Equi-ideal convergence of positive linear operators for analytic p-ideals

FADIME DIRIK¹ AND KAMIL DEMIRCI^{1,*}

¹ Department of Mathematics, Faculty of Sciences and Arts, Sinop University, TR-57000 Sinop, Turkey

Received October 14, 2009; accepted July 19, 2010

Abstract. In this paper, using equi-ideal convergence, we introduce a non-trivial generalization of the classical and the statistical cases of the Korovkin approximation theorem. We also compute the rates of equi-ideal convergence of sequences of positive linear operators. Furthermore, we obtain a Voronovskaya-type theorem in the equi-ideal sense for a sequence of positive linear operators constructed by means of the Meyer-König and Zeller polynomials.

AMS subject classifications: 41A25, 41A36

Key words: Equi-ideal convergence, Korovkin-type approximation theorem, Meyer-König and Zeller polynomials, modulus of continuity, Voronovskaya-type theorem

1. Introduction

A generalization of statistical convergence is based on the structure of the ideal \mathcal{I} of subsets of \mathbb{N} , the set of natural numbers. A non-void class $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is called the ideal if \mathcal{I} is additive (i.e., $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$) and hereditary (i.e., $A \in \mathcal{I}$, $B \subset A \Rightarrow B \in \mathcal{I}$). Throughout in this paper we consider ideals which are different from $\mathcal{P}(\mathbb{N})$ and contain all finite sets. Equip $\mathcal{P}(\mathbb{N})$ with the Cantor space topology, identifying subsets of \mathbb{N} with their characteristic functions. The ideal which consists of all finite sets is denoted by *Fin*. An ideal \mathcal{I} is a P-ideal if for every sequence $(A_n)_{n\in\mathbb{N}}$ of sets from \mathcal{I} there is an $A \in \mathcal{I}$ such that $A_n \smallsetminus A$ is finite for all n. Also, an ideal \mathcal{I} is analytic if it is a continuous image of a G_{δ} subset of the Cantor-space.

A map $\phi : \mathcal{P}(\mathbb{N}) \to [0, \infty]$ is a submeasure on \mathbb{N} if for all $A, B \subset \mathbb{N}$,

$$\begin{split} \phi\left(\emptyset\right) &= 0, \\ \phi\left(A\right) &\leq \phi\left(A \cup B\right) \leq \phi\left(A\right) + \phi\left(B\right). \end{split}$$

It is lower semicontinuous if for all $A \subset \mathbb{N}$, we have

$$\phi\left(A\right) = \lim_{n \to \infty} \phi\left(A \cap n\right).$$

*Corresponding author. *Email addresses:* kamild@sinop.edu.tr (K.Demirci)

http://www.mathos.hr/mc

©2011 Department of Mathematics, University of Osijek

dirikfadime@gmail.com (F. Dirik),

For any lower semicontinuous submeasure on \mathbb{N} , let $||A||_{\phi} : \mathcal{P}(\mathbb{N}) \to [0, \infty]$ be a submeasure defined by

$$\left\|A\right\|_{\phi} = \limsup_{n \to \infty} \, \phi \left(A \smallsetminus n \right) = \lim_{n \to \infty} \, \phi \left(A \smallsetminus n \right),$$

where the second equality follows by the monotonicity of ϕ . Let

$$Exh(\phi) = \left\{ A \subseteq \mathbb{N} : \|A\|_{\phi} = 0 \right\},$$
$$Fin(\phi) = \left\{ A \subseteq \mathbb{N} : \phi(A) < \infty \right\}.$$

It is clear that $Exh(\phi)$ and $Fin(\phi)$ are ideals (not necessarily proper) for an arbitrary submeasure ϕ (for detail, see [14], [15]). All analytic P-ideals are characterized by Solecki [15] as follows:

Let \mathcal{I} be an ideal on \mathbb{N} . \mathcal{I} is an analytic P-ideal iff $\mathcal{I} = Exh(\phi)$ for some lower semicontinuous submeasure ϕ on \mathbb{N} .

Let us introduce the following examples of analytic P-ideals [16], (see [9] for more examples).

• A nontrivial analytic P-ideal is the ideal of sets of statistical density zero, i.e.

$$\mathcal{I}_{d} = \left\{ A \subset \mathbb{N} : \limsup_{j \to \infty} d_{j} \left(A \right) = 0 \right\}$$

where $d_j(A) = \frac{|A \cap j|}{j}$ is the *j*th partial density of A, where the symbol |B| denotes the cardinality of the set B. If we denote $\phi_d(A) = \sup\left\{\frac{|A \cap j|}{j} : j \in \mathbb{N}\right\}$, then $\mathcal{I}_d = Exh(\phi_d)$.

• Let

$$\mathcal{I}_{\frac{1}{n}} = \left\{ A \subseteq \mathbb{N} : \sum_{n \in A} \frac{1}{n+1} < \infty \right\}.$$

If ϕ is a submeasure defined by $\phi(A) = \sum_{n \in A} \frac{1}{n+1}$, then $\mathcal{I}_{\frac{1}{n}} = Fin(\phi)$.

Recently various kinds of ideal convergence (equi-ideal convergence), which is an extension of equi-statistical convergence to the class of all analytic P-ideals for sequences of functions, have been introduced by Mrożek [14].

An analytic P-ideal on N need not be determined by a unique lower semicontinuous submeasure ϕ on N. Mrożek proved that equi-ideal convergence does not depend on the choice of ϕ ([14], Prop. 2.1), and he observed that a similar property holds for pointwise and uniform ideal convergence. This fact will be used in the proof of Theorem 2.1 where a fixed function ϕ associated with an ideal \mathcal{I} is considered. We first recall these convergence methods.

Let f and f_n belong to C(X), which is the space of all continuous real valued function on a compact subset X of the real numbers. Throughout the paper, we use the following notations.

$$\Psi(x,\varepsilon) := \{ n \in \mathbb{N} : |f_n(x) - f(x)| \ge \varepsilon \}, (x \in X)$$

$$\Phi(\varepsilon) := \{ n \in \mathbb{N} : ||f_n - f||_{C(X)} \ge \varepsilon \},$$
(1)

where $\varepsilon > 0$ and $||f||_{C(X)}$ denotes the usual supremum norm of f in C(X).

Definition 1 (see [14]). Let \mathcal{I} be an analytic *P*-ideal on \mathbb{N} with $\mathcal{I} = Exh(\phi)$ for a lower semicontinuouos submeasure ϕ on \mathbb{N} . (f_n) is said to be pointwise ideal convergent to f on X if for every $\varepsilon > 0$ and for each $x \in X$, $\lim_{k \to \infty} \phi(\Psi(x, \varepsilon) \setminus k) = 0$. In this case we write $f_n \to_{\mathcal{I}} f(ideal)$ on X.

Definition 2 (see [14]). Let \mathcal{I} be an analytic *P*-ideal on \mathbb{N} with $\mathcal{I} = Exh(\phi)$ for a lower semicontinuous submeasure ϕ on \mathbb{N} . (f_n) is said to be equi-ideal convergent to f on X if for every $\varepsilon > 0$,

$$\lim_{k\to\infty}\phi\left(\Psi(x,\varepsilon)\smallsetminus k\right)=0$$

uniformly with respect to $x \in X$. In this case we write $f_n \to_{\mathcal{I}} f$ (equi - ideal) on X.

Definition 3 (see [14]). Let \mathcal{I} be an analytic *P*-ideal on \mathbb{N} with $\mathcal{I} = Exh(\phi)$ for a lower semicontinuous submeasure ϕ on \mathbb{N} . (f_n) is said to be uniform ideal convergent to f on X if for every $\varepsilon > 0$, $\lim_{k \to \infty} \phi(\Phi(\varepsilon) \setminus k) = 0$. In this case we write $f_n \rightrightarrows_{\mathcal{I}} f$ (ideal) on X.

Using the definitions, the next result follows immediately.

Lemma 1. Let \mathcal{I} be an analytic P-ideal on \mathbb{N} with $\mathcal{I} = Exh(\phi)$ for a lower semicontinuouos submeasure ϕ on \mathbb{N} . $f_n \rightrightarrows f$ on X implies $f_n \rightrightarrows_{\mathcal{I}} f$ (ideal) on X, which also implies $f_n \rightarrow_{\mathcal{I}} f$ (equi-ideal) on X. Furthermore, $f_n \rightarrow_{\mathcal{I}} f$ (equi-ideal) on X implies $f_n \rightarrow_{\mathcal{I}} f$ (ideal) on X, and $f_n \rightarrow f$ on X (in the ordinary sense) implies $f_n \rightarrow_{\mathcal{I}} f$ (ideal) on X.

Definition 4 (see [2]). (f_n) is said to be equi-statistically convergent to f on X if $\forall \varepsilon > 0$, $\lim_{n \to \infty} \frac{|\Psi(x,\varepsilon)|}{n} = 0$ uniformly with respect to $x \in X$. In this case we write $f_n \to f$ (equi - stat) on X.

Definition 5 (see [11]). (f_n) is said to be statistically uniform convergent to f on X if $\forall \varepsilon > 0$, $\lim_{n \to \infty} \frac{|\Phi(\varepsilon)|}{n} = 0$. In this case we write $f_n \rightrightarrows f$ (stat) on X.

However, one can construct examples which guarantee that the converses of Lemma 1 are not always true. Such an example was given Balcerzak et al. [2] as follows.

Example 1. Let X = [0, 1] and h is a function by h(x) = 0 for $x \in [0, 1]$. For each $n \in \mathbb{N}$, define $h_n \in C[0, 1]$ by

$$h_n\left(x\right) = \begin{cases} 2^{n+1} \left(x - \frac{1}{2^n}\right) &, \text{ if } x \in \left[\frac{1}{2^n}, \frac{1}{2^{n-1}} - \frac{1}{2^{n+1}}\right], \\ -2^{n+1} \left(x - \frac{1}{2^{n-1}}\right) &, \text{ if } x \in \left[\frac{1}{2^{n-1}} - \frac{1}{2^{n+1}}, \frac{1}{2^{n-1}}\right], \\ 0 &, \text{ otherwise.} \end{cases}$$

Then it is easy to show that h_n is equi-ideal (equi-statistical) convergent to h on X with respect to the ideal \mathcal{I}_d . But (h_n) is not uniform ideal (statistical uniform) convergent and uniform convergent to the function h = 0 on X.

The classical Korovkin theory is mainly connected with the approximation of continuous functions by means of positive linear operators (see, for instance [1, 12]). In recent years, with the help of the concept of statistical convergence [10], various statistical approximation results have been proved (see [5, 6, 7, 8, 11]).

2. A Korovkin-type approximation theorem

In this section, using a similar technique in the proof of Theorem 2.1 in [11], we give a Korovkin-type theorem for sequences of positive linear operators defined on C(X) using the concept of equi-ideal convergence.

Theorem 1. Let X be a compact subset of the real numbers, and let $\{L_n\}$ be a sequence of positive linear operators acting from C(X) into itself. Assume that \mathcal{I} is an analytic P-ideal on \mathbb{N} with $\mathcal{I} = Exh(\phi)$ for a lower semicontinuous submeasure ϕ on \mathbb{N} . Then for all $f \in C(X)$,

$$L_n(f) \to_{\mathcal{I}} f \ (equi-ideal) \ on \ X \ ,$$
 (2)

if and only if

$$L_n(e_i) \to_{\mathcal{I}} e_i(equi - ideal) \text{ on } X \text{ with } e_i(x) = x^i, i = 0, 1, 2.$$
(3)

Proof. Since each $e_i \in C(X)$, i = 0,1,2, the implication $(2) \Rightarrow (3)$ is obvious. Assume now that (3) holds. Since f is bounded on X, we can write

 $|f(x)| \le M,$

where $M = ||f||_{C(X)}$. Also, since f is continuous on X, we write that for every $\varepsilon > 0$, there exists a number $\delta > 0$ such that $|f(t) - f(x)| < \varepsilon$ for all $x \in X$ satisfying $|t - x| < \delta$. Hence, we get

$$|f(t) - f(x)| < \varepsilon + \frac{2M}{\delta^2} \left(t - x\right)^2.$$
(4)

Since L_n is linear and positive, we obtain

$$\begin{aligned} |L_n(f;x) - f(x)| &\leq L_n(|f(t) - f(x)|;x) + M |L_n(e_0;x) - e_0(x)| \\ &\leq \left| L_n\left(\varepsilon + \frac{2M}{\delta^2}(t-x)^2;x\right) \right| + M |L_n(e_0;x) - e_0(x)| \\ &\leq \varepsilon + \left(\varepsilon + M + \frac{2Mx^2}{\delta^2}\right) |L_n(e_0;x) - e_0(x)| \\ &\quad + \frac{4Mx}{\delta^2} |L_n(e_1;x) - e_1(x)| + \frac{2M}{\delta^2} |L_n(e_2;x) - e_2(x)|, \end{aligned}$$

which implies that

$$|L_n(f;x) - f(x)| \le \varepsilon + N \sum_{i=0}^2 |L_n(e_i;x) - e_i(x)|,$$
(5)

where $N := \varepsilon + M + \frac{2M}{\delta^2} \left(||e_2||_{C(X)} + 2 ||e_1||_{C(X)} + 1 \right)$. Now, for a given r > 0 choose $\varepsilon > 0$ such that $\varepsilon < r$. Then define

$$\Psi(x,r) = \{ n \in \mathbb{N} : |L_n(f;x) - f(x)| \ge r \}$$

and

$$\Psi_i(x, \frac{r-\varepsilon}{3N}) := \left\{ n \in \mathbb{N} : |L_n(e_i; x) - e_i(x)| \ge \frac{r-\varepsilon}{3N} \right\} (i = 0, 1, 2).$$

It is easy to see that $\Psi(x,r) \subset \bigcup_{i=0}^{2} \Psi_i(x, \frac{r-\varepsilon}{3N})$. Thus, from the monotonicity of ϕ , it follows from (5) that

$$\phi\left(\Psi(x,r)\smallsetminus k\right) \le \phi\left(\left[\bigcup_{i=0}^{2}\Psi_{i}\left(x,\frac{r-\varepsilon}{3N}\right)\right]\smallsetminus k\right)$$
$$\le \sum_{i=0}^{2}\phi\left(\Psi_{i}\left(x,\frac{r-\varepsilon}{3N}\right)\smallsetminus k\right).$$
(6)

Then using the hypothesis (3) and considering Definition 2, the right-hand side of (6) tends to zero as $k \to \infty$. The proof is completed.

3. Remarks

1. If we take $\mathcal{I}_d = Exh(\phi)$ where $\phi(A) = \sup_{j \in \mathbb{N}} d_j(A)$ and $Fin = Exh(\phi)$ where

$$\phi(A) = \begin{cases} |A| , & \text{if } A \text{ is finite,} \\ \infty , & \text{if } A \text{ is infinite,} \end{cases}$$

then equi-ideal convergence is reduced to equi-statistical convergence and uniform convergence from Propositions 2.2 and 2.3 in [14]. Hence, we immediately get the equi-statistical Korovkin-type approximation theorem which was introduced by Karakuş, Demirci and Duman [11] and the classical Korovkin-type approximation theorem which was introduced by Korovkin [12].

2. Now we present a example such that our new approximation result works but its classical case and statistical case do not work. Let X = [0, 1]. To see this, first consider the following Meyer-König and Zeller polynomials introduced by W. Meyer-König and K. Zeller [13]:

$$M_{n}(f;x) = \sum_{k=0}^{\infty} p_{nk}(x) f\left(\frac{k}{n+k}\right), \ f \in C[0,1],$$

where $p_{nk}(x) = \binom{n+k}{k} x^k (1-x)^{n+1}$. It is known that $M_n(e_0; x) = e_0(x),$ $M_n(e_1; x) = e_1(x),$ $M_n(e_2; x) = e_2(x) + \eta_n(x) \le e_2(x) + \frac{x(1-x)}{n+1},$

where $\eta_n(x) = x(1-x)^{n+1} \sum_{k=0}^{\infty} \frac{(n+k-1)!}{(n-1)!k!} \frac{x^k}{n+k+1}$. Let $\mathcal{I}_d = Exh(\phi)$ where $\phi(A) = \sup_{j \in \mathbb{N}} d_j(A)$. Using these polynomials, we introduce the following positive linear operators

on C[0,1]:

$$D_n(f;x) = (1 + h_n(x))M_n(f;x), x \in [0,1] \text{ and } f \in C[0,1],$$
(7)

where $h_n(x)$ is defined as in Example 1. Then observe the Korovkin result that

$$D_n(e_0; x) = (1 + h_n(x))e_0(x),$$

$$D_n(e_1; x) = (1 + h_n(x))e_1(x),$$

$$D_n(e_2; x) \le (1 + h_n(x))\left[e_2(x) + \frac{x(1 - x)}{n + 1}\right].$$

Since $h_n \to_{\mathcal{I}_d} h = 0$ (equi - ideal) on [0, 1], we conclude that

$$D_n(e_i) \rightarrow_{\mathcal{I}_d} e_i(equi - ideal)$$
 on $[0, 1]$ for each $i = 0, 1, 2$.

So, by Theorem 1, we immediately see that

$$D_n(f) \rightarrow_{\mathcal{I}_d} f(equi - ideal)$$
 on $[0, 1]$ for all $i = 0, 1, 2$.

However, since (h_n) is not uniform ideal (uniform statistical) convergent to the function h = 0 on the interval [0, 1], we can say that Theorem 1 of [8] does not work for our operators defined by (7). Furthermore, since (h_n) is not uniformly convergent (in the ordinary sense) to the function h = 0 on [0, 1], the classical Korovkin-type approximation theorem does not work either. Therefore, this application clearly shows that our Theorem 1 is a non-trivial generalization of the classical and the statistical cases of the Korovkin results.

4. Rate of convergence

In this section, we compute the rates of equi-ideal convergence of a sequence of positive linear operators defined on C(X) by means of the modulus of continuity. Now we give the following definition.

Definition 6. Let \mathcal{I} be an analytic *P*-ideal on \mathbb{N} with $\mathcal{I} = Exh(\phi)$ for a lower semicontinuouos submeasure ϕ on \mathbb{N} . The sequence (f_n) is equi-ideal convergent to f with degree $0 < \beta < 1$ if for each $\varepsilon > 0$,

$$\lim_{k \to \infty} \frac{\phi\left(\Psi(x,\varepsilon) \smallsetminus k\right)}{k^{1-\beta}} = 0$$

uniformly with respect to x. In this case we write $f_k - f = o(k^{-\beta})(equi - ideal)$ on X.

The fact that the notion introduced in this definition does not depend on ϕ can be easily shown by Proposition 2.1 given in [14].

Now we remind of the concept of the modulus of continuity. For $f \in C(X)$, the modulus of continuity of f, denoted by $\omega(f; \delta)$, is defined to be

$$\omega\left(f;\delta\right) = \sup_{|y-x|<\delta, \ x,y\in X} \left|f\left(y\right) - f\left(x\right)\right|.$$

It is also well known that for any $\delta > 0$ and each $x, y \in X$

$$|f(y) - f(x)| \le \omega (f; \delta) \left(\frac{|y - x|}{\delta} + 1\right)$$

We will need the following lemma.

Lemma 2. Let (f_n) and (g_n) be function sequences belonging to C(X). Assume that $f_k \to f = o(k^{-\beta_0})$ (equi-ideal) on X and $g_k - g = o(k^{-\beta_1})$ (equi-ideal) on X. Let $\beta = \min \{\beta_0, \beta_1\}$. Then the following statements hold:

- (i) $(f_k + g_k) (f + g) = o(k^{-\beta})$ (equi ideal) on X,
- (*ii*) $(f_k f) (g_k g) = o(k^{-\beta})$ (equi ideal) on X,
- (iii) $\lambda(f_k f) = o(k^{-\beta_0})$ (equi ideal) on X, for any real number λ ,
- (iv) $\sqrt{|f_k f|} = o(k^{-\beta_0})$ (equi ideal) on X.

Proof. (i) Assume that $f_k - f = o(k^{-\beta_0})$ (equi - ideal) on X and that $g_k - g = o(k^{-\beta_1})$ (equi - ideal) on X. Also, for $\varepsilon > 0$ and $x \in X$ define

$$\Psi(x,\varepsilon) := \{n : |(f_n + g_n)(x) - (f + g)(x)| \ge \varepsilon\}$$

$$\Psi_0\left(x,\frac{\varepsilon}{2}\right) := \{n : |f_n(x) - f(x)| \ge \frac{\varepsilon}{2}\},$$

$$\Psi_1\left(x,\frac{\varepsilon}{2}\right) := \{n : |g_n(x) - g(x)| \ge \frac{\varepsilon}{2}\}.$$

Then, observe that

$$\Psi(x,\varepsilon) \subset \Psi_0\left(x,\frac{\varepsilon}{2}\right) \cup \Psi_1\left(x,\frac{\varepsilon}{2}\right),$$

which gives

$$\frac{\phi\left(\Psi(x,\varepsilon)\smallsetminus k\right)}{k^{1-\beta}} \le \frac{\phi\left(\Psi_0\left(x,\frac{\varepsilon}{2}\right)\smallsetminus k\right)}{k^{1-\beta_0}} + \frac{\phi\left(\Psi_1\left(x,\frac{\varepsilon}{2}\right)\smallsetminus k\right)}{k^{1-\beta_1}},\tag{8}$$

where $\beta = \min \{\beta_0, \beta_1\}$. Now by taking limit as $k \to \infty$ in (8) and using the hypotheses, we conclude that

$$\lim_{k \to \infty} \frac{\phi\left(\Psi(x,\varepsilon) \smallsetminus k\right)}{k^{1-\beta}} = 0, \text{ for all } x \in X,$$

which completes the proof of (i). Since the proofs of (ii), (iii) and (iv) are similar, they are omitted.

Then we have the following result.

Theorem 2. Let X be a compact subset of the real numbers, and let $\{L_n\}$ be a sequence of positive linear operators acting from C(X) into itself. Assume that \mathcal{I} is an analytic P-ideal on \mathbb{N} with $\mathcal{I} = Exh(\phi)$ for a lower semicontinuous submeasure ϕ on \mathbb{N} . Assume that the following conditions hold:

- (i) $L_k(e_0) e_0 = o(k^{-\beta_0})$ (equi ideal) on X,
- (ii) $\omega(f, \alpha_k) = o(k^{-\beta_1})$ (equi ideal) on X, where $\alpha_k(x) = \sqrt{L_k(\varphi_x; x)}$ with $\varphi_x(y) = (y x)^2$.

Then we have, for all $f \in C(X)$,

$$L_k(f) - f = o(k^{-\beta})(equi - ideal) \text{ on } X,$$

where $\beta = \min \{\beta_0, \beta_1\}.$

Proof. Let $f \in C(X)$ and $x \in X$. It is known that ([1],[3]),

$$|L_n(f;x) - f(x)| \le M |L_n(e_0;x) - e_0(x)| + \left\{ L_n(e_0;x) + \sqrt{L_n(e_0;x)} \right\} w(f,\alpha_n),$$

where $M := ||f||_{C(X)}$. Then, we get

$$\begin{aligned} |L_n(f;x) - f(x)| &\leq M \left| L_n(e_0;x) - e_0(x) \right| + 2w(f,\alpha_n) + \left| L_n(e_0;x) - e_0(x) \right| w(f,\alpha_n) \\ &+ \sqrt{|L_n(e_0;x) - e_0(x)|} w(f,\alpha_n). \end{aligned}$$

Using the hypotheses (i), (ii), Lemma 2 and the monotonicity of ϕ in the above inequality, the proof is completed at once.

5. A Voronovskaya-type theorem

In this section, we obtain a Voronovskaya-type theorem equi-ideal case for the positive linear operators $\{D_n\}$ given by (7) with respect to the ideal \mathcal{I}_d .

Theorem 3. For every $f \in C[0,1]$ such that $f', f'' \in C[0,1]$, we have

$$n\{D_n(f) - f\} = \frac{x(1-x)^2}{2}f''(x) \ (equi-ideal) \ on \ [0,1].$$

Proof. Let $x \in [0,1]$ and $f, f', f'' \in C[0,1]$. Define the function ξ_x by

$$\xi_{x}(t) = \begin{cases} \frac{f(t) - f(x) - f'(x)(t-x) - \frac{1}{2}f''(x)(t-x)^{2}}{(t-x)^{2}} , t \neq x, \\ 0 , t = x. \end{cases}$$

Then by assumption we get $\xi_x(t) = 0$ and $\xi_x \in C[0,1]$. By the Taylor formula for $f \in C[0,1]$, we have

$$f(t) = f(x) + f'(x)(t-x) + \frac{1}{2}f''(x)(t-x)^2 + \xi_x(t)(t-x)^2.$$

From the linearity D_n , we obtain

$$D_{n}(f;x) = f(x) D_{n}(1;x) + f'(x) D_{n}(t-x;x) + \frac{1}{2}f''(x) D_{n}\left((t-x)^{2};x\right) + D_{n}\left(\xi_{x}(t)(t-x)^{2};x\right).$$

Since $M_n\left((t-x)^2; x\right) = \frac{x(1-x)^2}{n} + O\left(\frac{1}{n^2}\right)$ (see, [4],[13]), we obtain $D_n\left(f; x\right) - f\left(x\right) = f\left(x\right)h_n\left(x\right) + \frac{1}{2}f^{''}\left(x\right)\frac{x\left(1-x\right)^2}{n} + \frac{1}{2}f^{''}\left(x\right)O\left(\frac{1}{n^2}\right)$ $+ \frac{1}{2}f^{''}\left(x\right)h_n\left(x\right)\left\{\frac{x\left(1-x\right)^2}{n} + O\left(\frac{1}{n^2}\right)\right\}$ $+ D_n\left(\xi_x\left(t\right)\left(t-x\right)^2; x\right).$ (9)

Applying the Cauchy-Schwarz inequality for the last term on the right-hand side of (9), we get

$$\left| D_n\left(\xi_x(t)(t-x)^2;x\right) \right| \le \left(D_n\left(\xi_x^2(t);x\right) \right)^{1/2} \cdot \left(D_n\left((t-x)^4;x\right) \right)^{1/2} := g_n(x).$$

Let $\varphi_x(t) = \xi_x^2(t)$. In this case, we will show that $\varphi_x(x) = 0$ and $\varphi_x \in C[0,1]$. From Theorem 1,

$$D_n\left(\varphi_x\left(t\right);x\right) = D_n\left(\xi_x^2\left(t\right);x\right) \to \varphi_x\left(x\right) = 0 \quad (equi-ideal) \quad \text{on } [0,1]. \tag{10}$$

Since for every $f \in C[0,1]$, $\|D_n(f)\|_{C[0,1]} \leq 2 \|f\|_{C[0,1]}$ and from (10), it follows that

$$g_n(x) = o\left(\frac{1}{n}\right) \to 0 \ (equi-ideal) \ \text{on} \ [0,1].$$
 (11)

Considering (9), (11) and also $h_n \to h = 0$ (equi - ideal) on [0, 1], we have

$$n\left\{ D_{n}\left(f;x
ight) -f\left(x
ight)
ight\} =rac{x\left(1-x
ight) ^{2}}{2}f^{^{\prime \prime }}\left(x
ight) \ \left(equi-ideal
ight) \ ext{on} \ \left[0,1
ight] .$$

Thus the proof is completed.

Acknowledgement

The authors are grateful to the referees for their careful reading of the article and their valuable suggestions.

References

- [1] F. ALTOMARE, M. CAMPITI, Korovkin type approximation theory and its application, Walter de Gryter Publ., Berlin, 1994.
- [2] M. BALCERZAK, K. DEMS, A. KOMISARSKI, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328(2007), 715–729.
- [3] R. A. DEVORE, The Approximation of Continuous Functions by Positive Linear Operators, Lecture Notes in Mathematics 293, Spinger-Verlag, New York, 1972.
- [4] R. A. DEVORE, The Approximation of Continuous Functions by Positive Linear Operators for Functions of Bounded Variation, J. Approx. Theory 56(1989), 245–255.

- [5] O. DUMAN, M. K. KHAN, C. ORHAN, A-Statistical convergence of approximating operators, Math. Inequal. Appl. 4(2003), 689–699.
- [6] E. ERKUŞ, O. DUMAN, H. M. SRIVASTAVA, Statistical approximation of certain positive linear operators constructed by means of the Chan-Chyan-Srivastava polynomials, Appl. Math. Comput. 182(2006), 213–222.
- [7] E. ERKUŞ, O. DUMAN, A Korovkin type approximation theorem in statistical sense, Studia. Sci. Math. Hungar. 43(2006), 285–244.
- [8] A. D. GADJIEV, C. ORHAN, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(2002), 129–138.
- [9] I. FARAH, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. **148**(2000), p.xvi+177.
- [10] H. FAST, Sur la convergence statistique, Colloq. Math. 2(1951), 241–244.
- [11] S. KARAKUŞ, K. DEMIRCI, O. DUMAN, Equi-statistical convergence of positive linear operators, J. Math. Anal. Appl. 339(2008), 1065-1072.
- [12] P. P. KOROVKIN, Linear operators and approximation theory, Hindustan Publ. Co., Delhi, 1960.
- [13] W. MEYER-KÖNIG, K. ZELLER, Bernsteiniche Potenzreihen, Studia Math. 19(1960), 89–94.
- [14] N. MROŻEK, Ideal version of Egorov's theorem for analytic P-ideals, J. Math. Anal. Appl. 349(2009), 452–458.
- [15] S. SOLECKI, Analytic ideals and their applications, Ann. Pure Appl. Logic 99(1999), 51–72.
- [16] S. SOLECKI, Local inverses of Borel homomorphisms and analytic P-ideals, Abst. Appl. Anal. (2005), 207–219.