Complex oscillation of differential polynomials generated by analytic solutions of differential equations in the unit disc*

Ting-Bin CaO ${ }^{1, \dagger}$, Lei-Min Li ${ }^{1}$, Jin Tu ${ }^{2}$ and Hong-Yan Xu ${ }^{3}$
${ }^{1}$ Department of Mathematics, Nanchang University, Nanchang, Jiangxi 330 031, P.R.China
${ }^{2}$ Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330 022, P.R.China
${ }^{3}$ Department of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333 403, P.R. China

Received November 18, 2009; accepted September 17, 2010

Abstract

In this paper, we investigate the complex oscillation of differential polynomials generated by solutions of differential equations $$
f^{\prime \prime}+A(z) f=0,
$$

where the coefficient A is analytic in the unit disc $\mathbb{D}=\{z:|z|<1\}$.
AMS subject classifications: $34 \mathrm{M} 10,30 \mathrm{D} 35$
Key words: differential equation, analytic function, iterated order, the unit disc

1. Introduction and main results

Complex oscillation theory of solutions of linear differential equations in the complex plane \mathbb{C} was started by Bank and Laine [2, 3]. After their well-known work, many important results have been obtained on the complex oscillation theory of solutions of linear differential equations in \mathbb{C}, see $[18,19]$. The study on value distribution theory of differential polynomials generated by solutions of complex differential equations in the case of plane, according to our knowledge, has been initiated by Bank [1]. For further results, refer to see $[20,24,6]$. In particular, some results on oscillation of fixed points of solutions of differential equations can be found in $[4,5,11,12,21,23]$.

Recently, Chuaqui and Stowe [13] investigated the number of times that nontrivial solutions of the equation

$$
\begin{equation*}
f^{\prime \prime}+A(z) f=0 \tag{1}
\end{equation*}
$$

in the unit disc $\mathbb{D}=\{z:|z|<1\}$ can vanish. Cao and Yi [10] obtained some oscillation results of analytic solutions of equation (1) in \mathbb{D}. In [7], some results on the complex oscillation theory of analytic solutions of higher order differential

[^0]equations in \mathbb{D} were obtained. In this paper, we continue to consider this subject and investigate the complex oscillation theory of differential polynomials generated by analytic solutions of differential equations in \mathbb{D}.

We assume that the reader is familiar with the fundamental results and standard notations of the Nevanlinna's value distribution theory of meromorphic functions such as $T(r, f), \bar{N}(r, f), N(r, f), m(r, f)$, see [15, 25]. Let f be an analytic function in the unit disc $\mathbb{D}=\{z:|z|<1\}$, and let $M(r, f)$ be the maximum modulus of f on the circle of radius r centered at the origin. We introduce some definitions as follows, e.g. see $[7,9,17,19]$.

Definition 1. Defining

$$
D_{M}(f)=\limsup _{r \rightarrow 1^{-}} \frac{\log ^{+} M(r, f)}{-\log (1-r)}
$$

we say that f is of finite degree, if $D_{M}(f)<\infty$, while if $D_{M}(f)=\infty$, we say that f is of infinite degree.

Definition 2. For $n \in \mathbb{N}$, the iterated n-order of f is defined by

$$
\sigma_{M, n}(f)=\limsup _{r \rightarrow 1^{-}} \frac{\log _{n+1}^{+} M(r, f)}{-\log (1-r)}
$$

where $\log _{1}^{+} x=\log ^{+} x, \log _{n+1}^{+}=\log ^{+} \log _{n}^{+} x$.
Definition 3. The finiteness degree of the order of f is defined by

$$
i(f)= \begin{cases}0, & \text { if } f \text { is of finite degree, } \\ \min \left\{n \in \mathbb{N}: \sigma_{M, n}(f)<\infty\right\}, & \text { if } f \text { is of infinite degree, } \\ \infty, & \text { if } \sigma_{M, n}(f)=\infty \text { for all } n \in \mathbb{N}\end{cases}
$$

Definition 4. The iterated n-convergence exponent of the sequence of distinct zeros in \mathbb{D} of f is defined by

$$
\bar{\lambda}_{n}(f)=\limsup _{r \rightarrow 1^{-}} \frac{\log _{n}^{+} \bar{N}\left(r, \frac{1}{f}\right)}{-\log (1-r)}
$$

Definition 5. The finiteness degree of the convergence exponent of the sequence of distinct zeros in \mathbb{D} of f is defined by

$$
i_{\bar{\lambda}}(f)= \begin{cases}0, & \text { if } \bar{N}\left(r, \frac{1}{f}\right)=O\left(\log \frac{1}{1-r}\right) \\ \min \left\{n \in \mathbb{N}: \lambda_{n}(f)<\infty\right\}, & \text { if some } n \in \mathbb{N} \text { with } \lambda_{n}(f)<\infty \text { exists } \\ \infty, & \text { if } \lambda_{n}(f)=\infty \text { for all } n \in \mathbb{N}\end{cases}
$$

For a function f meromorphic in \mathbb{D}, the iterated n-order $\sigma_{n}(f)$ is defined by

$$
\sigma_{n}(f):=\limsup _{r \rightarrow 1^{-}} \frac{\log _{n}^{+} T(r, f)}{-\log (1-r)}
$$

Let $\mathcal{L}(G)$ denote a differential subfield of the field $\mathcal{M}(G)$ of meromorphic functions in a domain $G \subset \mathbb{C}$. Throughout this paper, we simply denote \mathcal{L} instead of $\mathcal{L}(\mathbb{D})$. Special cases of such differential subfields used below are

$$
\mathcal{L}_{f}:=\{g \text { meromorphic }: T(r, g)=S(r, f)\}
$$

and

$$
\mathcal{L}_{p+1, \sigma}:=\left\{g \text { meromorphic : } \sigma_{p+1}(g)<\sigma\right\}
$$

where σ is a positive constant and $S(r, f)=O\left(\log ^{+}\left(\frac{1}{1-r} T(r, f)\right)\right)$ possibly outside a set $E \subset[0,1)$ with $\int_{E} \frac{d r}{1-r}<\infty$. Note that for an analytic function f in $\mathbb{D}, \sigma_{M, n}(f)=$ $\sigma_{n}(f)$ holds, where $n \geq 2$.

Now we show our main results as follows.
Theorem 1. Let A be an analytic function of infinite degree and finite iterated order $\sigma_{M, p}(A):=\sigma>0(0<p<\infty)$ in the unit disc \mathbb{D}, and let f be a non-zero solution of equation (1). Moreover, let

$$
\begin{equation*}
P[f]=P\left(f, f^{\prime}, \ldots, f^{(\nu)}\right)=\sum_{j=0}^{\nu} p_{j} f^{(j)} \tag{2}
\end{equation*}
$$

be a linear differential polynomial with coefficients $p_{j} \in \mathcal{L}_{p+1, \sigma}$, assuming that at least one of the analytic coefficients p_{j} does not vanish identically. If $\varphi \in \mathcal{L}_{p+1, \sigma}$ is a non-zero analytic function in \mathbb{D}, and neither $P[f]$ nor $P[f]-\varphi$ vanishes identically, then we have

$$
i_{\bar{\lambda}}(P[f]-\varphi)=i(f)=p+1
$$

and

$$
\bar{\lambda}_{p+1}(P[f]-\varphi)=\sigma_{M, p+1}(f)=\sigma_{M, p}(A)=\sigma
$$

Theorem 2. Let $k \geq 2$ and A be an analytic function of infinite degree and finite iterated order $\sigma_{M, p}(A)=\sigma>0(0<p<\infty)$ in the unit disc \mathbb{D}. Assume that $\varphi \in \mathcal{L}_{p+1, \sigma}$ is an analytic function in \mathbb{D} such that $\varphi^{(k-j)} \not \equiv 0(j=0,1, \ldots, k)$. Then every non-zero solution f of the equation

$$
\begin{equation*}
f^{(k)}+A(z) f=0 \tag{3}
\end{equation*}
$$

satisfies that for $j=0,1, \ldots, k$,

$$
i_{\bar{\lambda}}\left(f^{(j)}-\varphi\right)=i\left(f^{(j)}-\varphi\right)=i(f)=p+1
$$

and

$$
\bar{\lambda}_{p+1}\left(f^{(j)}-\varphi\right)=\sigma_{M, p+1}\left(f^{(j)}-\varphi\right)=\sigma_{M, p+1}(f)=\sigma_{M, p}(A)=\sigma
$$

Theorem 2 is an extension of Theorem 1.1 in [26] which is a result on the fixed points of analytic solutions of (3). The ideas of the proofs of Theorems 1 and 2 are from [20] and [5], respectively, with modification from the complex plane \mathbb{C} to the unit disc \mathbb{D}. We feel that $f^{(j)}$ in Theorem 2 can be replaced by $P[f]$, but we have not been able to prove this.

2. Some lemmas

For the proofs of our main results, we need some lemmas. The first part of the following lemma is a standard result (see e. g. [15]), and the second part is due to [22].

Lemma 1. Let f be a meromorphic function in the unit disc, and let $k \in \mathbb{N}$. Then

$$
m\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)
$$

where $S(r, f)=O\left(\log ^{+} T(r, f)\right)+O\left(\log \left(\frac{1}{1-r}\right)\right)$, possibly outside a set $E \subset[0,1)$ with $\int_{E} \frac{d r}{1-r}<\infty$. If f is of finite order of growth (namely, $\sigma_{1}(f)<\infty$), then

$$
m\left(r, \frac{f^{(k)}}{f}\right)=O\left(\log \left(\frac{1}{1-r}\right)\right)
$$

If f is non-admissible (namely, $D(f)=\limsup _{r \rightarrow 1^{-}} \frac{T(r, f)}{-\log (1-r)}<\infty$), then

$$
m\left(r, \frac{f^{\prime}}{f}\right) \leq \log \frac{1}{1-r}+(2+o(1)) \log \log \frac{1}{1-r}
$$

Lemma 2 (see [9]). Let f be an analytic function in \mathbb{D} such that $i(f)=n(0<n<$ $\infty)$. Then there exists a set $H \subset[0,1)$ with $\int_{H} \frac{d r}{1-r}=\infty$ such that for $r \in H$, given $\varepsilon>0$, we have

$$
M(r, f) \geq \exp _{n}\left(\frac{1}{1-r}\right)^{\sigma_{M, n}(f)-\varepsilon} .
$$

Lemma 3 (see [14], Theorem 3.1). Let k and j be integers satisfying $k>j \geq 0$, and let $\varepsilon>0$ and $d \in(0,1)$. If f is a meromorphic in D such that $f^{(j)}$ does not vanish identically, then

$$
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq\left(\left(\frac{1}{1-|z|}\right)^{2+\varepsilon} \max \left\{\log \frac{1}{1-|z|}, T(s(|z|), f)\right\}\right)^{k-j}, \quad|z| \notin E
$$

where $E \subset[0,1)$ with finite logarithmic measure $\int_{E} \frac{d r}{1-r}<\infty$ and $s(|z|)=1-d(1-$ $|z|)$. Moreover, if $\sigma_{1}(f)<\infty$, then

$$
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq\left(\frac{1}{(1-|z|)}\right)^{(k-j)\left(\sigma_{1}(f)+2+\varepsilon\right)}, \quad|z| \notin E
$$

while if $\sigma_{n}(f)<\infty$ for some $n \geq 2$, then

$$
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq \exp _{n-1}\left(\left(\frac{1}{(1-|z|)}\right)^{\sigma_{n}(f)+\varepsilon}\right), \quad|z| \notin E .
$$

Lemma 4 (see [8], Lemma 2.5). Let $A_{0}, A_{1}, \ldots, A_{k-1}$ and $F \not \equiv 0$ be meromorphic functions in \mathbb{D} and let f be a meromorphic solution of the equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\ldots+A_{1}(z) f^{\prime}+A_{0}(z) f=F(z) \tag{4}
\end{equation*}
$$

such that $\max \left\{\sigma_{n+1}(F), \sigma_{n+1}\left(A_{j}\right)(j=0,1, \ldots, k-1)\right\}<\sigma_{n+1}(f)$. Then $\bar{\lambda}_{n+1}(f)=$ $\sigma_{n+1}(f)$.

Lemma 5 (see $[9,17]$). Let $A_{0}, A_{1}, \ldots, A_{k-1}$ be analytic functions in \mathbb{D} such that $i\left(A_{0}\right)=p(0<p<\infty)$ and that either $\max \left\{i\left(A_{j}\right): j=1, \ldots, k-1\right\}<p$ or $\max \left\{\sigma_{M, p}\left(A_{j}\right): j=1, \ldots, k-1\right\}<\sigma_{M, p}\left(A_{0}\right)$. Then every solution $f \not \equiv 0$ of the equation

$$
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\ldots+A_{1}(z) f^{\prime}+A_{0}(z) f=0
$$

satisfies $i(f)=p+1$ and $\sigma_{M, p+1}(f)=\sigma_{M, p}\left(A_{0}\right)$.

3. Proof of Theorem 1

Since A is analytic in the unit disc \mathbb{D}, it is well known that f is also analytic in \mathbb{D}. By Lemma 5, we have $i(f)=p+1$, and $\bar{\lambda}_{p+1}(P[f]-\varphi) \leq \sigma_{M, p+1}(f)=\sigma_{M, p}(A)=\sigma$. If the assertion is not true, then we may assume that

$$
\begin{equation*}
\bar{\lambda}_{p+1}(P[f]-\varphi):=\bar{\lambda}_{p+1}<\sigma \tag{5}
\end{equation*}
$$

Obviously, $A \in \mathcal{L}_{p+1, \sigma}$. We may assume that $\nu \leq 1$. Indeed, if $\nu \geq 2$, then by repeated differentiation of (1) we obtain that $f^{(k)}=q_{k, 0} f+q_{k, 1} f^{\prime}, q_{k, 0}, q_{k, 1} \in \mathcal{L}_{p+1, \sigma}$ for $k=2,3, \ldots, \nu$. Substituting into the form of $P[f]$ yields the required reduction. Hence, we may assume, from now on, that $P[f]=p_{0} f+p_{1} f^{\prime}$, where at least one of the coefficients $p_{0}, p_{1} \in \mathcal{L}_{p+1, \sigma}$ does not vanish identically.

Note that

$$
\begin{equation*}
T\left(r, \frac{(P[f]-\varphi)^{\prime}}{P[f]-\varphi}\right)=m\left(r, \frac{(P[f]-\varphi)^{\prime}}{P[f]-\varphi}\right)+\bar{N}\left(r, \frac{1}{P[f]-\varphi}\right) \tag{6}
\end{equation*}
$$

Hence, by Lemma 1, (5), (6) and the standard method of removing exceptional sets, we get that for some $\beta<\sigma$ and $r \rightarrow 1^{-}$, there holds

$$
T\left(r, \frac{(P[f]-\varphi)^{\prime}}{P[f]-\varphi}\right)=O\left(\exp _{p}\left(\frac{1}{1-r}\right)^{\beta}\right)
$$

Hence, there exists a meromorphic function $h \in \mathcal{L}_{p+1, \sigma}$ such that

$$
\begin{equation*}
(P[f]-\varphi)^{\prime}=h(P[f]-\varphi) \tag{7}
\end{equation*}
$$

Using the fact that $f^{\prime \prime}=-A f$, we may rewrite (1) as

$$
\begin{equation*}
\left(p_{0}+p_{1}^{\prime}-h p_{1}\right) f^{\prime}+\left(p_{0}^{\prime}-p_{1} A-h p_{0}\right) f+h \varphi-\varphi^{\prime}=0 \tag{8}
\end{equation*}
$$

we denote $b_{1}:=p_{0}+p_{1}^{\prime}-h p_{1}$ and $b_{0}:=p_{0}^{\prime}-p_{1} A-h p_{0}$.
We first assume that $b_{1}(z) \equiv 0$ and $b_{0}(z) \not \equiv 0$. Then $f=\frac{\varphi^{\prime}-h \varphi}{b_{0}}$. Hence, $f \in$ $\mathcal{L}_{p+1, \sigma}$ and so $\sigma_{M, p+1}(f)<\sigma$, a contradiction.

Assume that $b_{0}(z) \equiv 0$ and $b_{1}(z) \not \equiv 0$. Then $f^{\prime}=\frac{\varphi^{\prime}-h \varphi}{b_{1}}$. Hence, $f^{\prime} \in \mathcal{L}_{p+1, \sigma}$ and so $\sigma_{M, p+1}(f)=\sigma_{M, p+1}\left(f^{\prime}\right)<\sigma$, also a contradiction.

Assume that $b_{0}(z) \equiv 0$ and $b_{1}(z) \equiv 0$. Then we have $h=\frac{\varphi^{\prime}}{\varphi}$ because of $\varphi(z) \not \equiv 0$. Hence, there hold

$$
\begin{equation*}
b_{0}=p_{0}^{\prime}-p_{1} A-\frac{\varphi^{\prime} p_{0}}{\varphi}=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{1}=p_{0}+p_{1}^{\prime}-\frac{\varphi^{\prime} p_{1}}{\varphi}=0 \tag{10}
\end{equation*}
$$

By (9) and (10) we get

$$
A=-\frac{p_{1}^{\prime \prime}}{p_{1}}+\frac{\varphi^{\prime \prime}}{\varphi}+2 \frac{\varphi^{\prime}}{\varphi} \frac{p_{1}^{\prime}}{p_{1}}-2\left(\frac{\varphi^{\prime}}{\varphi}\right)^{2}
$$

this yields

$$
\begin{equation*}
|A(z)| \leq\left|\frac{p_{1}^{\prime \prime}(z)}{p_{1}(z)}\right|+\left|\frac{\varphi^{\prime \prime}(z)}{\varphi(z)}\right|+2\left|\frac{\varphi^{\prime}(z)}{\varphi(z)}\right|\left|\frac{p_{1}^{\prime}(z)}{p_{1}(z)}\right|+2\left|\frac{\varphi^{\prime}(z)}{\varphi(z)}\right|^{2} \tag{11}
\end{equation*}
$$

By Lemma 2 (or Lemma 2.1 in [17]), Lemma 3 and (11) we have

$$
\exp _{p}\left(\frac{1}{1-r}\right)^{\sigma-\varepsilon} \leq M(r, A) \leq \exp _{p}\left(\frac{1}{1-r}\right)^{\beta+\varepsilon}, \quad r \in H \backslash E
$$

for some $\beta<\sigma-2 \varepsilon$. This is a contradiction.
Therefore, we may now assume that neither b_{0} nor b_{1} vanishes identically. Rewrite equation (8) as

$$
\begin{equation*}
b_{0} f+b_{1} f^{\prime}=\varphi^{\prime}-h \varphi \tag{12}
\end{equation*}
$$

Differentiating equation (12) and making use of $f^{\prime \prime}=-A f$, we have

$$
\begin{equation*}
\left(b_{0}^{\prime}-b_{1} A\right) f+\left(b_{0}+b_{1}^{\prime}\right) f^{\prime}=\left(\varphi^{\prime}-h \varphi\right)^{\prime} \tag{13}
\end{equation*}
$$

If the pair of equations (12) and (13) to determine f and f^{\prime} has a nonidentically vanishing determinant, then we must have

$$
\begin{equation*}
\left(b_{0}^{2}+b_{0} b_{1}^{\prime}-b_{1} b_{0}^{\prime}+b_{1}^{2} A\right) f=-\left(\varphi^{\prime}-h \varphi\right)\left(b_{0}+b_{1}^{\prime}\right)+\left(\varphi^{\prime}-h \varphi\right)^{\prime} b_{1} . \tag{14}
\end{equation*}
$$

Hence, we have $f \in \mathcal{L}_{p+1, \sigma}$, and thus $\sigma_{M, p+1}(f)<\sigma$, a contradiction. Hence, the determinant vanishes, and thus we have

$$
\begin{equation*}
b_{0}^{2}+b_{0} b_{1}^{\prime}-b_{1} b_{0}^{\prime}+b_{1}^{2} A=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
-\left(\varphi^{\prime}-h \varphi\right)\left(b_{0}+b_{1}^{\prime}\right)+\left(\varphi^{\prime}-h \varphi\right)^{\prime} b_{1}=0 \tag{16}
\end{equation*}
$$

If now $\varphi^{\prime}(z)-h(z) \varphi(z) \not \equiv 0$, then by an easy computation we deduce from (16) and (15) that

$$
\frac{b_{0}}{b_{1}}=\frac{\left(\left(\varphi^{\prime}-h \varphi\right) / b_{1}\right)^{\prime}}{\left(\varphi^{\prime}-h \varphi\right) / b_{1}}
$$

and

$$
A=\left(\frac{b_{0}}{b_{1}}\right)^{\prime}-\left(\frac{b_{0}}{b_{1}}\right)^{2}
$$

hold, respectively. This yields

$$
\begin{equation*}
|A(z)| \leq\left|\left(\frac{\left(\left(\varphi^{\prime}-h \varphi\right) / b_{1}\right)^{\prime}}{\left(\varphi^{\prime}-h \varphi\right) / b_{1}}\right)^{\prime}\right|+\left|\frac{\left(\left(\varphi^{\prime}-h \varphi\right) / b_{1}\right)^{\prime}}{\left(\varphi^{\prime}-h \varphi\right) / b_{1}}\right|^{2} \tag{17}
\end{equation*}
$$

By Lemma 2 (or Lemma 2.1 in [17]), Lemma 3 and (17) we have

$$
\exp _{p}\left(\frac{1}{1-r}\right)^{\sigma-\varepsilon} \leq M(r, A) \leq \exp _{p}\left(\frac{1}{1-r}\right)^{\beta+\varepsilon}, \quad r \in H \backslash E
$$

for some $\beta<\sigma-2 \varepsilon$. This is a contradiction. Hence, we must have $\varphi^{\prime}(z)-h(z) \varphi(z) \equiv$ 0 , and thus $h=\frac{\varphi^{\prime}}{\varphi}$. Integrating (7) we have

$$
\begin{equation*}
P[f]=p_{0} f+p_{1} f^{\prime}=C \varphi \tag{18}
\end{equation*}
$$

where $C \neq 0,1$ by assumption, while equation (12) reduces to

$$
\begin{equation*}
b_{0} f+b_{1} f^{\prime}=0 \tag{19}
\end{equation*}
$$

As the determinant of the pair (18) and (19) obviously has to be nonzero, we obtain $f=\frac{C \varphi}{p_{0} b_{1}-b_{0} p_{1}}$. We also obtain $f \in \mathcal{L}_{p+1, \sigma}$, and thus $\sigma_{M, p+1}(f)<\sigma$, a contradiction. Therefore, we have

$$
i(f)=i_{\bar{\lambda}}(P[f]-\varphi)=p+1
$$

and

$$
\bar{\lambda}_{p+1}(P[f]-\varphi)=\sigma_{M, p+1}(f)=\sigma_{M, p}(A)=\sigma
$$

4. Proof of Theorem 2

Suppose that $f(z) \not \equiv 0$ is an analytic solution of equation (3). Set $w_{j}=f^{(j)}-\varphi$ $(j=0,1, \ldots, k)$, where $\varphi \in \mathcal{L}_{p+1, \sigma}$. Then for $j=0,1, \ldots, k$, we deduce by Lemma 5 that $i\left(w_{j}\right)=i(f)=p+1$, and $\sigma_{p+1}\left(w_{j}\right)=\sigma_{M, p+1}(f)=\sigma_{M, p}(A)=\sigma$. Differentiating both sides of $w_{j}=f^{(j)}-\varphi$ and replacing $f^{(k)}$ with $f^{(k)} \stackrel{M}{=}-A f$, we obtain that

$$
w_{j}^{(k-j)}=-A f-\varphi^{(k-j)}, \quad j=0,1, \ldots, k
$$

Thus we have

$$
\begin{equation*}
f=-\frac{w_{j}^{(k-j)}+\varphi^{(k-j)}}{A} \tag{20}
\end{equation*}
$$

Combining (3) and (20) we obtain

$$
\left(\frac{w_{j}^{(k-j)}}{A}\right)^{(k)}+w_{j}^{(k-j)}=-\left(\left(\frac{\varphi^{(k-j)}}{A}\right)^{(k)}+\varphi^{(k-j)}\right)
$$

and thus

$$
\begin{align*}
& w_{j}^{(2 k-j)}+g_{2 k-j-1} w_{j}^{(2 k-j-1)}+\ldots+g_{k-j} w_{j}^{(k-j)} \\
& \quad=-A\left(\left(\frac{\varphi^{(k-j)}}{A}\right)^{(k)}+A\left(\frac{\varphi^{(k-j)}}{A}\right)\right) \tag{21}
\end{align*}
$$

where $g_{k-j}, \ldots, g_{2 k-j-1} \in \mathcal{L}_{p+1, \sigma}(j=0,1, \ldots, k)$ are meromorphic functions in \mathbb{D}.
Note that there holds $A \not \equiv 0, \varphi^{(k-j)} \not \equiv 0$ and $\frac{\varphi^{(k-j)}}{A} \in \mathcal{L}_{p+1, \sigma}$. Assume that

$$
F:=-A\left(\left(\frac{\varphi^{(k-j)}}{A}\right)^{(k)}+A\left(\frac{\varphi^{(k-j)}}{A}\right)\right) \equiv 0
$$

Thus

$$
\left(\frac{\varphi^{(k-j)}}{A}\right)^{(k)}+A\left(\frac{\varphi^{(k-j)}}{A}\right) \equiv 0
$$

Then by Lemma 5 we obtain $i\left(\frac{\varphi^{(k-j)}}{A}\right)=p+1$ and $\sigma_{M, p+1}\left(\frac{\varphi^{(k-j)}}{A}\right)=\sigma_{M, p}(A)=\sigma$, a contradiction. Hence we have $F \not \equiv 0$. Obviously, there holds

$$
\max \left\{\sigma_{p+1}\left(g_{k-j}\right), \ldots, \sigma_{p+1}\left(g_{2 k-j-1}\right), \sigma_{p+1}(F)\right\}<\sigma \leq \sigma_{M, p+1}\left(w_{j}\right)=\sigma_{p+1}\left(w_{j}\right)
$$

for $j=0,1, \ldots, k$. By Lemma 4 we have

$$
i_{\bar{\lambda}}\left(w_{j}\right)=i_{\lambda}\left(w_{j}\right)=i\left(w_{j}\right)=p+1 \quad \text { and } \quad \bar{\lambda}_{p+1}\left(w_{j}\right)=\sigma_{M, p+1}\left(w_{j}\right)
$$

where $j=0,1, \ldots, k$. Hence, for $j=0,1, \ldots, k$, we obtain our assertion that

$$
i_{\bar{\lambda}}\left(f^{(j)}-\varphi\right)=i_{\lambda}\left(f^{(j)}-\varphi\right)=i\left(f^{(j)}-\varphi\right)=i(f)=p+1
$$

and

$$
\bar{\lambda}_{p+1}\left(f^{(j)}-\varphi\right)=\sigma_{M, p+1}\left(f^{(j)}-\varphi\right)=\sigma_{M, p+1}(f)=\sigma_{M, p}(A)=\sigma
$$

Acknowledgement

The authors would like to thank the referees for making valuable suggestions and comments to improve the present paper.

References

[1] S. Bank, On the value distribution theory for entire solutions of second-order linear differential equations, Proc. London Math. Soc. 50(1985), 505-534.
[2] S. Bank, I. Laine, On the oscillation theory of $f^{\prime \prime}+A f=0$ where A is entire, Trans. Amer. Math. Soc. 273(1982), 351-363.
[3] S. Bank, I. Laine, On the zeros of meromorphic solutions of second order linear differential equations, Comment. Math. Helv. 58(1983), 656-677.
[4] B. Belaïdi, Growth and oscillation theory of solutions of some linear differential equations, Mat. Vesnik 60(2008), 233-246.
[5] B. Belaïdi, Oscillation of fixed points of solutions of some linear differential equations, Acta Math. Univ. Comenian. 77(2008), 263-269.
[6] B. Belaïdi, A. E. Farissi, Differential polynomials generated by some complex linear differential equations with meromorphic coefficients, Glasnik Mat. 43(2008), 363-373.
[7] T. B. CaO, The growth, oscillation and fixed points of solutions of complex linear differential equations in the unit disc, J. Math. Anal. Appl. 352(2009), 739-748.
[8] T. B. Cao, Z. S. Deng, Solutions of non-homogeneous linear differential equations in the unit disc, Ann. Polo. Math. 97(2010), 51-61.
[9] T. B. CaO, H. X. Yi, The growth of solutions of linear differential equations with coefficients of iterated order in the unit disc, J. Math. Anal. Appl. 319(2006), 278-294.
[10] T. B. CaO, H. X. Yı, On the complex oscillation theory of $f^{\prime \prime}+A(z) f=0$ where $A(z)$ is analytic in the unit disc, Math. Nachr. 282(2009), 820-831.
[11] Z. X. Chen, The fixed points and hyper order of solutions of second order complex differential equations, Acta Math. Sci. Ser. A Chin. Ed. 20(2000), 425-432, in Chinese.
[12] Z. X. Chen, K. H. Shon, On the growth and fixed points of solutions of second order differential equations with meromorphic coefficients, Acta Math. Sin. (Engl. Ser.) 21(2005), 753-764.
[13] M. Chuaqui, D. Stowe, Valence and oscillation of functions in the unit disc, Ann. Acad. Sci. Fenn. Math. 33(2008), 561-584.
[14] I. Chyzhykov, G. Gundersen, J. Heittokangas, Linear differential equations and logarithmic derivative estimates, Proc. London Math. Soc. 86(2003), 735-754.
[15] W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[16] J.. Нeittokangas, On complex differential equations in the unit disc, Ann. Acad. Sci. Fenn. Math. Diss. 122 (2000), 1-54.
[17] J. Heittokangas, R. Korhonen, J. Rättyä, Fast growing solutions of linear differential equations in the unit disc, Result. Math. 49(2006), 265-278.
[18] I. Laine, Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, 1993.
[19] I. Laine, Complex Differential Equations, Hand. Differ. Equ. Ordinary Differ. Equ. 4(2008), 269-363.
[20] I. Laine, J. Rieppo, Differential polynomials generated by linear differential equations, Complex Var. Elliptic Equ. 49(2004), 897-911.
[21] M. S. Liu, X. M. Zhang,Fixed points of meromorphic solutions of higher order linear differential equations, Ann. Acad. Sci. Fenn. Math. 31(2006), 191-211.
[22] D. Shea, L. Sons, Value distibution theory for meromorphic functions of slow growth in the disk, Houston J. Math. 12(1986), 249-266.
[23] J. Wang, W. R. Lü, The fixed points and hyper-order of solutions of second order linear differential equations with meromorphic coefficients, Acta Math. Appl. Sin. $\mathbf{2 7}$ (2004), 72-80, in Chinese.
[24] J. Wang, H. X. Yi, Fixed points and hyper order of differential polynomials generated
by solutions of differential equation, Complex Var. Elliptic Equ. 48(2003), 83-94.
[25] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993/ Science Press, Beijing, 1982.
[26] G. Zhang, A. Chen, Fixed points of the derivative and k-th power of solutions of complex linear differential equations in the unit disc, Electron. J. Qual. Theory Differ. Equ. 2009, 1-9.

[^0]: *This work was partially supported by the NSF of Jiangxi (No. 2010GQS0139) and the YFED of Jiangxi (No. GJJ10050) of China.
 ${ }^{\dagger}$ Corresponding author. Email addresses: tbcao@ncu.edu.cn (T.-B. Cao), leiminli@hotmail.com (L.-M. Li), tujin2008@sina.com (J. Tu), xhyhhh@126.com(H.-Y. Xu)

