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Abstract. Properties of the non-tangential quadrilateral ABCD in the isotropic plane
concerning its diagonal triangle are given in this paper. A quadrilateral is called standard
if a parabola with the equation x = y2 is inscribed in it. Every non-tangential quadrilateral
can be represented in the standard position. First, the vertices and the equations of the
sides of the diagonal triangle are introduced. It is shown that the midlines of the diagonal
triangle touch the inscribed parabola of the quadrilateral. Furthermore, quadrilaterals
formed by two diagonals and some two sides of the non-tangential quadrilateral ABCD are
studied and a few theorems on its foci are presented.

AMS subject classifications: 51N25

Key words: isotropic plane, non-tangential quadrilateral, diagonal triangle, focus, median

1. Introduction

A projective plane with the absolute (in the sense of Cayley-Klein) consisting of a
line ω and a point Ω on ω is called an isotropic plane. If T = (x, y, z) denotes any
point in the plane presented in homogeneous coordinates, then usually a projective
coordinate system where Ω = (0, 1, 0) and the line ω with the equation z = 0 is
chosen. The line ω is said to be the absolute line and the point Ω the absolute point.
The points of the absolute line ω are called isotropic points and the lines incident
with the absolute point Ω are called isotropic lines. Two lines are parallel if they
have the same isotropic point, and two points are parallel if they are incident with
the same isotropic line.
The conic C in the isotropic plane is a circle if the absolute line ω is tangent to it
at the absolute point Ω, and it is a parabola if the absolute line ω is tangent to it at
an isotropic point different from Ω.
All the notions related to the geometry of the isotropic plane can be found in [6]
and [7].
A non-tangential quadrilateral in the isotropic plane has been introduced in [8]. The
purpose of this paper is to investigate its properties concerning its diagonal triangle.
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The figure consisting of four lines A, B, C, D (any two of them not being parallel
and any three of them not being concurrent) with their six points of intersection
is called the complete quadrilateral ABCD. Hence, A,B, C,D are the sides of the
quadrilateral, A∩B,A∩C,A∩D,B∩C, B∩D, and C∩D are the vertices where pairs
of vertices (A∩B, C ∩ D); (A∩ C,B ∩D), and (A∩D,B ∩ C) are the opposite ones.
There is a unique conic K that touches the lines A,B, C,D and the absolute line ω.
If K touches ω at the point Ω, then K is an isotropic circle and we say that ABCD is
a tangential quadrilateral. In the case when K touches ω in the point different from
Ω, K is a parabola and we say that ABCD is a non-tangential quadrilateral. The
notion of the focus, the directrix, the axis and the diameters of this parabola are
observed in [2].
As we have shown in [8], a non-tangential quadrilateral in the isotropic plane is
called standard if a parabola with the equation y2 = x is inscribed in it. Every
non-tangential quadrilateral can be represented in the standard position. Such a
standard quadrilateral has sides of the form

A . . . 2ay = x + a2,
B . . . 2by = x + b2,
C . . . 2cy = x + c2,
D . . . 2dy = x + d2,

(1)

where
A = (a2, a), B = (b2, b), C = (c2, c), D = (d2, d) (2)

represent their points of contact with the parabola.
Vertices of such a quadrilateral are given with

A ∩ B =
(

ab,
a + b

2

)
, C ∩ D =

(
cd,

c + d

2

)
,

A ∩ C =
(

ac,
a + c

2

)
, B ∩ D =

(
bd,

b + d

2

)
,

A ∩D =
(

ad,
a + d

2

)
, B ∩ C =

(
bc,

b + c

2

)
.

(3)

As was the case in [8], the following symmetric functions of the numbers a, b, c, d
will be of great benefit:

s = a + b + c + d,
q = ab + ac + ad + bc + bd + cd,
r = abc + abd + acd + bcd,
p = abcd.

(4)

Two important notions related to the standard quadrilateral, a focus and a median,
were introduced in [8], in the next two theorems:

Theorem 1 (see [8], p. 119). The midpoints of the line segments connecting the
pairs of opposite vertices of the non-tangential quadrilateral lie on the line M, with
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the equation

y =
s

4
, (5)

related to the standard quadrilateral ABCD.

Figure 1: The focus O and the median M and the circles Ka,Kb,Kc, and Kd circumscribed to the
triangles BCD, ACD, ABD, and ABC of the standard quadrilateral ABCD

The line M from Theorem 1 is the median of the quadrilateral ABCD (see
Figure 1).

Theorem 2 (see [8], p. 120). The circumscribed circles of the four triangles formed
by the three sides of the non-tangential quadrilateral are incident with the same point
O, which coincides with the focus of the parabola inscribed in this quadrilateral.

The point O is the focus of the quadrilateral ABCD (see Figure 1).

2. Diagonal triangle of the non-tangential quadrilateral

In this section we will study the diagonal triangle of the non-tangential quadrilateral.
The joint lines of the opposite verticesA∩B, C∩D; A∩C,B∩D, andA∩D,B∩C are

the sides of the diagonal triangle and we will denote them by Tab,cd, Tac,bd, and Tad,bc,
respectively. Furthermore, the vertices of the diagonal triangle will be represented
by Tad,bc = Tab,cd ∩ Tac,bd, Tac,bd = Tab,cd ∩ Tad,bc, and Tab,cd = Tac,bd ∩ Tad,bc (see
Figure 2). The equations of the sides Tab,cd, Tac,bd, and Tad,bc are given in the
theorem that follows.
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Theorem 3. The diagonal triangle of the standard quadrilateral ABCD has the sides
Tab,cd, Tac,bd and Tad,bc with the equations

Tab,cd : 2(ab− cd)y = (a + b− c− d)x + ab(c + d)− cd(a + b),

Tac,bd : 2(ac− bd)y = (a + c− b− d)x + ac(b + d)− bd(a + c),

Tad,bc : 2(ad− bc)y = (a + d− b− c)x + ad(b + c)− bc(a + d).

(6)

Proof. The equality

(ab− cd)(a + b) = (a + b− c− d) · ab + ab(c + d)− cd(a + b)

shows that the point A ∩ B is incident with Tab,cd.

Figure 2: The diagonal triangle Tab,cdTac,bdTad,bc of the standard quadrilateral ABCD

The coordinates of the vertices Tab,cd, Tac,bd and Tad,bc of the diagonal triangle
are obtained by means of Theorem 4.

Theorem 4. The vertices Tab,cd, Tac,bd and Tad,bc of the diagonal triangle of the
standard quadrilateral A,B, C,D have the forms

Tab,cd =
(

ab(c + d)− cd(a + b)
a + b− c− d

,
ab− cd

a + b− c− d

)
,

Tac,bd =
(

ac(b + d)− bd(a + c)
a + c− b− d

,
ac− bd

a + c− b− d

)
, (7)

Tad,bc =
(

ad(b + c)− bc(a + d)
a + d− b− c

,
ad− bc

a + d− b− c

)
.
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Proof. From the equality

2(ac−bd)(ab−cd) = (a+c−b−d)[ab(c+d)−cd(a+b)]+[ac(b+d)−bd(a+c)](a+b−c−d)

it follows that the point Tab,cd from (7) is incident with the line Tac,bd from (6).

Theorem 5. The circle circumscribed to the diagonal triangle has the equation of
the form

4(ab− cd)(ac− bd)(ad− bc)y = (a + b− c− d)(a + c− b− d)(a + d− b− c)x2

+s(ab− cd)(ac− bd)(ad− bc) (8)
−p(a + b− c− d)(a + c− b− d)(a + d− b− c).

Proof. It can be easily shown that e.g. the point Tad,bc satisfies equation (8).

Onwards we present the results concerning the diagonal triangle.
For the Euclidean version of the next theorem see [5].

Theorem 6. Midlines of the diagonal triangle of the quadrilateral ABCD touch its
inscribed parabola with the equation y2 = x.

Proof. Let us denote the midline of Tac,bd and Tad,bc by Mab,cd. The equation of
this line is of the form

2(ab− cd)(a + b− c− d)y = (a + b− c− d)2x + (ab− cd)2.

If we construct a line through the vertex Tab,cd parallel to the side Tab,cd, its equation
is

2(ab− cd)(a + b− c− d)y = (a + b− c− d)2x + 2(ab− cd)2 + ab(c + d)2

+cd(a + b)2 − (ab + cd)(a + b)(c + d). (9)

It is easily verified that the coordinates of the point Tab,cd satisfy the equation, as
given above, of the line that has the same slope as the side Tab,cd. The first equation
in (6) is the equation of Tab,cd. Multiplying this equality by (a + b − c − d) and
summing it and (9) up, the equation of the midline Mab,cd is obtained.

As the equality

(a + b− c− d)2y2 − 2(ab− cd)(a + b− c− d)y + (ab− cd)2 = 0

holds, the line Mab,cd touches the inscribed parabola y2 = x. Obviously, the point
of contact Mab,cd of the midline Mab,cd and the parabola y2 = x is of the form

(
(ab− cd)2

(a + b− c− d)2
,

ab− cd

a + b− c− d

)
.

Corollary 1. The points Mab,cd and Tab,cd are incident with the line having the
equation

y =
ab− cd

a + b− c− d
.
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Another interesting feature is given in the next theorem. First, let us recall
from [6] the notion of span: for two parallel points T1 = (x, y1) and T2 = (x, y2),
d(T1, T2) := y2 − y1 defines the span between them.

Theorem 7. There is an isotropic line such that the distances from the midpoints
of the diagonals of the quadrilateral to this line are proportional to the squares of the
spans of these diagonals. The equation of this line is

x =
s2

8
− q

6
.

Proof. If we take e.g. the diagonal Tab,cd, then its midpoint is P1 = (
ab + cd

2
,
s

2
).

Analogously, the midpoints P2 = (
ac + bd

2
,
s

2
) and P3 = (

ad + bc

2
,
s

2
) are obtained

for another two diagonals Tac,bd and Tad,bc.
Let T (x, y) be any point on the line that we are looking for. Because of the mentioned
proportion there is λ ∈ R such that

x− ab + cd

2
= λ(a + b− c− d)2,

x− ac + bd

2
= λ(a + c− b− d)2,

x− ad + bc

2
= λ(a + d− b− c)2

(10)

is valid. Subtracting the first two equations we get

ab + cd− ac− bd = 8λ(a− d)(b− c),

out of which we obtain
λ =

1
8
.

Applying λ =
1
8

in (10) and adding them up the equation

6x = q +
3s2 − 8q

4

is obtained, that yields

x =
s2

8
− q

6
.

The equation of the line that we are looking for is of this form.

Prior to researching the properties of the diagonal triangle let us introduce some
notations. Let Mab,cd denote the midpoint of the line segment joining A∩B to C∩D
and by analogy, let Mab,bd denote the midpoint of the one joining A∩B to B∩D. The
six points Mbc; Mad; Mac; Mbd; Mab, and Mcd represent foci of the quadrilaterals
Tac,bdTab,cdBC; Tac,bdTab,cdAD; Tad,bcTab,cdAC; Tad,bcTab,cdBD; Tad,bcTac,bdAB, and
Tad,bcTac,bdCD.

Concerning these points the next theorem states
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Theorem 8. The circle passing through the points B∩C, Mab,bd, Mac,cd pass through
its focus Mbc and the focus of the non-tangential quadrilateral ABCD. The same
statement holds for the circles passing through the other five triplets of corresponding
points and the corresponding foci.

For the Euclidean version of this theorem see [3].

Proof. Let us study for example the quadrilateral Tac,bdTab,cdBC. We have to find
its focus Mbc. The circle passing through B∩C, Mab,bd and Mac,cd has the equation

2bc(a + d)y = −2x2 + [2bc + (a + d)(b + c)]x. (11)

The point B ∩ C is given in (3) while Mab,bd,Mac,cd have coordinates of the forms

Mab,bd = (
b(a + d)

2
,
a + d + 2b

4
),

Mac,cd = (
c(a + d)

2
,
a + d + 2c

4
).

The equalities

bc(a + d)(b + c) = −2b2c2 + [2bc + (a + d)(b + c)]bc,
bc(a + d)(a + d + 2b) = −b2(a + d)2 + b(a + d)[2bc + (a + d)(b + c)]

verify that the coordinates of the points B ∩ C and Mab,bd satisfy equation (11).
Clearly, the circle (11) is incident with the focus of the quadrilateral O = (0, 0), as
well.

The vertices of the quadrilateral Tac,bdTab,cdBC are

Tad,bc =
(

ad(b + c)− bc(a + d)
a + d− b− c

,
ad− bc

a + d− b− c

)
,A ∩ B,A ∩ C,B ∩ C,B ∩ D,

and C ∩ D.
Let us observe a circle circumscribed to the vertices of the triangle BCTac,bd. The

vertices are A ∩ C, B ∩ C, and B ∩ D and their circumscribed circle is of the form

2bc(ac− bd)y = (b− c)x2 + [c2(a + b)− b2(c + d)]x + b2c2(a− d). (12)

Because of

bc(ac− bd)(a + c) = (b− c)a2c2 + [c2(a + b)− b2(c + d)]ac + b2c2(a− d),

the point A ∩ C is incident with the circle (12) and moreover, out of

bc(ac− bd)(b + c) = (b− c)b2c2 + [c2(a + b)− b2(c + d)]bc + b2c2(a− d)

follows that B ∩ C lies on (12) as well.
The circumscribed circle of the triangle BCTab,cd is

2bc(ab− cd)y = (c− b)x2 + [b2(a + c)− c2(b + d)]x + b2c2(a− d). (13)
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Therefore, the circles (12) and (13) intersect in two points, B ∩ C and the focus

Mbc = (
bc(a + d)

b + c
,
2bc(b + c) + (a + d)(b2 + c2)

2(b + c)2
)

of this quadrilateral. Out of

2b2c2(ab− cd)(b + c) + bc(ab− cd)(a + d)(b2 + c2)
= b2c2(a + d)2(c− b) + bc(a + d)(b + c)[b2(a + c)
−c2(b + d)] + b2c2(a− d)(b + c)2

follows that Mbc lies on (13). The argument can be applied for (11) as well.

Figure 3: Visualization of the proof of Theorem 8

Visualization of Theorem 8 is given in Figure 3.

Theorem 9. The circle that passes through Tad,bc, Mac,bd, and Mab,cd is incident
with Mbc and Mad, foci of the quadrilaterals Tab,cdTac,bdBC and Tab,cdTac,bdAD. The
equation of the circle passing through Tad,bc,Mac,bd,Mab,cd is of the form

4(ac− bd)(ab− cd)y = −4(a + d− b− c)x2 + 2(a + d)(b + c)(a + d− b− c)x
+s(ac− bd)(ab− cd) (14)
−(a + d− b− c)(ab + cd)(ac + bd).
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Proof. Tad,bc is given in (7). It is not difficult to check that its coordinates satisfy
equation (14). In the same way, the equality

s(ac− bd)(ab− cd) = (a + d)(b + c)(ac + bd)(a + d− b− c)
−(ac + bd)2(a− b− c + d) + s(ac− bd)(ab− cd)−
−(a− b− c + d)(ac + bd)(ab + cd)

proves that Mac,bd is incident with that circle as well.
Finally, by putting the coordinates of the point Mbc in (14) we get the equality

2(ac− bd)(ab− cd)(2bc(b + c) + (b2 + c2)(a + d))
(b + c)2

= 2bc(a + d)2(a− b− c + d)− 4b2c2(a + d)2(a + d− b− c)
(b + c)2

+s(ac− bd)(ab− cd)− (a− b− c + d)(ac + bd)(ab + cd),

which proves the claim of the theorem.

Theorem 10. The circles passing through the triples of points Mad,Mbc, Tad,bc;
Mac, Mbd, Tac,bd, and Mab,Mcd, Tab,cd intersect in a point that the circle circum-
scribed to the diagonal triangle Tab,cdTac,bdTad,bc is incident with.

Proof. The circle passing through Mad,Mbc, Tad,bc is of the form

Kad,bc : 2(ab− cd)(ac− bd)y =−2(a + d− b− c)x2 +(a + d− b− c)(a + d)(b + c)x
+a2b2(c− d)− c2d2(a− b) (15)
+a2c2(b− d)− b2d2(a− c).

Indeed, inserting the coordinates of Mad,Mbc, Tad,bc in (15), respectively, one gets
three valid equalities. Because of the symmetry on a, b, c, and d the circles from the
theorem are of the form

Kac,bd : 2(ab− cd)(ad− bc)y = −2(a + c− b− d)x2

+(a + c− b− d)(a + c)(b + d)x
−a2b2(c− d)− c2d2(a− b)
+a2d2(b− c)− b2c2(a− d),

Kab,cd : 2(ac− bd)(ad− bc)y = −2(a + b− c− d)x2

+(a + b− c− d)(a + b)(c + d)x
−a2d2(b− c)− b2c2(a− d)
−a2c2(b− d)− b2d2(a− c).

These three circles intersect in the point

P = (
r

s
,
sq − 2r

s2
).
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As a matter of fact

2(ab− cd)(ac− bd)(sq − 2r) = −2(a− b− c + d)r2

+(a− b− c + d)(a + d)(b + c)rs
+s2[a2b2(c− d)− c2d2(a− b)
+a2c2(b− d)− b2d2(a− c)]

proves that the point P is incident with e.g. Kad,bc. By direct computation

4(ab− cd)(ac− bd)(ad− bc)(sq − 2r)
= r2(a + b− c− d)(a + c− b− d)(a− b− c + d)

+s3(ab− cd)(ac− bd)(ad− bc)
−ps2(a + b− c− d)(a + c− b− d)(a− b− c + d)

we see that the point P satisfies the equation of the circumscribed circle of the
diagonal triangle (8).

Corollary 2. The point of intersection from Theorem 10 has the form

P = (
r

s
,
sq − 2r

s2
).

Theorem 11. Circles passing through O, Mbc,B∩C; O, Mad,A∩D, and Mad,Mbc,
Tad,bc have a common point of intersection; there are two more such sets of circles.

Proof. The circle that passes through O, Mbc,B ∩ C is of the form

2bc(a + d)y = −2x2 + [(a + d)(b + c) + 2bc]x.

It is easy to show that the point B ∩ C is incident with this circle, and

bc(a + d)2(b2 + c2) = −2b2c2(a + d)2 + bc(a + d)2(b + c)2

verifies that coordinates of Mbc satisfy the equation of the upper circle as well. Three
circles from the theorem intersect in the point

R = (
1
2
(a + d)(b + c) + p

a− b− c + d

bc(a + d)− ad(b + c)
, p

(bc− ad)(a− b− c + d)
[bc(a + d)− ad(b + c)]2

).

As

2bc(a + d)(
p(a− b− c + d)(bc− ad)
[bc(a + d)− ad(b + c)]2

+
(a + d)(b + c)(bc− ad)
2[bc(a + d)− ad(b + c)]

)

= (2bc + (a + d)(b + c))(
1
2
(b + c)(a + d) +

p(a− b− c + d)
bc(a + d)− ad(b + c)

)

−2(
1
2
(a + d)(b + c) +

p(a− b− c + d)
bc(a + d)− ad(b + c)

)2
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holds, R is incident with the circle passing through the points O, Mbc, and B ∩ C.
Because of

2(ab− cd)(ac− bd)(
p(a− b− c + d)(bc− ad)
[bc(a + d)− ad(b + c)]2

+
(a + d)(b + c)(bc− ad)
2[bc(a + d)− ad(b + c)]

)

= a2c2(b− d) + a2b2(c− d)− b2d2(a− c)− c2d2(a− b)

+(a− b− c + d)(ab + ac + bd + cd)(
1
2
(a + d)(b + c) +

p(a− b− c + d)
bc(a + d)− ad(b + c)

)

−2(a− b− c + d)(
1
2
(a + d)(b + c) +

p(a− b− c + d)
bc(a + d)− ad(b + c)

)2,

R also lies on the circle (15).

3. Conclusions

In [8] we have studied the geometry of a non-tangential quadrilateral in the isotropic
plane. Before that, the geometry of a quadrilateral has not been developed at
all. It arised from the way the geometry of a triangle was studied in [1] and [4].
Hence, in [8] an elegant standardization of a non-tangential quadrilateral is given
that helps to prove the properties of any non-tangential quadrilateral in the isotropic
plane. Several properties related to the focus and the median of the non-tangential
quadrilateral are represented.
This paper naturally follows the research given in [8]. The diagonal triangle is an
important element of the non-tangential quadrilateral. Throughout the paper we
prove several geometrical facts for the diagonal triangle valid in the isotropic plane.
Being of great interest to us, we have studied special quadrilaterals formed by two
diagonals and some two sides of the non-tangential quadrilateral. The results of [8]
has helped us to obtain the forms of foci of these quadrilaterals in order to show
some interesting properties related to them (Theorem 8, Theorem 9, and Theorem
10).
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