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Jacobi’s triple product identity and theta function identities
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Abstract. As a unified approach, Jacobi’s triple product identity will be utilized to derive
theta function formulae due to Baruah-Berndt (2007), identities of Rogers—Ramanujan
functions and modular equations due to Ramanujan.
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For two indeterminate g and z, the g-shifted factorial reads

m—1

(z;9)0 =1 and (z;q)m:H(l—zq”) for m=1,2,---.

n=0
When |q| < 1, the following products of infinite order are well defined:

oo

(21@)o0 = [J(1—2¢") and  (2:9) = (2:0)o0(4/2 @)oo

n=0

For brevity, their multi-parameter forms are abbreviated as

[, 8,714 = (0 (Bi0) o+ (V1) s,
(@, 8, VDo = (@) o0 (B5 Qe (V3 o -
There are several important theta function identities in mathematical literature.

Perhaps the simplest and the most significant one is Jacobi’s triple product iden-
tity [13] (see also [12] §1.6)

—+o0

.z q/zal, = Y. (~1)"qB)an,

n=—oo

which has several important applications in number theory, combinatorics and physics
(see e.g. Andrews [1]).
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The purpose of this paper is to show that Jacobi’s triple product identity can be
utilized in a unified manner to prove theta function formulae due to

Baruah—Berndt [3, 4], identities of Rogers—Ramanujan functions (cf. [8, 16, 17])
and the modular equations due to Ramanujan (cf. Andrews-Berndt [2], Theorem
1.6.1). Several new identities are also derived even though it is not our primary
concern.

1. Theta function identities

By using elementary manipulations of theta functions, Berndt [5], Entry 29, p. 45
proved the following pair of identities.
Lemma 1. For two variables x and y, there hold the theta function identities

(=2, =Y @)oo + (2,41 Qe = 2(—¢; )% (—2y, —q2/y;0°) _ , (1a)

(=2, =Y @) o — (2,4 @) oo = 20(—q; )% (—qzy, —y/7:¢°) . (1b)

Because these two formulae are very important in deriving theta function identi-
ties (cf. e.g. Berndt [5], Chapter 16, and Chu [11]), we present an elementary proof
through Jacobi’s triple product identity.

Proof. By means of Jacobi’s triple product identity, we have the following equation

(q;Q)io{FfEﬁy;@m + <:v,y;q>oo}:_ io q(é)+(é){(i)i + (1)i+j(z)j}xi+j.

Performing the replacements on summation indices

z'+j:m} {i:m;"
i—j=mn Jj="

and then simplifying the result, we can reformulate the last equation as follows

3

(q;q)io{ (=2, =5 @)oo £ (2,45 0) } (2a)
= > q+{(i) =y (—1)’”(1)%”}#, (2b)

where m =5 n stands for the summation indices m and n with the same parity.
When both m and n are even, we can evaluate the double sum displayed in (2b)
by making the replacements m — 2m and n — 2n as follows:

—+ oo “+o0

St e k@) = 05D Y @@y
1o +OO - N
x > @By
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which leads to the first identity stated in the lemma.
When both m and n are odd, we can similarly evaluate the double sum displayed
in (2b) by making the replacements m — 2m + 1 and n — 2n — 1 as follows:

+00 o
2y ¢y e F @y = AF D2 Y B )
- +(X) _’IL
x> By

= (1 F Va(¢* ¢ (—qzy, —y/z: %) -
This leads us to the second identity displayed in the lemma. O

By means of Lemma 1, we shall derive several theta function identities including
some due to Baruah-Berndt [3, 4]. Throughout this section, Euler’s famous identity
(—¢; @)oo = 1/(q; ¢*) o Will be frequently invoked without explanation. In addition,
we shall fix two symbols w = exp(27i/3) and @w = exp(27i/5), for the cubic and fifth
roots of unity, respectively. Because all the proofs are routine matter, which consist
of reformulating the expressions in terms of the differences displayed in Lemma 1
and then factorizing the results, we shall only sketch the proofs without going into
much detail.

Theorem 1 (Baruah-Berndt [3] Eqs 3.4 and 3.6).
(=4:6°) | (4:6°)
(¢% %00 (=¢%¢%)0

2 2
7)o (4;4%) o _ 2. 4\2 6. 6 12. 1232
qﬁ)oo - (_q3;q6)oo - 2(](_q 5 q )oo(_q 34 )OO(_q 34 )oo?
~4,4°)3% _ (¢:9°)3 = 49(— % )% (—¢%; ¢O)L..

5492 (=% 4%)% e e

Proof. Applying the relation (¢% ¢%) s = (¢;¢%)oc (qw; q2>oo, we have

= 2(—q"¢")% (—4% ¢%) o (—q% )2,

(-4 | (G (—0—aw;id®) (¢, 9w 0%)

(%¢%) ~ (=¢%¢%) (4% 4'%) o0 ’
which leads to the first two identities stated in the theorem. The third one follows
from the product of the first two. O

Theorem 2 (Baruah-Berndt [3] Egs 3.9 and 3.11 and [4] Eq 6.19).

(—¢; %)% N (4:4%)%
(=¢% %)% (¢%4)%
2\2 2\2
—aiq aq
((_q?:~q6))o; B ((qef.qa)j’; = 49(=4% 0o (=0%:¢")% (-0 4")x
) [ee] ) o0
(—q;¢%)2 (¢:¢%)%
(—(13'(16)%40 - (q3-q6)20 = 84(—4";¢*) oo (—0°% ¢°) 2%
) [ee] ) [o'e)

= 2(—¢% 4" oo (=% %)% (=% 1) o,
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Proof. Similarly, there holds the relation
()% | @d*)3 _ (¢*4¢Y)3 { 2 2 }
+ 2 = = w, qu; + (—qw, —quw; ,
(=% %)% (¢%4%)%  (¢% 4% (0,001 0) o £ (=g ~qui ).,
which leads to the first two identities stated in the theorem. Multiplying the first
two gives the third one. O

Theorem 3 (Baruah-Berndt [3] Eqs 4.3 and 4.5 and [4] Eq 7.19).

<_Q§q2)oo (Q;q2)oo 4. 4 10, .10 10, 20
= 2(—q";q —q 5 q —q ;q )
(,q5;q10)oo (qs;qlo)oo ( ) ( )oo( )oo

2 2
—4;0%) oo 4 q%) oo
( ) (@:0) =24(—¢%* 0o (—0"% ") 0o (—7°% ¢*°) o,

(%4 (¢%:¢0)

(*Q;qz)go (Q§q2)gc 2. 2 10, 1043

a0 (g2 =49(=¢70 ) oo (030 )%
9 o0 ) o0

Proof. By means of the relation (¢°;¢'*)oo = (¢;¢%) <qw, qw?; q2>oo, we get

(=4 ¢%) o (4 4%) oo (0%54%) o 2. o 2. 2
(—¢% ¢ o + (% )0 = (¢10; ¢20) <qw,qw 4 >oo + <_qu —qw 5 q >oo )

which leads to the first two identities stated in the theorem. The third one follows
from the product of the first two. O

Theorem 4 (Theta function identities).

(-4 @) (¢; @)oo

q ,
(=% %) (%630 (23 ¢%) o o0
6. .6
—4;9) q;4)c0 —q349 )oo
( 3. g - (3. g :2q< 3. 6) <_q;q12>oo7
(%) (¢%¢%) (¢%:4%)

(—q;9)% N (4;:9)2 2(*23;q6)§o< 2, 46)

(—a%¢*)3% (% d¥)% (%5 4%)% oo’
(—¢9% (@95 :4q(—q6,q6)§o (~g:a®)
(=% ¢%)3 (%)% (4% 4%)2, T e
(Ced)%  (@0)x _ g (60

(% %)% (%)% (4% 4%)3,

Proof. Applying the relation (£¢;¢)so = (£¢%;¢%) oo <:tq; q3>oo, we can reformulate
the first four differences as

(—4: ) O
(—* %) (¢%1¢%)
(9% | (59)5%
(=% )% (@)%
which lead to the first four identities displayed in the theorem. The last one follows
from the product of the third and the fourth. [

= (~4,~¢%d°) £ (a0, 4% d°),

=(-¢,—q;:¢°) £{q,4:¢°);
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Recall Ramanujan’s ¢-function (cf. Berndt [8], Entry 22, p. 36)
i 2
G =142 ¢" =[¢",—¢,—¢:¢°]~-
n=1

It is trivial to see that ¢(—¢q) = (¢;¢)oo/(—¢; ¢)so- Then we can show the following
identities.

Theorem 5 (Ramanujan’s ¢-function identities).

) (6%¢%)0(d"% 40 (¢, 4% 4"2)

o(=¢")  #*(=) _,

o(—=q)  ¢*(—q?) (400 (0%0%) 0 (0?5 ¢Y) 00
d(—¢*) ¢ (—¢®) . (%6%)o(a"%0" ) (0,6%d")
6a) D) T @@ ().

Proof. Reformulate the differences

O(=a*) , °(=4°) _ (@0 (@%0)w | (=0%0))% (0%d)%
o(—q)  *(—4*) (Do (%P (¢%dP)% (—d554¢5)2%
(—a:0%)., . (~a*d°),

(4 0%) o <q2;q6>iO
(—0.¢%54%) (a0, —a%d%)

6P o (P00 (0302 o

Then the equations in the theorem follow from the factorizations. O

Theorem 6 (Ramanujan’s ¢-function identities).

(0% 0" ("% ¢"®) o
(05 0) 00 (0% 0%) oo (—'8; ¢'8) 0

Proof. Rewriting the differences as follows

O(=a") | 9(=0") _ (89 (0%¢°)x | (=0%¢%)x (¢:¢°)
o(=q)  o(=¢*) (Do (%) (* ) (=00
(wdt) | (%)

6P (% 4°) o
~ (w,qw? 6*) £ (—qw, —qwi @)
(6P (0P (610°) o

leads us to the two identities displayed in the theorem. O
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2. Rogers—Ramanujan functions

The Rogers—Ramanujan functions are connected with the following celebrated Roge-
rs—Ramanujan identities [12], p. 44:

& g I 1
Gl = z:: GO0 (@00 (@0)o(d 07’
&t 1 1
mm—g() E) D) )

Ramanujan recorded forty intriguing identities about them (see e.g. Birch [9]). By
means of Jacobi’s triple product identity, this section will exemplify a few identities
related to G and H functions.

By considering the sum or difference of (1a) and (1b), it is almost trivial to derive
the following factorization equation.

Lemma 2 (Dual lemma of Lemma 1). For two variables x and y, there holds the
following theta function identity:

(—z,—y;q)
(—zy, —qu/y; %)+ x(—qvy, —y/x;4%) = 5=
(=g 0%
In particular, performing the replacements ¢ — ¢> and y — ¢z, from this lemma
we recover the following useful equation

(—qz*;q")  +x(—q/z*q") = m (~2:0) o0 (3)

whose equivalent form can be found in [10], p. 61. Under the same parameter setting,
Lemma 1 reduces further to two other theta function equations [5] Entry 30 (ii)-(iii);
P 46 as follows:

(250} + (250} 2%&Q«wﬁmﬂw, (1a)
. - _ CL'(q (] oo -
<_xaQ>oo < 7Q>oo 2 (q q) < q/ 3 q > (4b)

The three equations just displayed can also be verified from Jacobi’s triple product
identity by splitting the infinite series according to the parity of summation index.

Theorem 7 (Watson [17]: see also Berndt et al. [8], Eqs 4.23 and 4.24).
G(q") +qH(=¢") =

G(—q¢") +¢*H(¢"%) =
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Proof. According to the definitions of G(¢) and H(q), we can write

1 q
16. 4,80 + 8. _ 420
(@'%:¢%) o (¢%—¢*)
1 + q

(% —¢%q") (a® —¢*%;:¢")
28. 40 8. .40

(=¢*%¢") __+a(—¢%q >OO.
(6% —a% =% ¢*°)

G(¢'%) + qH(—q") =

Putting ¢ — ¢'° and z — ¢ in (3), we can factorize the last numerator
10. 10
28, 40 s. 10y _ (@74 .10
(=a1¢") o +a(—0%4") = ey (6 )
(4%%¢")
which leads to the first identity stated in the theorem.

Similarly, reformulating the expression
1 7
G(—q") +¢*H(¢") = +
(=5 =) " (¢33
1 n 3
(¢4 %50 (@' —¢"%¢%)
<_q16; q40>OO N~ <—q4; q40>oo
(—q*, q'6, —¢16; ¢10)
) ) ) %)
and then factorizing the last numerator by letting ¢ — ¢'° and z — ¢3 in (3)
10. 10
16. 40 3 4 a0y _ (@79 3. .10
(=0%0%) o + 0 (=0%47) o = Ty (4 )
(4" ¢") oo

we derive the second identity displayed in the theorem. O

Theorem 8. Define the function V(z|q) := 1/<x;q5>oo. There hold the following
s1T equations:

(@*:¢) (—°2%¢*)

Viala) +V(-alg) = 2= T e (50)
nossoo s IR
v B
BT 0 7
V(elg) = Vel — g) = 2fa i) (U250 (56)

(019 ¢'0) o (z, PPz, —¢°x; ¢*0)
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Proof. In view of (x;¢°) = (z,¢°z;¢"°)__, we can rewrite the six differences in

three pairs as follows:

[q57 -, 7(]5/1'; qS} 0o + [qsa €z, q5/1.7 qS} 0o
(4% 6°) o0 (T, =3 6%) o

[¢1°, —2, —q1°/2;¢"°] _ + [¢1°, 2, ¢"°/; '] _
("¢ oo (2, =, 475 ¢"0)

[¢"°, —Px, —¢7 [2;q"°] _ + [q'°, ¢, ¢° a; q1°] _
(@90 0 (, ¢z, —ow; q10) :

V(z|q) £V (-z|q) =

)

)

V(zlg) £V (-2 -q) =

Vizlg) £V(z[ —q) =

Factorizing the right members through (4a) and (4b) leads to the identities displayed
in the theorem. O

Corollary 1 (Robins [16], Eqs 5-8).

(4" 4" (4% 4"%)
(454" (4, =4, 4% ¢*)
("% ¢") 0 (—¢% 4")
(0% ¢") o0 (q, —4, 4% ¢*°)
(g%°; ¢*°) <7q16; q40>oC

(4% ¢1%)00 (¢%,47, =473 ¢*°) .
s (0% (g% 4%
(4'%5¢1%)00 (a2, =47, =475 ¢%0)

G(q) +G(—q) =2

)

3

G(q) — G(—q) = 2q

H(q)+ H(—q) =2

H(q) — H(—q) =2

They follow from the cases z = ¢ of (5¢-5d) and = = ¢° of (5e-5f), respectively.
Theorem 9 (Identities of Rogers—-Ramanujan functions).

(—4%4°)%
(% —0°)%
4 2( .2 (¢ %)% 3. .10 2 2( 2
G*(q) — G*(q°) :4QW<*Q 4 >OOG (@)G=(q°),
(—¢":4°)%
W <—CI4§ q10>oo HZ(Q)HQ(qz),

(—4%4°)%
(q10; ¢20)2 (—4:4'%) H* () H?(¢*).

(oo}
Proof. Writing the differences in terms of theta function:

G'g) + G*(¢®) =2 (—¢%q"%)  G*(Q)G*(¢*),

H*(q) + H*(¢*) = 2

H*(q) — H*(¢*) = 4¢°

-4, —¢:4°) £ (6, :4°)
(0:¢°)% (0% 4'0)%
- —¢%¢%) (% 0%)
(@) (a0
and then factorizing the resulting numerators through Lemma 1, we derive the four
identities in the theorem. O

G'q) £G*(¢%) = <

)

H*(q) £ H*(¢°) = <
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Theorem 10 (Berndt et al. [8], Entries 3.20 and 3.21).

2

(42 ¢4)2
o 7 (0% ¢%)

G (~0) - G- (o) = 2 T L=

G(q)H(—q) + G(—q)H(q) =

Proof. Rewrite explicitly the differences as

(=4.4%4") £ {0, —4"¢")

G(¢)H(—q) £ G(—q)H(q) = @, —¢, 4%, q* ¢, —q7; ¢'0)

Applying Lemma 1 to the numerator in the last line, we derive the identities ap-
pearing in the theorem. O

Theorem 11 (Robins [16], Eqs 1.25-1.26).

)2 (a3, % q'0)
(q,tJ) ( 2)oo(q5,q oo
(¢"%¢" ) <q,q q'"%)
(4 0)0 (4% 6%) 0 (6% 410) oo

G*(Q)H(¢*) + G(¢*)H?(q) = |

G*(Q)H(¢*) — G(¢®)H?(q) = 2q

Proof. Reformulating the differences

(—0.¢% ) £ (0, - ),

G*(q)H(q*) = G(¢*)H?(q) = @) (a5 g0

and then applying Lemma 1 to factorize the right member of the last equation, we
find the identities stated in the theorem. O

3. Ramanujan’s modular equations

Recall Ramanujan’s x and t¢-functions (cf. Berndt [5], Entry 22, p. 36)

— (¢ ¢%)w an i&
X(@) = (=¢;¢°)e and (g Zq N

This section will prove few modular equations with some of them originally belonging
to Ramanujan.
Consider the linear combination

_ (36w
(4% 4%)oo

Expanding the triple products and then splitting the series according to the residues
of the summation index k modulo 3, we may reformulate the difference inside the

b(¢% ¢%) oo + d(g; ¢*)2, {b[q2, qw, qw?; oo + dld*. q, qZ]oo}
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braces as follows:

+oo
2
bla*, qw, 0”0 )oo + a0, 40700 = Y (=1)Fq" {b" + d}
k=—o00

Z (=1 {bw* + d}q52

e=0,%1

+oo
2
~ Z (_1)kq9k +6ke

k=—oc0

Factorizing the infinite series via Jacobi’s triple product identity and then simplifying
the result according to w + w? = —1, we establish the following theorem.

Theorem 12 (Theta function identity).

b(¢*;¢%) o + d(g;¢*)3, = (b+ d) %_(3)9) + (b—2d) q%f/}((q;))x(—f’)-

As special cases, this theorem contains the following interesting modular equa-
tions due to Ramanujan [6], Entry 50(i), p. 202 and [7], Eq 5.9, p. 334.

Corollary 2 (b=1,d=0and b =0,d = 1 in Theorem 12).

o(—a°) + ax(—=®*)v () = x(—¢*)¥(q),
d(—q°) = 2qx(—*)¥(a°) = xX*(—a)¥(q).
Corollary 3 (b=1,d=—1 and b=2,d =1 in Theorem 12).

X9, ()

! x(—=¢*) 34 ¥(g)’
x(=¢*) ., o(=¢°)

b 2)6"(-(1) =3 P(—q)

Similarly, consider another linear combination

. 2)2
b(q*; %)% + d(g;4*)3 = %{b[ﬁ qw,qw* ¢*1% + dl¢*, ¢, q; qZ]io}
(*:¢%)3
Expanding the two triple products and then splitting the series according to the

residues of the summation indices ¢+ and j modulo 3, we may reformulate the differ-
ence inside the braces as follows:

+oo
R S .
b, qw, qw’; 1% + dle* 0, ¢ P = D (1) {4 d}
1,j=—00
— Z (—1)€+E{bw€+e+d}q52+€2
e,e=0,%+1

—+o0
5 Z (_1)i+jq9i2+9j2+6i5+6je

1,j=—00
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It is not hard to check that the quadruplicate sum reduces to the following three
terms:

2
(b+4d) [¢'% ¢, ¢%¢"®], e=¢€=0;
27,18 3 15, 18]2 _ 41
(b+4d)q [q ,q2, g% q ]Oo, e==41 and e=+1;
18 9 9. 18 18 3 15, 18 _ _ _ _
2(b—2d)q [¢"%,¢°,¢°; ¢"®] _ [, 4% ¢"%;¢"®] e = 0,e =£1 and e=0,e = +1.
In terms of Ramanujan’s functions, we have derived the following theorem.

Theorem 13 (Theta function identity).

3. 612 L 2\6 ¢2(—q9) 27/12(‘19) 2/ 3
b(0%:¢°)5 + A ¢ )se = (ber)Tg(q> + (b+4d)q 2 ¢ (—¢°)
9 9
+2(b— 2d)q7¢( 1;;23)@ )X(—q3)~

Encouraged by the last examples, we may further consider a linear combination
b(¢% 4" ) oo +d(g; 6*)2 = (¢; qz)oc{b<qw7qw2; ) +d{q,q:q) }

Expanding the two triple products and then splitting the series according to the
residues of k := i + 2§ modulo 5, we may reformulate the difference inside the

braces:

(% q2)io{b<qw7 g ¢*)  +d{q.a:¢%) }
+oo
= Y (-1 bt 1 d)
i,j=—00
+oo
— Z (_I)G(bw6+d)q€2 Z (_1)kq25k2+10ke

e=0,£1,£2 k=—o00

+oo )
% Z (_1)jq10(’2)+(5—4e—20k)j.

j=—00
Factorizing the two infinite series via Jacobi’s triple product identity

+oo “+o0 )
Z (71)kq25k2+10ke Z (71)jq10(§)+(5—4e—20k)j
k=—o0 j=—o00
+oo X
_ [q107q5+4€7q5_46;q10}m Z (_1)kq10(2)+2ke+5k
k=—oc0

10 5+4+2¢ 5—2¢ 10]

10 5+4+4e 5—4e 10} [q q q .q
0o ) ) )

= [¢"% ¢"T*, " q

oo

and then simplifying the result according to @ + w? + w?> + w* = —1, we establish
the following theorem.
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Theorem 14 (Theta function identity).
¢*(—¢°) v*(@°)
P2 (@)x(=q) ¥*(q)

In addition, from this theorem we can recover the following modular equations.

b(¢°;4"") e + d(q;¢°)3 = (b+ d) + (b—4d)q x(—4°).

Corollary 4 (b=1,d=0and b =0,d =1 in Theorem 14).

*(—q°)

x(—q)

20 5
“;E_Z)) 40P (@) = X (—a)d2(a).

+ @ (®)x(—¢°) = x(—*)*(a),

Corollary 5 (b=1,d = —1 and b = 4,d = 1 in Theorem 14).

X)) _ g ()
x(—a°) ¥2(q)
5 2(_ 5
1+4x§ q):5¢2( )
X°(=q) ¢*(—q)
The last two modular equations are originally due to Ramanujan, whose different

proofs can be found in Andrews-Berndt [2] Theorem 1.6.1, Kang [14] Theorem 2.2
and Kongsiriwong—Liu [15] Egs 8.3 and 8.4.

1—
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