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Abstract. In this paper, we consider a system of generalized variational inequalities. We
introduce an iterative algorithm for the system of generalized variational inequalities and
study the algorithmic convergence analysis. Strong convergence theorems are established.
The results presented in this paper mainly improve and extend the corresponding results
announced by many others.
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1. Introduction

Variational inequalities and variational inclusions are among the most interesting
and important mathematical problems and have been studied intensively in the past
years. They have wide applications in mechanics, physics, optimization and control,
nonlinear programming, economics and transportation equilibrium, engineering sci-
ences, etc. For details, we can refer to [1-29, 31] and the references therein. In the
theory of variational inequalities, the development of an efficient and implementable
iterative algorithm is interesting and important. Various kinds of iterative algo-
rithms for solving variational inequalities have been developed by many authors.
Among these methods, the projection methods which have been applied widely to
problems arising especially from complementarity, convex quadratic programming,
and variational problems are interesting and important. Recently, Chang et al. [2]
and Huang and Noor [7] considered new systems of nonlinear variational inequalities
and studied the approximate solvability of this system based on projection meth-
ods. In this paper, we consider, based on the projection method, the approximate
solvability of a system of nonlinear relaxed cocoercive general variational inequalities
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within the framework of Hilbert spaces. The results obtained in this paper generalize
the results of Chang et al. [2], Huang and Noor [7] and some others.

Let H be a real Hilbert space, whose inner product and norm are denoted by
〈·, ·〉 and ‖ ·‖. Let C be a nonempty closed and convex subset of H. Given nonlinear
operators T : C → H and g : C → C, we consider the problem of finding u ∈ C such
that

〈Tu, v − g(u)〉 ≥ 0, ∀v ∈ C. (1)

The generalized variational inequality (1) was introduced by Noor in 1988, see [11, 9]
for more details.

(I) If g = I, the identity operator, then the generalized variational inequality (1)
is equivalent to finding u ∈ C such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ C, (2)

which is known as the classical variational inequality, originally introduced and stud-
ied by Stampacchia [26].

(II) If C∗ = {u ∈ H : 〈u, v〉 ≥ 0, ∀v ∈ C} is a polar cone of the convex cone C
in H, then the generalized variational inequality (1) is equivalent to finding u ∈ C
such that

Tu ∈ C∗ and 〈Tu, g(u)〉 = 0,

which is known as the general nonlinear complementarity problem, which includes
many previously known complementarity problems as special cases.

Next, we consider the following definition:

Definition 1 (see [16, 15]). Let C be a nonempty convex subset of a Hilbert space
H. C is said to be g-convex if and only if there exists a mapping g : C → C such
that

g(x) + λ(y − g(x)) ∈ C, ∀x, y ∈ C,

where λ ∈ (0, 1). Note that every convex set is g-convex, but the converse is not true,
see [5, 30] for more details.

Definition 2 (see [16, 15]). The function F : C → H is said to be g-convex, if there
exists a function g : C → C such that

F (g(x) + λ(y − g(x))) ≤ (1− λ)F (g(x)) + λF (y)

for all x, y ∈ C and λ ∈ (0, 1).

Next, we show that the minimum of a differentiable g-convex function on a g-
convex subset C can be characterized by the generalized variational inequality (1).

Lemma 1. Let C be a nonempty g-convex subset of a real Hilbert space H and
F : C → H a differentiable g-convex function. Then g(u) ∈ C is the minimum of
the function F on C if and only if g(u) ∈ C satisfies:

〈F ′(g(u)
)
, v − g(u)〉 ≥ 0, ∀v ∈ C, (3)

where F ′(·) is the differential of F at g(u) ∈ C.
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Proof. Let g(u) ∈ C be a minimum of the differentiable g-convex function F . Since
the subset C is g-convex, for any v ∈ C we have that g(u) + λ(v− g(u)) ∈ C, where
λ ∈ (0, 1). It follows that

F (g(u) + λ(v − g(u)))− F (g(u)) ≥ 0.

Dividing the above inequality by λ and letting λ → 0 we have that (3) holds.
Conversely, let g(u) satisfy the inequality (3). Since F is a g-convex function, for

all u, v ∈ C and λ ∈ (0, 1), we have

F (g(u) + λ(v − g(u))) ≤ (1− λ)F (g(u)) + λF (v),

which implies that

F (v)− F (g(u)) ≥ F (g(u) + λ(v − g(u)))− F (g(u))
λ

Letting λ → 0, from (3) we obtain that

F (v)− F (g(u)) ≥ 〈F ′(g(u)
)
, v − g(u)〉 ≥ 0,

from which it follows that

F (g(u)) ≤ F (v), ∀v ∈ C.

This shows that g(u) is the minimum of F on C. This completes the proof.

Lemma 1 implies that g-convex programming problems can be studied via the
generalized variational inequality (1) with Tu = F ′(g(u))

Recall the following definitions:
(1) T is said to be monotone if

〈Tu− Tv, u− v〉 ≥ 0, ∀u, v ∈ C.

(2) T is said to be r-strongly monotone if there exists a constant r > 0 such that

〈Tx− Ty, x− y〉 ≥ r‖x− y‖2, ∀x, y ∈ C.

This implies that

‖Tx− Ty‖ ≥ r‖x− y‖, ∀x, y ∈ C.

(3) T is said to be γ-cocoercive if there exists a constant γ > 0 such that

〈Tx− Ty, x− y〉 ≥ γ‖Tx− Ty‖2, ∀x, y ∈ C.

Clearly, every γ-cocoercive mapping T is 1
γ -Lipschitz continuous.

(4) T is said to be relaxed γ-cocoercive if there exists a constant γ > 0 such that

〈Tx− Ty, x− y〉 ≥ (−γ)‖Tx− Ty‖2, ∀x, y ∈ C.
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(5) T is said to be relaxed (γ, r)-cocoercive if there exist two constants γ, r > 0
such that

〈Tx− Ty, x− y〉 ≥ (−γ)‖Tx− Ty‖2 + r‖x− y‖2, ∀x, y ∈ C.

(6) Recall that a mapping S : C → C is said to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

In this paper, we use F (S) to denote the set of fixed points of S.
Next, we now recall the following well-known results.

Lemma 2. For given z ∈ H and u ∈ C, we see that the following inequality holds

〈z − u, u− v〉 ≥ 0, ∀v ∈ C,

if and only if u = PCz, where PC is the projection from H onto C.

Lemma 3. u ∈ C satisfies the generalized variational inequality (1), if and only if
u satisfies the relation:

g(u) = PC [g(u)− ρTu], (4)

where ρ > 0 is a constant and PC is the metric projection of H onto C.

Proof. Let u ∈ C be a solution of (1). Then we have the following:

〈g(u)− ρTu− g(u), g(u)− v〉 ≥ 0, ∀v ∈ C.

From Lemma 1, we see that (4) holds. This completes the proof.
Next, we assume that u ∈ C satisfies (4). From Lemma 2, we have

〈Tu, v − g(u)〉 ≥ 0, ∀v ∈ C.

This completes the proof.

Lemma 3 implies that (1) and (4) are equivalent. This alternative formulation
is very important from the numerical analysis point of view. Let T : C → H be a
nonlinear mapping.

Let T1, T2 : C × C → H and g1, g2 : C → C be nonlinear mappings. Consider a
system of nonlinear variational inequality (SNVI) problem as follows:

Find (x∗, y∗) ∈ C × C such that

〈sT1(y∗, x∗) + g1(x∗)− g1(y∗), x− g1(x∗)〉 ≥ 0, ∀x ∈ C, s > 0, (5)
〈tT2(x∗, y∗) + g2(y∗)− g2(x∗), x− g2(y∗)〉 ≥ 0, ∀x ∈ C, t > 0. (6)

In this paper, we denote the solution set of the SNVI problem (5)-(6) by Ω1.
If T1 = T2 are univariate mappings in the system of general variational inequali-

ties (5)-(6), then we see that the system of general variational inequalities is reduced
to the general variational inequality (1) by adding up the requirement x∗ = y∗.



Generalized variational inequalities 183

From Lemma 3, one can easily see that the SNVI problems (5) and (6) are
equivalent to the following projection formulas:

g1(x∗) = PC [g1(y∗)− sT1(y∗, x∗)], s > 0, (7)
g2(y∗) = PC [g2(x∗)− tT2(x∗, y∗)], t > 0, (8)

respectively, where PC is the projection of H onto C.
Next, we consider some special cases of the SNVI problems (5) and (6) as follows:
(I) If g1 = g2 = I, the identity operator, then the SNVI problems (5) and (6)

reduce to the following SNVI problem:
Find (x∗, y∗) ∈ C × C such that

〈sT1(y∗, x∗) + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C, s > 0, (9)
〈tT2(x∗, y∗) + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C, t > 0, (10)

which was considered by Huang and Noor [8]. Next, we shall denote the set of
solutions of the SNVI problem (9)-(10) by Ω2.

(II) If g1 = g2 = I, the identity operator and T1 = T2 = T , then the SNVI
problems (5) and (6) reduce to the following SNVI problem:

Find (x∗, y∗) ∈ C × C such that

〈sT (y∗, x∗) + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C, s > 0, (11)
〈tT (x∗, y∗) + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C, t > 0, (12)

which was considered by Chang et al. [2]. Next, we shall denote the set of solutions
of the SNVI problem (11)-(12) by Ω3.

(III) If C is a closed convex cone of H, then the SNVI problems (5) and (6) are
equivalent to the following system of nonlinear complementarity (SNC) problems:

Find (x∗, y∗) ∈ C × C such that

T1(y∗, x∗) ∈ C∗ and T2(x∗, y∗) ∈ C∗,

〈sT1(y∗, x∗) + g1(x∗)− g1(y∗), g1(x∗)〉 = 0, s > 0, (13)
〈tT2(x∗, y∗) + g2(y∗)− g2(x∗), g2(x∗)〉 = 0, t > 0, (14)

where C∗ is the polar cone to C defined by

C∗ = {f ∈ H : 〈f, x〉 ≥ 0, ∀x ∈ C}.

(IV) If g1 = g2 = g and T1 = T2 = T are univariate mappings, then the SVNI
problems (5) and (6) reduce to the following SNVI problems:

Find (x∗, y∗) ∈ H ×H such that

〈sT (y∗) + g(x∗)− g(y∗), x− g(x∗)〉 ≥ 0, ∀x ∈ C, s > 0, (15)
〈tT (x∗) + g(y∗)− g(x∗), x− g(x∗)〉 ≥ 0, ∀x ∈ C, t > 0. (16)

Next, we use Ω4 to denote the set of solutions of the SNVI problem (15)-(16).
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One can easily get that the SNVI problems (15) and (16) are equivalent to the
following projection formulas:

g(x∗) = PC [g(y∗)− sT (y∗)], s > 0, (17)
g(y∗) = PC [g(x∗)− tT (x∗)], t > 0. (18)

By rewriting (17) and (18), we have
{

x∗ = x∗ − g(x∗) + PC [g(y∗)− sT (y∗, x∗)],
y∗ = y∗ − g(y∗) + PC [g(x∗)− tT (x∗, y∗)].

2. Algorithms

Let S1, S2 : C → C be nonexpansive mappings. Assume that Ω1 6= ∅, F (S1) 6= ∅
and F (S2) 6= ∅, respectively. Let x∗ ∈ F (S1), y∗ ∈ F (S2) and (x∗, y∗) ∈ Ω1. From
(7) and (8), we arrive at

{
x∗ = S1{x∗ − g1(x∗) + PC [g1(y∗)− sT1(y∗, x∗)]}, s > 0,

y∗ = S2{y∗ − g2(y∗) + PC [g2(x∗)− tT2(x∗, y∗)]}, t > 0.

Algorithm 1. For any (x0, y0) ∈ C × C, compute the sequences {xn} and {yn} by
the iterative process:
{

yn = S2{yn − g2(yn) + PC [g2(xn)− tT2(xn, yn)]}, n ≥ 1,

xn+1 = (1− αn)xn + αnS1{xn − g1(xn) + PC [g1(yn)− sT1(yn, xn)]}, n ≥ 0,
(19)

where s, t > 0 are two constants.

(I) If g1 = g2 = I, the identity mapping, then Algorithm 1 reduces to the
following:

Algorithm 2. For any (x0, y0) ∈ C × C, compute the sequences {xn} and {yn} by
the iterative process:

{
yn = S2PC [xn − tT2(xn, yn)], n ≥ 1,

xn+1 = (1− αn)xn + αnS1PC [yn − sT1(yn, xn)], n ≥ 0,
(20)

where s, t > 0 are two constants.

(II) If T1 = T2 = T , S1 = S2 = S and g1 = g2 = I, the identity mapping, in
Algorithm 2.1, then we have the following:

Algorithm 3. For any (x0, y0) ∈ C × C, compute the sequences {xn} and {yn} by
the iterative process:

{
yn = SPC [xn − tT (xn, yn)], n ≥ 1,

xn+1 = (1− αn)xn + αnSPC [yn − sT (yn, xn)], n ≥ 0,
(21)

where s, t > 0 are two constants.
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(III) If g1 = g2 = g, S1 = S2 = I, the identity operator and T1 = T2 = T are
univariate mappings, in Algorithm 1, then we have the following:

Algorithm 4. For any x0 ∈ C, compute the sequences {xn} and {yn} by the itera-
tive process:

{
g(yn) = PC [g(xn)− tTxn], n ≥ 1,

xn+1 = (1− αn)xn + αn{xn − g(xn) + PC [g(yn)− sTyn]}, n ≥ 0,
(22)

where s, t > 0 are two constants.

In order to prove our main results, we need the following lemmas and definitions.

Definition 3. A mapping T : C × C → H is said to be relaxed (γ, r)-cocoercive in
the first variable if there exist constants γ, r > 0 such that, for all x, x′ ∈ C,

〈T (x, y)− T (x′, y′), x− x′〉 ≥ (−γ)‖T (x, y)− T (x′, y′)‖2 + r‖x− x′‖2, ∀y, y′ ∈ C.

Definition 4. A mapping T : C × C → H is said to be µ-Lipschitz continuous in
the first variable if there exists a constant µ > 0 such that, for all x, x′ ∈ C,

‖T (x, y)− T (x′, y′)‖ ≤ µ‖x− x′‖, ∀y, y′ ∈ C.

Definition 5 (see [29]). Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− λn)an + bn, ∀n ≥ 0,

where {λn} is a sequence in (0, 1) with
∑∞

n=1 λn = ∞, bn = ◦(λn), then limn→∞ an =
0.

3. Convergence analysis on algorithms

Theorem 1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let Ti : C × C → H be a relaxed (γi, ri)-cocoercive and µi-Lipschitz continuous
mapping in the first variable and gi : C → C a relaxed (λi, δi)-cocoercive and νi-
Lipschitz continuous mapping for each i = 1, 2. Let S1, S2 : C → C be nonexpansive
mappings. Assume that Ω1 6= ∅, F (S1) 6= ∅ and F (S2) 6= ∅, respectively. Let
x∗ ∈ F (S1), y∗ ∈ F (S2) and (x∗, y∗) ∈ Ω1. Let {xn} and {yn} be two sequences
generated by Algorithm 1. If the following conditions are satisfied:

(i) {αn} ⊂ [0, 1] and
∑∞

n=0 αn = ∞;

(ii) θ4 < 1 and (θ1 + θ3)(θ2 + θ4) < (1− θ3)(1− θ4), where

θ1 =
√

1 + s2µ2
1 − 2sr1 + 2sγ1µ2

1, θ2 =
√

1 + t2µ2
2 − 2tr2 + 2tγ2µ2

2

and
θ3 =

√
1 + ν2

1 − 2δ1 + 2λ1ν2
1 , θ4 =

√
1 + ν2

2 − 2δ2 + 2λ2ν2
2 ,

then the sequences {xn} and {yn} converge strongly to x∗ and y∗, respectively.
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Proof. From the assumption, for all s, t > 0, we have
{

y∗ = S2{y∗ − g2(y∗) + PC [g2(x∗)− tT2(x∗, y∗)]}
x∗ = (1− αn)x∗ + αnS1{x∗ − g1(x∗) + PC [g1(y∗)− sT1(y∗, x∗)]},

From (19), we obtain that

‖xn+1 − x∗‖ = ‖(1− αn)xn + αnS1{xn − g1(xn) + PC [g1(yn)− sT1(yn, xn)]} − x∗‖
= ‖(1− αn)xn + αnS1{xn − g1(xn) + PC [g1(yn)− sT1(yn, xn)]}
−(1− αn)x∗ − αnS1{x∗ − g1(x∗) + PC [g1(y∗)− sT1(y∗, x∗)]}‖

≤ (1− αn)‖xn − x∗‖+ αn‖xn − g1(xn) + PC [g1(yn)− sT1(yn, xn)]
−{x∗ − g1(x∗) + PC [g1(y∗)− sT1(y∗, x∗)]}‖

≤ (1− αn)‖xn − x∗‖+ αn‖xn − x∗ − [g1(xn)− g1(x∗)]‖
+αn‖yn − y∗ − [g1(yn)− g1(y∗)]‖ (23)
+αn‖[yn − y∗ − s[T1(yn, xn)− T1(y∗, x∗)]‖.

By the assumption that T1 is relaxed (γ1, r1)-cocoercive and µ1-Lipschitz continuous
in the first variable, we obtain that

‖yn − y∗ − s[T1(yn, xn)− T1(y∗, x∗)]‖2
= ‖yn − y∗‖2 − 2s〈yn − y∗, T1(yn, xn)− T1(y∗, x∗)〉

+s2‖T1(yn, xn)− T1(y∗, x∗)‖2
≤ ‖yn − y∗‖2 − 2s[−γ1‖T1(yn, xn)− T1(y∗, x∗)‖2 + r1‖yn − y∗‖2]

+s2µ2
1‖yn − y∗‖2

≤ ‖yn − y∗‖2 + 2sγ1µ
2
1‖yn − y∗‖2 − 2sr1‖yn − y∗‖2 + s2µ2

1‖yn − y∗‖2
= θ2

1‖yn − y∗‖2, (24)

where θ1 =
√

1 + s2µ2
1 − 2sr1 + 2sγ1µ2

1. By the assumption that g1 is relaxed
(λ1, δ1)-cocoercive and ν1-Lipschitz continuous, we arrive at

‖yn − y∗ − [g1(yn)− g1(y∗)]‖2
= ‖yn − y∗‖2 − 2〈yn − y∗, g1(yn)− g1(y∗)〉+ ‖g1(yn)− g1(y∗)‖2
≤ ‖yn − y∗‖2 − 2(−λ1‖g1(yn)− g1(y∗)‖2 + δ1‖yn − y∗‖2) + ν2

1‖yn − y∗‖2
≤ ‖yn − y∗‖2 + 2λ1ν

2
1‖yn − y∗‖2 − 2δ1‖yn − y∗‖2 + ν2

1‖yn − y∗‖2
= θ2

3‖yn − y∗‖2, (25)

where θ3 =
√

1 + ν2
1 − 2δ1 + 2λ1ν2

1 . In a similar way, one can show that

‖xn − x∗ − [g1(xn)− g1(x∗)]‖ ≤ θ3‖xn − x∗‖. (26)

Substituting (24), (25) and (26) into (24) yields

‖xn+1 − x∗‖ ≤ [1− αn(1− θ3)]‖xn − x∗‖+ αn(θ3 + θ1)‖yn − y∗‖. (27)



Generalized variational inequalities 187

Next, we estimate

‖yn − y∗‖ = ‖S2{yn − g2(yn) + PC [g2(xn)− tT2(xn, yn)]}
−S2{y∗ − g2(y∗) + PC [g2(x∗)− tT2(x∗, y∗)]}‖

≤ ‖yn − y∗ − [g2(yn)− g2(y∗)]‖+ ‖xn − x∗ − [g2(xn)− g2(x∗)]‖
+‖xn − x∗ − t[T2(xn, yn)− T2(x∗, y∗)]‖. (28)

By the assumption that T2 is relaxed (γ2, r2)-cocoercive and µ2-Lipschitz continuous
in the first variable, we see that

‖xn − x∗ − t[T2(xn, yn)− T2(x∗, y∗)]‖2
= ‖xn − x∗‖2 − 2t〈xn − x∗, T2(xn, yn)− T2(x∗, y∗)〉

+t2‖T2(xn, yn)− T2(x∗, y∗)‖2
≤ ‖xn − x∗‖2 − 2t[−γ2‖T (xn, yn)− T (x∗, y∗)‖2 + r2‖xn − z∗‖2]

+t2µ2
2‖xn − x∗‖2

≤ ‖xn − x∗‖2 + 2tγ2µ
2
2‖xn − x∗‖2 − 2tr2‖xn − x∗‖2 + t2µ2

2‖xn − x∗‖2
= θ2

2‖xn − x∗‖2, (29)

where θ2 =
√

1 + t2µ2
2 − 2tr2 + 2tγ2µ2

2. From proof (25), we can obtain that

‖xn − x∗ − [g2(xn)− g2(x∗)]‖ ≤ θ4‖xn − x∗‖ (30)

and

‖yn − y∗ − [g2(yn)− g2(y∗)]‖ ≤ θ4‖yn − y∗‖, (31)

where θ4 =
√

1 + ν2
2 − 2δ2 + 2λ2ν2

2 . Substituting (29), (30) and ((31) into (28), we
arrive at

‖yn − y∗‖ ≤ θ4‖yn − y∗‖+ (θ4 + θ2)‖xn − x∗‖. (32)

Since θ4 < 1, we see that

‖yn − y∗‖ ≤ θ4 + θ2

1− θ4
‖xn − x∗‖. (33)

Substituting (33) into (27) yields

‖xn+1 − x∗‖ ≤ [1− αn(1− θ3)]‖xn − x∗‖+ αn(θ3 + θ1)
θ4 + θ2

1− θ4
‖xn − x∗‖

= [1− αn(1− θ3 − (θ1 + θ3)(θ2 + θ4)
1− θ4

)]‖xn − x∗‖. (34)

Noticing the condition (ii) and applying Lemma 5 to (34), we can get the desired
conclusion easily. This completes the proof.

As some applications of Theorem 1, we can obtain the following results immedi-
ately.
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Corollary 1. Let C be a closed convex subset of a real Hilbert space H. Let Ti :
H ×H → H be a relaxed (γi, ri)-cocoercive and µi-Lipschitz continuous mapping in
the first variable for each i = 1, 2. Let S1, S2 : C → C be nonexpansive mappings.
Assume that Ω1 6= ∅, F (S1) 6= ∅ and F (S2) 6= ∅, respectively. Let x∗ ∈ F (S1), y∗ ∈
F (S2) and (x∗, y∗) ∈ Ω1. Let {xn}, {yn} be two sequences generated by Algorithm 2.
If the following conditions are satisfied:

(i) {αn} ⊂ [0, 1] and
∑∞

n=0 αn = ∞;

(ii) (1 + s2µ2
1 − 2sr1 + 2sγ1µ

2
1)(1 + t2µ2

2 − 2tr2 + 2tγ2µ
2
2) < 1,

then the sequences {xn} and {yn} converge strongly to x∗ and y∗, respectively.

Remark 1. Corollary 1 mainly improves Theorem 3.3 of Chang et al. [2]. To be
more precise, Corollary 1 is reduced to the above result when S = I, the identity
mapping and T1 = T2; see [2] for more details.

Corollary 2. Let C be a closed convex subset of a real Hilbert space H. Let T :
H × H → H be a relaxed (γ, r)-cocoercive and µ-Lipschitz continuous mapping in
the first variable. Let S be a nonexpansive mapping on C with a fixed point. Assume
that Ω3 6= ∅. Let (x∗, y∗) ∈ Ω3 and x∗, y∗ ∈ F (S). Let {xn}, {yn} be two sequences
generated by Algorithm 3. If the following conditions are satisfied:

(i) {αn} ⊂ [0, 1] and
∑∞

n=0 αn = ∞;

(ii) (1 + s2µ2 − 2sr + 2sγµ2)(1 + t2µ2 − 2tr + 2tγµ2) < 1,

then the sequences {xn} and {yn} converge strongly to x∗ and y∗, respectively.

Corollary 3. Let C be a closed convex subset of a real Hilbert space H. Let T :
H ×H → H be a relaxed (γ, r)-cocoercive and µ-Lipschitz continuous mapping and
g : H → H a relaxed (λ, δ)-cocoercivei and ν-Lipschitz continuous mapping. Assume
that Ω4 6= ∅. Let (x∗, y∗) ∈ Ω4. Let {xn}, {yn} be the sequences generated by
Algorithm 4. Assume that the following conditions are satisfied:

(i) {αn} ⊂ [0, 1] and
∑∞

n=0 αn = ∞;

(ii) θ3 < 1 and (θ1 + θ3)(θ2 + θ3) ≤ (1− θ3)2, where

θ1 =
√

1 + s2µ2 − 2sr + 2sγµ2, θ2 =
√

1 + t2µ2 − 2tr + 2tγµ2

and
θ3 =

√
1 + ν2 − 2δ + 2λν2,

Then the sequences {xn} and {yn} converge strongly to x∗ and y∗, respectively.

Remark 2. In this paper, we show that the problem of the generalized variational
inequality is equivalent to a fixed point problem. This alternative formulation is im-
portant from the numerical analysis point of view. Iterative algorithms are suggested
and analyzed. It is of interest to use the technique in this paper to develop other
new iterative algorithms for solving a generalized system of nonlinear variational
inequalities via nonexpansive mappings or other important nonlinear mappings.
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