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Abstract. In this paper, using equi-ideal convergence, we introduce a non-trivial gener-
alization of the classical and the statistical cases of the Korovkin approximation theorem.
We also compute the rates of equi-ideal convergence of sequences of positive linear oper-
ators. Furthermore, we obtain a Voronovskaya-type theorem in the equi-ideal sense for a
sequence of positive linear operators constructed by means of the Meyer-Konig and Zeller
polynomials.
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1. Introduction

A generalization of statistical convergence is based on the structure of the ideal Z
of subsets of N, the set of natural numbers. A non-void class Z C P (N) is called
the ideal if Z is additive (i.e., A,B € Z= AU B € 7) and hereditary (i.e., A € Z,
B C A= B € I). Throughout in this paper we consider ideals which are different
from P (N) and contain all finite sets. Equip P (N) with the Cantor space topology,
identifying subsets of N with their characteristic functions. The ideal which consists
of all finite sets is denoted by Fin. An ideal Z is a P-ideal if for every sequence
(An),en of sets from T there is an A € T such that A, \ A is finite for all n. Also,
an ideal 7 is analytic if it is a continuous image of a G subset of the Cantor-space.
A map ¢ : P(N) — [0,00] is a submeasure on N if for all A, B C N,

¢ (0) =0,
¢(A) <¢9(AUB) < ¢(A)+¢(B).

It is lower semicontinuous if for all A C N, we have

6(4) = lm ¢(ANn).
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For any lower semicontinuous submeasure on N, let [[Al[, : P (N) — [0,00] be a
submeasure defined by
|All, =limsup ¢ (A~n)= lim ¢(A\n),

n—oo

where the second equality follows by the monotonicity of ¢. Let
Exh(9) = {A S N: ], =0},
Fin(¢) ={ACN:¢(A) < oo}.

It is clear that Fxh (¢) and F'in(¢) are ideals (not necessarily proper) for an arbitrary
submeasure ¢ ( for detail, see [14], [15]). All analytic P-ideals are characterized by
Solecki [15] as follows:

Let Z be an ideal on N. 7 is an analytic P-ideal iff 7 = Exh (¢) for some lower
semicontinuous submeasure ¢ on N.

Let us introduce the following examples of analytic P-ideals [16], (see [9] for more
examples).

e A nontrivial analytic P-ideal is the ideal of sets of statistical density zero, i.e.

Iy = {ACN: lim sup dj(A):O},

j—oo

where d; (A) = 4% is the jth partial density of A, where the symbol |B| denotes

J
the cardinality of the set B. If we denote ¢4(A) = sup {M (j € N} , then 7y =

J
Exh (¢q) -
o Let

1
71 =< ACN: Z<oo}.
" { nGAn+1

If ¢ is a submeasure defined by ¢(A4) = > n%_l, then Z. = Fin(9).
ncA "

Recently various kinds of ideal convergence (equi-ideal convergence), which is
an extension of equi-statistical convergence to the class of all analytic P-ideals for
sequences of functions, have been introduced by Mrozek [14].

An analytic P-ideal on N need not be determined by a unique lower semicontinu-
ous submeasure ¢ on N. Mrozek proved that equi-ideal convergence does not depend
on the choice of ¢ ([14], Prop. 2.1), and he observed that a similar property holds
for pointwise and uniform ideal convergence. This fact will be used in the proof of
Theorem 2.1 where a fixed function ¢ associated with an ideal Z is considered. We
first recall these convergence methods.

Let f and f, belong to C'(X), which is the space of all continuous real valued
function on a compact subset X of the real numbers. Throughout the paper, we use
the following notations.

Vo) i = neNs |fulw) = f@)] 2 ¢} (o € X) (1)
)= {neN: lIfa~fllog 2 <}

where € > 0 and || f[|¢(x) denotes the usual supremum norm of f in C'(X).
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Definition 1 (see [14]). Let Z be an analytic P-ideal on N with T = Exh () for
a lower semicontinuouos submeasure ¢ on N. (f,) is said to be pointwise ideal

convergent to f on X if for every e > 0 and for each x € X, klim ¢ (U(z,e) N k)=0.

In this case we write f, —7 f(ideal) on X.

Definition 2 (see [14]). Let T be an analytic P-ideal on N with T = Exh (¢) for a
lower semicontinuouos submeasure ¢ on N. (f,) is said to be equi-ideal convergent
to f on X if for every e > 0,

klim ¢ (¥(z,e) N k)=0

uniformly with respect to x € X. In this case we write f, —1 f (equi — ideal) on
X.

Definition 3 (see [14]). Let Z be an analytic P-ideal on N with T = Exh (¢) for

a lower semicontinuouos submeasure ¢ on N. (f,) is said to be uniform ideal con-

vergent to f on X if for every e > 0, klim @ (®(e) N k) = 0. In this case we write
—00

fn =7 f (ideal) on X.
Using the definitions, the next result follows immediately.

Lemma 1. Let Z be an analytic P-ideal on N with T = Exh () for a lower semi-
continuouos submeasure ¢ on N. f,, = f on X implies [, =1 f (ideal) on X, which
also implies f,, —1 [ (equi —ideal) on X. Furthermore, f, —1 f (equi — ideal) on
X implies fr, —7 [ (ideal) on X, and f, — f on X (in the ordinary sense) implies
fn —1 f (ideal) on X.

Definition 4 (see [2]). (fn) is said to be equi-statistically convergent to f on X if
Ve > 0, lim w = 0 wniformly with respect to x € X. In this case we write
fn — f(equi — stat) on X.

Definition 5 (see [11]). (fn) is said to be statistically uniform convergent to f on
X if Ve > 0, lim @ = 0. In this case we write f, = f (stat) on X.

However, one can construct examples which guarantee that the converses of
Lemma 1 are not always true. Such an example was given Balcerzak et al. [2]
as follows.

Example 1. Let X = [0,1] and h is a function by h () =0 for x € [0,1]. For each
n € N, define h, € C[0,1] by

2 (2 —55) i@ € [5r g — g
ho(x) =3 —2"" (2 — 5i1) |, if 2 € (i1 — 5ors 3ot
0 , otherwise.

Then it is easy to show that h, is equi-ideal (equi-statistical) convergent to h on
X with respect to the ideal Ty. But (hy) is not uniform ideal (statistical uniform)
convergent and uniform convergent to the function h =0 on X.

The classical Korovkin theory is mainly connected with the approximation of
continuous functions by means of positive linear operators (see, for instance [1, 12]).
In recent years, with the help of the concept of statistical convergence [10], various
statistical approximation results have been proved (see [5, 6, 7, 8, 11]).
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2. A Korovkin-type approximation theorem

In this section, using a similar technique in the proof of Theorem 2.1 in [11], we give
a Korovkin-type theorem for sequences of positive linear operators defined on C (X)
using the concept of equi-ideal convergence.

Theorem 1. Let X be a compact subset of the real numbers, and let {L,} be a
sequence of positive linear operators acting from C(X) into itself. Assume that T is
an analytic P-ideal on N with T = Exh (¢) for a lower semicontinuouos submeasure
¢ on N. Then for all f € C(X),

Lo (f) =71 f (equi — ideal) on X , (2)
if and only if
Ly, (e;) —1 eilequi — ideal) on X with e;(x) = x*, i = 0,1,2. (3)

Proof. Since each e; € C(X), i = 0,1,2, the implication (2)=-(3) is obvious. Assume
now that (3) holds. Since f is bounded on X, we can write

f (z)] < M,

where M = || f]l¢(x) - Also, since f is continuous on X, we write that for every e > 0,
there exists a number 6 > 0 such that |f (t) — f (z)| < e for all z € X satisfying
[t — x| < §. Hence, we get

2M
F (1) = f@)] <e+ =5 (t—2)”. (4)
Since L,, is linear and positive, we obtain

1L (f;2) = [ (2)] < L (If (8) = f (@)[52) + M [ Ly (€05 ) — €q (2)]

2M
< |L, <5+ 52(1&—3:)2;1‘) + M |L, (eg; ) — eq ()|
2M 2
<e+ (5 + M+ 52) |L,(eo;x) — eg(z)]
AMx 2M
JF(;T |Ln(e1;x) —er(x)| + 52 |Ln(e2;7) — ea()],
which implies that
2
Ln(f;2) = f(@)] e+ NY_ |Ln(ess ) — ex(w)] ()

=0

where N := ¢+ M + Zf (||€2||C(X) +2lexlle + 1). Now, for a given r > 0
choose € > 0 such that € < r. Then define

U(z,r) ={neN: [Lo(f;2) - f(x)] =7}
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and

r—e r—e

U, (z, 37) = {n eN: |Ly(e;z) —ei(z)| > N }(z =0,1,2).

2
It is easy to see that ¥(z,r) C ‘UO\I’Z'(ZL' 2~ ). Thus, from the monotonicity of ¢, it
i=

' 3N
follows from (5) that

=0 3N
< iqs(qfi(x,g]_vg) \k>. (6)

Then using the hypothesis (3) and considering Definition 2, the right-hand side of
(6) tends to zero as k — oo. The proof is completed. O

s~ 1) < o[ Bue 5] )

3. Remarks

1. If we take Zy = Exh (¢) where ¢ (A) = supd,; (A) and Fin = Exh (¢) where
jEN

|A|, if A is finite,

oo , if A is infinite,

o) ={

then equi-ideal convergence is reduced to equi-statistical convergence and uniform
convergence from Propositions 2.2 and 2.3 in [14]. Hence, we immediately get
the equi-statistical Korovkin-type approximation theorem which was introduced by
Karakug, Demirci and Duman [11] and the classical Korovkin-type approximation
theorem which was introduced by Korovkin [12].

2. Now we present a example such that our new approximation result works but
its classical case and statistical case do not work. Let X = [0,1]. To see this,
first consider the following Meyer-Konig and Zeller polynomials introduced by W.
Meyer-Konig and K. Zeller [13]:

> k
> e ()

where ppi(z) = (n ;: k) 2% (1 — )" It is known that

(1 —x)

My(exs) = ea(w) + 1 (2) < ealw) + o

)

where 1, (z) = z(1—xz)"*! kz %t’;,?,‘ #1:-&-1 Let Zy = Exh (¢) where ¢ (A) = sup
=0 JjE

d; (A). Using these polynomials, we introduce the following positive linear operators
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on C[0,1] :
Dy (f;x) = (1 + ho(x)My(f;2),  €[0,1] and f € C'[0,1], (7)

where h, (x) is defined as in Example 1. Then observe the Korovkin result that

Dy (eo;x) = (1+ hn(w))eo(x),
Dn(el;x) = (1 + hn(x))el(x)a
z(1—x)

Dy(ez;z) < (1+ hn(2)) |e2(z) + n+1

Since hy, —z, h = 0 (equi — ideal) on [0, 1], we conclude that
D, (e;) —1, ei(equi — ideal) on [0,1] for each i = 0,1, 2.
So, by Theorem 1, we immediately see that
D, (f) —z, f(equi —ideal) on [0,1] for all i =0,1,2.

However, since (hy,) is not uniform ideal (uniform statistical) convergent to the
function h = 0 on the interval [0, 1], we can say that Theorem 1 of [8] does not work
for our operators defined by (7). Furthermore, since (h,,) is not uniformly convergent
(in the ordinary sense) to the function h = 0 on [0, 1], the classical Korovkin-type
approximation theorem does not work either. Therefore, this application clearly
shows that our Theorem 1 is a non-trivial generalization of the classical and the
statistical cases of the Korovkin results.

4. Rate of convergence

In this section, we compute the rates of equi-ideal convergence of a sequence of
positive linear operators defined on C' (X) by means of the modulus of continuity.
Now we give the following definition.

Definition 6. Let T be an analytic P-ideal on N with T = Exzh(¢) for a lower
semicontinuouos submeasure ¢ on N. The sequence (fy,) is equi-ideal convergent to
f with degree 0 < 8 < 1 if for each € > 0,

lim ¢ (U(x,e) N k)

k—oo ki-8 =0

uniformly with respect to x. In this case we write f — f = o (k_ﬂ) (equi — ideal)
on X.

The fact that the notion introduced in this definition does not depend on ¢ can
be easily shown by Proposition 2.1 given in [14].

Now we remind of the concept of the modulus of continuity. For f € C (X), the
modulus of continuity of f, denoted by w (f;d), is defined to be

w(f;0) = sup If (y) = f(@)].

ly—z|<9d, z,yeX
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It is also well known that for any § > 0 and each z,y € X

@)~ £ (@) <w(f:6) ('y;‘”' +1>.

We will need the following lemma.

Lemma 2. Let (f,) and (gn) be function sequences belonging to C (X). Assume
that fr — f =0 (k™) (equi —ideal) on X and gr — g = o(k™P") (equi — ideal) on
X. Let § =min{fy, #1}. Then the following statements hold:

(i) (fe +gx) — (f +g) = o(k™P) (equi — ideal) on X,
(ii) (fx — f) — (gx — 9) = o(k™P) (equi — ideal) on X,
(i15) M fx — f) = o(k=7°) (equi — ideal) on X, for any real number X,
(iv) \/|fr — f| = o(k~5) (equi — ideal) on X.
Proof. (i) Assume that fi, — f = o(k="°) (equi — ideal) on X and that g — g =
o(k=P1) (equi — ideal) on X. Also, for ¢ > 0 and € X define
U(z,e): ={n:|(fn+9n) (@) = (f +9)(x)] = e}
W (2.5) = {n:1fa@) - f@) 2 S}

W (2,5) = {n:lonle) - g@)| = S}

Then, observe that

€ €
U (x,e) C ¥y (:C,E) U, (x, 5) ,

which gives

¢ (U(x,€) N k)

) ¢ (Yo (z.5) k)  ¢(%1(2,5) k)

< k1—Bo f1-p51 ’ (8)

where 8 = min{fy, f1}. Now by taking limit as & — oo in (8) and using the
hypotheses, we conclude that

lim ¢ (U(xz,e) N k)

R RE=G =0, forall x € X,
oo

which completes the proof of (7). Since the proofs of (i7), (ii7) and (iv) are similar,
they are omitted. O

Then we have the following result.

Theorem 2. Let X be a compact subset of the real numbers, and let {L,} be a
sequence of positive linear operators acting from C(X) into itself. Assume that T is
an analytic P-ideal on N with T = Exh (¢) for a lower semicontinuouos submeasure
¢ on N. Assume that the following conditions hold:
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(i) Ly(eq) —eg = o(k=7°) (equi — ideal) on X,

(ii) w(f,ar) = o(k=") (equi — ideal) on X, where ay(x) = \/Li(pe;x) with
ealy) = (y — o).

Then we have, for all f € C(X),
Li(f) — f = o(k™?)(equi — ideal) on X,
where 3 = min {fy, 51}
Proof. Let f € C(X) and z € X. It is known that ([1],[3]),
[Lu(fi) = (@) € M |La(eoiz) = eo@)| + { Luleoia) + Inaleoi) | w(f. an),
where M := ||| c(x)- Then, we get

\Ln(f32) = f(2)] < M |Ln(eo; 2) = eo(2)| + 2w(f, an) + |Ln(eo; 2) = eo(2)| w(f; an)
+/|Ln(eo; ) — eo()[w(f, an).

Using the hypotheses (i), (i7), Lemma 2 and the monotonicity of ¢ in the above
inequality, the proof is completed at once. O

5. A Voronovskaya-type theorem

In this section, we obtain a Voronovskaya-type theorem equi-ideal case for the pos-
itive linear operators {D,,} given by (7) with respect to the ideal Z.

Theorem 3. For every f € C[0,1] such that fofec [0, 1], we have

x(l —x)2 "

n{D, (f)— f} = 3 f (z) (equi —ideal) on [0,1].

Proof. Let z € [0,1] and f, f', f € C'[0,1]. Define the function &, by

(t—z)?

FO)—f(@)~f (@) (t—2) =11 (@) (t—2)*
é‘x t) — 9 t 7é x,
0 ,t=ux.

Then by assumption we get &, (t) = 0 and &, € C'[0,1]. By the Taylor formula for
f € C|0,1], we have

FU) = @)+ F @) =)+ 55 @) (= + & (1) (-2

From the linearity D,,, we obtain

Dy (f;2) = f(x) D (12) + f () Dy (t — w32) + %f” (2) D (¢~ 2)*32)

+D, (@ (t) (t — 2)?; x) .
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Since M, ((t —a)? ;x) = @ + O (25) (see, [4],[13]), we obtain

Dalfin) = £ @) = @) @)+ 58 @) T4 5 @0 ()
58 @) o (@) {m(ln) O (Jz)}
D, (& (1) (= 0) ). Y

Applying the Cauchy-Schwarz inequality for the last term on the right-hand side of
(9), we get

’Dn (fm ) (t— :c)2 ,x)’ < (Dn (fi (t) ;x))1/2 . (Dn ((t - x)4 ; x))1/2 = gn ().

Let @, (t) = €2 (t). In this case, we will show that ¢, (z) = 0 and ¢, € C|0,1].
From Theorem 1,

D, (¢ (t);x) = D, (fi (t);x) — @u (¥) =0 (equi — ideal) on [0,1]. (10)

Since for every f € C'[0,1], [ Dy (Hllcpa) < 2[fllcp,y and from (10), it follows
that

gn () =0 <1> — 0 (equi — ideal) on [0,1]. (11)
n
Considering (9), (11) and also h,, — h = 0 (equi — ideal) on [0, 1], we have

n{D, (f;z) — f(x)} = @ #' () (equi —ideal) on [0,1].

Thus the proof is completed. O
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