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Abstract. The aim of this paper is to prove some fixed point theorems on generalized
metric spaces for maps satisfying general contractive type conditions. Also we consider
some fixed point theorems for certain composition mappings.
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1. Introduction and preliminary

The study of fixed points of mappings satisfying certain contractive conditions has
been a very active area of research. For a survey of fixed point theory, some ap-
plications, comparison of different contractive conditions and related results see
[1, 2, 8, 9, 11, 16, 17, 18]. Recently Long-Guang and Xian [10] generalized the
concept of a metric space, by introducing cone metric spaces, and obtained some
fixed point theorems for mappings satisfying certain contractive conditions. Other
papers on cone metric spaces are [3, 4, 7, 10, 14]. The purpose of this paper is to
prove some fixed point theorems on cone metric spaces under fairly general con-
tractive conditions. Also we obtain fixed point theorems for certain composition
mappings.
Let E be a real Banach space. A nonempty convex closed subset P ⊂ E is called a
cone in E if it satisfies:

(i) P is closed, nonempty and P 6= {0},
(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply that ax + by ∈ P,
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(iii) x ∈ P and −x ∈ P imply that x = 0.

The space E can be partially ordered by the cone P ⊂ E; that is, x ≤ y if and only
if y− x ∈ P . Also we write x ¿ y if y− x ∈ int P , where int P denotes the interior
of P .
A cone P is called normal if there exists a constant K > 0 such that 0 ≤ x ≤ y
implies ‖x‖ ≤ K‖y‖.
In the following we always suppose that E is a real Banach space, P is a cone in E
and ≤ is partial ordering with respect to P .

Definition 1 (see [10]). Let X be a nonempty set. Assume that the mapping d :
X ×X → E satisfies

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 iff x = y

(ii) d(x, y) = d(y, x) for all x, y ∈ X

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 2. Let (X, d) be a cone metric space, x ∈ X and {xn} a sequence in X.
Then

(i) {xn} is said to be convergent to x ∈ X whenever for every c ∈ E with 0 ¿ c
there is N such that for all n > N , d(xn, x) ¿ c, that is, limn→∞ xn = x.

(ii) {xn} is called a Cauchy sequence in X whenever for every c ∈ E with 0 ¿ c
there is N such that for all n,m > N , d(xn, xm) ¿ c.

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Remark 1 (see [7]). Let P ⊂ E be a normal cone with constant K. Suppose for
a, b, c ∈ E and nonzero u ∈ {a, b, c}, a ≤ tu for every t ≥ 0 and t 6= 1. Then
u ∈ {b, c}.

2. Main results

Given a cone metric space X, a self-map T of X and u ∈ X, the orbit of u, O(u) is
defined by O(u) := {u, Tu, T 2u, . . .}. The closure of the orbit of u will be denoted
by O(u). We begin with a general theorem.

Theorem 1. Let (X, d) be a cone metric space, P ⊂ E a cone, and T a self-map of
X. If there exists a point u ∈ X and a λ ∈ [0, 1) such that O(u) is complete and

d(Tx, Ty) ≤ λd(x, y) (1)

for any x, y ∈ O(u), then {Tnu} converges to some p ∈ X, and

d(Tnu, p) ≤ λn

1− λ
d(u, Tu) for n ≥ 1. (2)

If (1) holds for any x, y ∈ O(u), then p is a fixed point of T.
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Proof. From (1) it follows that d(Tnu, Tn+1u) ≤ λd(Tn−1u, Tnu). Hence

d(Tnu, Tn+1u) ≤ λnd(u, Tu)

for n > 1.
Thus, for any m,n ≥ 1,

d(Tnu, Tn+mu) ≤ d(Tnu, Tn+1u) + · · ·+ d(Tn+m−1u, Tn+mu)
≤ (1 + λ + · · ·+ λm−1)d(Tnu, Tn+1u)

=
1− λm

1− λ
d(Tnu, Tn+1u) ≤ 1

1− λ
d(Tnu, Tn+1u)

≤ λn

1− λ
d(u, Tu).

Consequently {Tnu} is Cauchy and, since O(u) is complete, it converges to a point
p ∈ X. Now

d(Tnu, p) ≤ d(Tnu, Tn+mu) + d(Tn+mu, p)

≤ λn

1− λ
d(u, Tu) + d(Tn+mu, p).

Let 0 ¿ c be given. For each positive integer m choose Nm so that d(Tn+mu, p) ¿ c
m

for n ≥ Nm. Then

d(Tnu, p)− λn

1− λ
d(u, Tu) ¿ c

m
,

for all m ≥ 1, which implies that

c

m
− d(Tnu, p) +

λn

1− λ
d(u, Tu) ∈ P

for all m ≥ 1. Since lim c
m = 0 and P is closed, we obtain

−d(Tnu, p) +
λn

1− λ
d(u, Tu) ∈ P,

which is equivalent to (2).
If (1) holds for any x, y ∈ O(u), then

d(Tn+1u, Tp) ≤ λd(Tnu, p).

But

d(p, Tp) ≤ d(Tn+1u, p) + d(Tn+1u, Tp) ≤ d(Tn+1u, p) + λd(Tnu, p).

If λ 6= 0, then for any 0 ¿ c choose N so that, for n ≥ N , d(Tn+1u, p) ¿ c
2 and

d(Tnu, p) ¿ c
2λ . Then we have d(p, Tp) ¿ c, which implies that p = Tp. The case

λ = 0 is trivial.

Theorem 1 is the cone metric version of Theorem 2 of [13].
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Corollary 1. Let (X, d) be a complete cone metric space, T a self-map of X satis-
fying

d(Tx, Ty) ≤ q(x, y)d(x, y) + r(x, y)d(x, Tx) + s(x, y)d(y, Ty) (3)
+t(x, y)(d(x, Ty) + d(y, Tx))

for all x, y ∈ X, where q, r, s, and t are nonnegative numbers satisfying

sup
x,y∈X

{q(x, y) + r(x, y) + s(x, y) + 2t(x, y)} = λ < 1. (4)

Then T has a unique fixed point in X.

Proof. Setting y = Tx in (3) yields, suppressing x and Tx in the expressions q, r, s, t,

d(Tx, T 2x) ≤ qd(x, Tx) + rd(x, Tx) + sd(Tx, T 2x) + td(x, T 2x),

which implies, that

d(Tx, T 2x) ≤ q + r + t

1− s− t
d(x, Tx) ≤ λd(x, Tx).

The above inequality implies condition (1), and T has a fixed point by Theorem
1. That the fixed point is unique follows from (3).

Corollary 1 is the cone metric version of Theorem 2.5(i) of [5].

Corollary 2 (see [15], Theorem 2.6). Let (X, d) be a complete cone metric space,
P ⊂ E a cone, and T a self-map of X satisfying

d(Tx, Ty) ≤ k[d(Tx, x) + d(Ty, y)] (5)

for all x, y ∈ X, where k is a constant, 0 < k < 1/2. Then T has a unique fixed
point in X and, for each x in X, {Tnx} converges to the fixed point.

Proof. Inequality (5) is a special case of (1), and the result follows from Corollary
1.

Corollary 3. Let (X, d) be a complete cone metric space, P ⊂ E a cone, and T a
self-map of X satisfying

d(Tx, Ty) ≤ c[d(x, Tmz) + d(y, Tmz)], (6)

for some m ∈ N and all x, y, z ∈ X, where c is a constant, 0 < c < 1. Then T
has a unique fixed point in X, and, for each x ∈ X, the iterative sequence {Tnx}
converges to the fixed point.

Proof. Let u ∈ X. In (6) set x = Tm−1u, y = Tmu, z = u. Then we have

d(Tmu, Tm+1u) ≤ cd(Tm−1u, Tmu), (7)

which is a special case of (1). Thus T has a fixed point p. Condition (6) implies
uniqueness.



Fixed point theorems for contractive mapping in cone metric spaces 151

Corollary 4. Let (X, d) be a complete cone metric space, P ⊂ E a cone, and T a
self-map of X satisfying

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) + ed(y, Tx) + fd(x, Ty), (8)

where a, b, c, d, f, e are positive real numbers satisfying a + b + c + e + f < 1. Then
T has a unique fixed point.

Proof. By [12, Theorem 2.1] we may assume that b = c and e = f . In (8) set
y = Tx to obtain

d(Tx, T 2x) ≤ a + b + f

1− c− f
d(x, Tx), (9)

and by symmetry, we may exchange b, c and f with e in 9 to obtain

d(Tx, T 2x) ≤ a + c + e

1− b− e
d(x, Tx). (10)

Put k := min{a+b+f
1−c−f , a+c+e

1−b−e} so k < 1 and

d(Tx, T 2x) ≤ kd(x, Tx). (11)

This inequality implies (1), and T has a fixed point. Uniqueness follows from (8).

For any u ∈ X, define OST (u) := {u, STu, (ST )2u, . . . , (ST )nu, . . .} and

OT (ST )n(u) := {Tu, T (ST )u, . . . , T (ST )nu, . . .}.

Theorem 2. Let (X, d), (Y,D) be cone metric spaces, T : X → Y, S : Y → X.
Suppose that there exists a point u ∈ X such that

D(Tx, TSTx ′) ≤ λd(x, STx ′) (12)

and
d(Sy, STSy ′) ≤ λD(y, TSy ′) (13)

for each x, x ′ ∈ OST (u), y, y ′ ∈ OT (ST )n(u), where λ is a real number satisfying
0 ≤ λ < 1. If OST (u) and OT (ST )n are complete, then {(ST )nu} converges to a
point p ∈ X and

d((ST )nu, p) ≤ λ2n

1− λ
d(u, STu). (14)

Also, {T (ST )nu} converges to a point q ∈ Y and

D(T (ST )nu, q) ≤ λ2n

1− λ
D(Tu, TSu). (15)

Moreover, if (12) and (13) hold for all x, x ′ ∈ OST (u), y, y ′ ∈ OT (ST )n(u), then p
is a fixed point of ST and q is a fixed point of TS.
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Proof. For any positive integer n, using (12) and (13),

D(T (ST )nu, T (ST )n+1u) ≤ λd((ST )nu, (ST )n+1u)
= λd(S(T (ST )n−1u), S(T (ST )nu))
≤ λ2D(T (ST )n−1u, T (ST )nu) ≤ · · ·
≤ λ2nD(Tu, TSTu).

Thus, for any positive integers m,n,

D(T (ST )nu, T (ST )m+nu) ≤ D(T (ST )nu, T (ST )n+1u) + · · ·
+D(T (ST )m+n−1u, T (ST )m+nu)

≤ (λ2n + · · ·+ λ2n+m−1)D(Tu, TSTu)

≤ λ2n

1− λ
D(Tu, TSTu), (16)

and {T (ST )nu} is Cauchy. Since OT (ST )n(u) is complete, the sequence converges to
a point q ∈ Y .

Using (16),

D(T (ST )nu, q) ≤ D(T (ST )nu, T (ST )n+mu) + D(T (ST )n+mu, q)

≤ λ2n

1− λ
D(Tu, TSu) + D(T (ST )n+mu, q).

Let c ∈ E, c À 0. Then, for each integer m there exists a positive integer Mn such
that, for all m ≥ Mm, D(T (St)n+mu, q) ¿ c

m . We then have

D(T (ST )nu, q)− λ2n

1− λ
D(Tu, TSu) ¿ c

m
,

which implies that

c

m
+

λ2n

1− λ
D(Tu, TSu)−D(T (ST )nu, q) ∈ P

for each m. Since lim c
m = 0 and P is closed, one obtains

λ2n

1− λ
D(Tu, TSu)−D(T (ST )nu, q) ∈ P,

which is equivalent to (15).
In a similar manner it can be shown that

d((ST )nu, (ST )n+1u) ≤ λ2nd(u, STu),

and hence {(ST )nu} converges to a point p ∈ X, and one obtains (14).
If (12) is true for all x, x ′ ∈ OST (u), then

D(Tp, T (ST )nu) ≤ λd(p, (ST )nu).
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Therefore

D(Tp, q) ≤ D(Tp, T (ST )nu) + D(T (ST )nu, q)
≤ λd(p, (ST )nu) + D(T (ST )nu, q).

If λ 6= 0, then for any c ∈ E, c À 0, choose N so that, for all n ≥ N ,
d(p, (ST )nu) ¿ c

2λ and D(T (ST )nu, q) ¿ c
2 . Then D(Tp, q) ¿ c, which implies

that Tp = q. The case λ = 0 is trivial.
Similarly, if (13) is true for all y, y ′ ∈ OT (ST )n(u), then it can be shown that

Sq = p.
Therefore STp = Sq = p and p is a fixed point of ST . Also, TSq = Tp = q, and

q is a fixed point of TS.

Corollary 5. Let (X, d) and (Y, D) be complete cone metric spaces with T : X →
Y, S : Y → X mappings satisfying

D(Tx, TSy) ≤ c(d(x, Sy) + D(y, Tx) + D(y, TSy)) (17)

and
d(Sy, STx) ≤ c(D(y, Tx) + d(x, Sy) + d(x, STx)) (18)

for all x ∈ X, y ∈ Y and, for some 0 ≤ c < 1/2. Then ST has a unique fixed point
p ∈ X and TS has a unique fixed point q ∈ Y such that Tp = q and Sq = p.

Proof. Set y = Tx in (17) to get

D(Tx, TSTx) ≤ c(d(x, STx) + 0 + D(Tx, TSTx)),

which implies that
D(Tx, TSTx) ≤ c

1− c
d(x, STx),

and (12) of Theorem 2 is satisfied
Similarly, substituting x = Sy into (18) yields

d(Sy, STSy) ≤ c

1− c
D(y, TSy),

and (13) of Theorem 2 is satisfied. Therefore there is a point p ∈ X which is a fixed
point of ST and a point q ∈ Y which is a fixed point of TS. Using condition (17)
gives uniqueness for p, and condition (18) gives uniqueness for q.

Corollary 6. Let (X, d) and (Y,D) be complete cone metric spaces, P ⊂ E with
T : X → Y, S : Y → X mappings and a constant c ∈ [0, 1) such that, for every
x ∈ X and y ∈ Y there are nonzero elements u ∈ {d(x, Sy), D(y, Tx), D(y, TSy)}
and v ∈ {D(y, Ts), d(s, Sy), d(x, STx)} such that

D(Tx, TSy) ≤ cu (19)

and
d(Sy, STx) ≤ cv. (20)

Then ST has a unique fixed point p ∈ X and TS has a unique fixed point q ∈ Y
such that Tp = q and Sq = p.
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Proof. In (19) set y = Tx to obtain

D(Tx, TSTx) ≤ cu, (21)

where u ∈ {d(x, STx), 0, D(Sx, TSTx)}. If D(Tx, TSTx) = 0, then Tx is a fixed
point of TS. If D(Tx, TSTx) 6= 0, then (21) implies that D(Tx, TSx) ≤ cd(x, STx),
which implies (12).

In (20) set x = Sy to get

d(Sy, STSy) ≤ cv, (22)

where v ∈ {D(y, TSy), 0, d(Sy, STSy)}. If d(Sy, STSy) = 0, then Sy is a fixed point
of ST . Otherwise, (22) implies that d(Sy, STSy) ≤ cD(y, TSy), which implies (13).

By Theorem 2 there exists a fixed point p of ST in X and a fixed point q in Y
of TS. The uniqueness of p and q follow from (19) and (20), respectively.

Corollary 6 is the cone metric version of Theorem 1 of [6].
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