), take the limit as n −→∞ in (20).
To prove the uniqueness of the cubic function C subject to (15), let us assume that

there exists a cubic function C ′ which satisfies (15). Obviously we have C(2nx) =
23nC(x) and C ′(2nx) = 23nC ′(x) for all x ∈ X and n ∈ N. Hence it follows from
(15) that

Pµ,ν

(
C(x)− C ′(x), t

)

≥L∗ Pµ,ν

(
C(2nx)− C ′(2nx), 23nt

)

≥L∗ T
(
Pµ,ν

(
C(2nx)− f(2nx), 23n−1t

)
,Pµ,ν

(
f(2nx)−Q′(2nx), 23n−1t

))

≥L∗ T
(
T ∞i=1(Qξ,ζ(2n+i−1x, 0, 23n+2i+1t)), T ∞i=1(Qξ,ζ(2n+i−1x, 0, 23n+2i+1t)

)

for all x ∈ X. By letting n −→ ∞ in (15), we find that the uniqueness of C. This
completes the proof.

Corollary 2. Let (X,P ′µ′,ν′ , T ) be an IRN-space and (Y,Pµ,ν , T ) a complete IRN-
space. Let f : X −→ Y be a mapping such that

Pµ,ν(f(2x + y) + f(2x− y)− 2f(x + y)− 2f(x− y)− 12f(x), t)
≥L∗ P ′µ′,ν′(x + y, t)

for t > 0 in which
lim

n−→∞
T ∞i=1(P ′µ′,ν′(x, 22n+i+2t)) = 1L∗

for all x, y ∈ X. Then there exists a unique cubic mapping C : X −→ Y such that

Pµ,ν(f(x)− C(x), t) ≥L∗ T ∞i=1(P ′µ′,ν′(2i+1t)).

Now, we give one example to validate the main result, Theorem 3, as follows:

Example 3. Let (X, ‖.‖) be a real Banach algebra, (X,Pµ,ν ,M) a complete IRN-
space in which

Pµ,ν(x, t) =
( t

t + ‖x‖ ,
‖x‖

t + ‖x‖
)

for all x ∈ X. Define f : X −→ X by f(x) = x3 + x0, where x0 is a unit vector in
X. A straightforward computation shows that

Pµ,ν(f(2x + y) + f(2x− y)− 2f(x + y)− 2f(x− y)− 12f(x), t)
≥L∗ Pµ,ν(x + y, t), ∀t > 0.

Also,

lim
n−→∞

M∞
i=1(Pµ,ν(x, 22n+i+1t)) = lim

n−→∞
lim

m−→∞
Mm

i=1(Pµ,ν(x, 22n+i+1t))

= lim
n−→∞

lim
m−→∞

Pµ,ν(x, 22n+2t)

= lim
n−→∞

Pµ,ν(x, 22n+2t)

= 1L∗ .
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Therefore, all the conditions of Theorem 3 hold and so there exists a unique cubic
mapping C : X −→ X such that

Pµ,ν(f(x)− C(x), t) ≥L∗ Pµ,ν(x, 22t).
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