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Abstract. We prove that the sequence of averaged quantities
∫
Rm un(t,x,y)v(y)dy is

strongly precompact in L2
loc(R

1+d), where v ∈ L2
c(R

m), and un ∈ L2(R1+d ×Rm) are
solutions to strictly parabolic transport equations with flux explicitly depending on space
and time. In order to obtain the result, we use a recently introduced parabolic variant of
H-measures.
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1. Introduction

In the paper we work in a (1 + d)-dimensional space R1+d, where we distinguish
between the first variable corresponding to time (t in the physical or τ in the dual
space), and the second one corresponding to space (x in the physical or ξ in the
dual space). We consider a parabolic differential operator P of the form

Pu(t,x,y) = ∂t(b(t,x,y)u(t,x,y))−
∑

|α|≤2

∂α
x

(
aα(t,x,y)u(t,x,y)

)
,

where b, aα are real, continuous coefficients such that b > 0 (or b < 0), and the
principal symbol of P satisfies the ellipticity condition

(∀ (t,x,y) ∈ R1+d ×Rm
) (∀ ξ ∈ Sd−1

) ∑

|α|=2

ξαaα(t,x,y) 6= 0. (1)

Operator P involves the time/space variables (t,x) ∈ R1+d, with respect to which
we have derivatives, and the parameter y ∈ Rm, which is usually called the velocity
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variable. Our aim is to inspect conditions on (un) and (Pun) under which a sequence
of averaged quantities

∫
un(t,x,y)v(y)dy, v ∈ C∞c (Rm)

is relatively compact in L2
loc(R

1+d).
Analogously to standard Sobolev spaces Hs, for s ∈ R we consider anisotropic

function spaces

H
s
2 , s(R1+d) := {u ∈ S ′ : (1 + ρ4)s/4 û ∈ L2(R1+d)},

where ρ4(τ, ξ) := (2πτ)2 + (2π|ξ|)4. With the scalar product

〈u | v 〉
H

s
2 , s(R1+d)

:=
〈

(1 + ρ4)s/4 û
∣∣∣ (1 + ρ4)s/4 v̂

〉
L2(R1+d)

H
s
2 , s(R1+d) is a Hilbert space.
It is easily checked that for s ∈ R+, H

s
2 ,s(R1+d) is continuously embedded

into H
s
2 (R1+d), while its dual is the anisotropic space H−

s
2 ,−s(R1+d). Indeed,

H
s
2 ,s(R1+d) is isomorphic to the L2(R1+d) weighted by the function ω = (1+ ρ4)s/2

- denote it by L2
ω(R1+d). Thus, its dual is isomorphic to L2

ω−1(R1+d) which is, in
turn, isomorphic to H−

s
2 ,−s(R1+d) (the details can be found in [17]).

The following theorem is the main result of the paper.

Theorem 1. Let un ⇀ 0 weakly in L2(R1+d ×Rm). Assume that, for an l ∈ N,

∂t(bun)−
∑

|α|≤2

∂α
x

(
aαun

)
=

∑

|β|≤l

∂β
y Fβ

n , (2)

where Fβ
n −→ 0 in L2

loc(R
m; H−1,−2(R1+d)), while b, aα satisfy the above assump-

tions.
Then for every v ∈ L2

c(R
m), the sequence of averaged quantities

(
∫
Rm un(t,x,y)v(y)dy) is strongly precompact in L2

loc(R
1+d).

Results similar to Theorem 1 are usually called velocity averaging lemmas. They
appear to be very popular throughout the last two decades, since the question of
the existence of solutions to many nonlinear problems is reduced to precompactness
of a velocity averaged sequence of solutions to linear equations similar to (2) (see
e.g. [2, 5, 14]).

Still, due to a lack of appropriate tools, almost all results on the velocity aver-
aging were restricted to the homogeneous case, i.e. when coefficients of the consid-
ered equation depend only on the velocity variable (in our case that would mean
aα(t,x,y) = aα(y) and b(t,x,y) = b(y); see e.g. [1, 10, 13]).

A velocity averaging result involving the non-homogeneous coefficients is [9, The-
orem 2.5], in which hyperbolic equations are considered. Here, we shall extend this
result to the case of parabolic equations. In order to accomplish the plan, we need
to generalise a recently introduced [3, 4] parabolic variant of Tartar’s H-measures
(microlocal defect measures in Gérard’s terminology) [15, 9]. The study of such
variants H-measures was initiated by Tartar [16].



The velocity averaging for a heterogeneous heat type equation 273

2. On the parabolic variant of H-measures

Let Pd ⊂ R1+d be a smooth compact hypersurface implicitly given by:

Pd . . . ρ4(τ, ξ) = (2πτ)2 + (2π|ξ|)4 = 1.

For any point T = (τ, ξ) ∈ R1+d \ {0}, we define its parabolic projection to Pd as

TP = πP (τ, ξ) =
(

τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
,

(as ρ4 > 0 on R1+d \ {0}, by choosing the positive determination of roots, this
projection is uniquely defined).

In the sequel, by û(τ, ξ) := Fu(τ, ξ) :=
∫
Rd e−2πi(τt+ξ·x)u(t,x) dtdx we denote

the Fourier transform, while F (or ∨) denotes the inverse Fourier transform. The
following theorem is in the basis of our procedure:

Theorem 2 (see [4], Theorem 4.1). If (un)=((u1
n, . . . , ur

n)) is a sequence in L2(R1+d;

Cr) such that un
L2

−⇀ 0 (weakly), then there exists a subsequence (un′) and a complex,
positive semi-definite matrix Radon measure µ = {µij}i,j=1,...,d on R1+d×Pd, such
that for all ϕ1, ϕ2 ∈ C0(R1+d) and ψ ∈ C(Pd):

lim
n′

∫

R1+d

F(ϕ1u
i
n′)(τ, ξ)F(ϕ2u

j
n′)(τ, ξ)ψ(πP (τ, ξ))dτdξ

=
∫

R1+d×Pd

ϕ1(t,x)ϕ2(t,x)ψ(τ, ξ)dµij(t,x, τ, ξ)

= 〈µij , ϕ1ϕ̄2 ⊗ ψ〉, i, j = 1, . . . , d,

(3)

where ⊗ stands for the tensor product of functions in different variables.

The measure µ from the above theorem is called the parabolic variant H-measure
associated to (a sub)sequence (of) (un).

Remark 1. By a complex Radon measure on a locally compact Hausdorff space X
we denote an element from the dual space (C0(X))′. Complex Radon measures form
a Banach space denoted by Mb(X).

The above theorem remains valid if a sequence un is taken from L2
loc, but in that

case the corresponding variant H-measure does not have to be a (complex) Radon
measure, but a distribution of order 0.

Similarly to [11], one proves the following boundedness result on the variant
H-measures.

Corollary 1. Let Mi := lim sup ‖ui
n‖L2(R1+d). Then

‖µij‖ ≤ MiMj , i, j = 1, . . . , d,

where ‖µij‖ = |µij |(R1+d × Pd), and |µij | is the total variation of µij.
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Proof. We start with the case i = j. Using the positivity of µii (µ is positive
semi-definite), we conclude ‖µii‖ = µii(R1+d × Pd). Next, for a positive function
ϕ ∈ C0(R1+d), ϕ ≤ 1, from (3) and Plancherel’s formula we obtain

〈µii, ϕ2〉 = lim
n′

∫

R1+d

F(ϕui
n′)(τ, ξ)F(ϕui

n′)(τ, ξ)dτdξ ≤ M2
i .

From the arbitrariness of ϕ, it follows

‖µii‖ ≤ M2
i . (4)

Now, for an arbitrary φ ∈ C0(R1+d × Pd), |φ| ≤ 1, denote φ1 = φ/
√
|φ| and φ2 =√

|φ|. As µ is positive semi-definite (and hermitian), the same property holds for
the matrix ( 〈µii,φ1φ1〉 〈µij ,φ1φ2〉

〈µij ,φ1φ2〉 〈µjj ,φ2φ2〉

)
,

and from (4) we immediately obtain

|〈µij , φ〉| ≤ (〈µii, |φ|〉〈µjj , |φ|〉)1/2 ≤ MiMj .

As (e.g. [7, p. 89])

‖µij‖ = sup{〈µij , φ〉 : |φ| ≤ 1, φ ∈ C0(R1+d × Pd)} ,

we conclude that the statement of the corollary holds.

Remark 2. In the case when (ϕiun) are uniformly compactly supported for i = 1
and 2, one can replace the parabolic homogeneous function ψ ◦ πP from Theorem 2
by a function ψ̃ ∈ C(R1+d) being equal to a function ψ ◦ πP outside a compact set.
Indeed, due to compact supports, products ϕiun converge to zero weakly in L1(R1+d),
thus F(ϕiun) → 0 pointwise. The statement then follows from the Lebesgue dom-
inated convergence theorem, with C1C2χ as a dominated function, Ci being the L1

bound of (ϕiun) and χ := ψ̃ − ψ ◦ πP the compactly supported difference (for details
check [12, Remark 2]).

Remark 3. By using multiplier operators associated to functions defined on Pd, we
can conveniently rewrite (3). More precisely, for a function ψ ∈ C(Pd) we define an
operator Pψ on L2(R1+d) by Pψu := ((ψ ◦ πP )û)∨, i.e.

(Pψu)(t,x) =
∫

R1+d

e2πi(tτ+x·ξ)ψ
( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
û(τ, ξ) dτdξ . (5)

Clearly, Pψ is a bounded operator, called (the Fourier) multiplier, with norm
equal to ‖ψ‖L∞ .

By applying Plancherel’s theorem to (3), we can rewrite it in the form:

lim
n′

∫

R1+d

(
Pψ ϕ1u

i
n′

)
(t,x)ϕ2u

j
n′(t,x)dtdx =

∫

R1+d×Pd

ϕ1(t,x)ϕ2(t,x)ψ(τ, ξ)dµij(t,x, τ, ξ).
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Notice that Theorem 2 is formulated for sequences of functions taking values
in a finite dimensional Hilbert space, Cr. In this section we shall introduce a
parabolic variant of H-measures corresponding to sequences of functions indexed in
an uncountable set. More precisely, instead of a sequence (un(t,x, i)) := (ui

n(t,x)),
i = 1, ..., r, we shall consider a sequence (un(t,x,y))y∈E , where E ⊆ Rm is an
uncountable set. Such type of extensions was first studied by Gerard [9] for classi-
cal H-measures, while Panov [12] provided it in the ultra-parabolic case, but only
for H-measures corresponding to L∞-sequences of the form (un(x, y))y∈R which are
uniformly continuous with respect to y outside a zero measure set.

Thus, let (un) be an arbitrary sequence of functions in variables (t,x) ∈ R1+d

and y ∈ Rm, weakly converging to zero in L2(R1+d ×Rm).
Next, we introduce a regularising kernel as usual: assume that ω ∈ C∞c (Rm) is

a non-negative function with the total mass one (i.e.
∫
Rm ω(z)dz = 1). Denote for

ε > 0

ωε(y) =
1

εm
ω(

y
ε
),

and for εk = 1
k convolute it with (un(t,x,y)) in y:

uk
n(t,x,y) :=

(
un(t,x, ·) ∗ ωεk

)
(y) =

∫

Rm

un(t,x, z)ωεk
(y − z)dz.

By the Young inequality for (almost every) fixed (t,x) ∈ R1+d

‖uk
n(t,x, ·)‖L2(Rm) ≤ ‖un(t,x, ·)‖L2(Rm)‖ωεk

‖L1(Rm) .

As the regularised kernels are of the total mass one, we have

‖uk
n‖L2(R1+d+m) =

∥∥∥‖uk
n(t,x, ·)‖L2(Rm)

∥∥∥
L2(R1+d)

≤ ‖un‖L2(R1+d+m) ,

implying that the sequence (uk
n) is bounded in the space L2(R1+d+m), uniformly

with respect to k. Besides, we need the following result.

Lemma 1. For a fixed k, the sequence (uk
n) is bounded in W1,∞(Rm; L2(R1+d)).

Proof. Similarly to the above, one shows that for a fixed k

‖uk
n(t,x, ·)‖L∞(Rm) ≤ ‖un(t,x, ·)‖L2(Rm)‖ωεk

‖L2(Rm) (a.e. (t,x) ∈ R1+d) .

Thus for a y ∈ Rm we have
∫

R1+d

|uk
n(t,x,y)|2dtdx ≤

∫

R1+d

‖uk
n(t,x, ·)‖2L∞(Rm)dtdx

≤
∫

R1+d

‖un(t,x, ·)‖2L2(Rm)‖ωεk
‖2L2(Rm)dtdx

≤ ‖un‖2L2(R1+d×Rm)‖ωεk
‖2L2(Rm),
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implying boundedness of (uk
n) in L∞(Rm; L2(R1+d)), as well as weak convergence

uk
n(·,y) −⇀ 0 in L2(R1+d)

for every fixed y ∈ Rm.
On the other hand,

‖uk
n(·,y1)− uk

n(·,y2)‖2L2(R1+d)

≤
∫

R1+d

(∫

Rm

|un(t,x, z)||ωεk
(y1 − z)− ωεk

(y2 − z)|dz
)2

dtdx

≤ ‖un‖2L2(R1+d×Rm)‖ωεk
(y1 − ·)− ωεk

(y2 − ·)‖2L2(Rm) .

As
|ωεk

(y1 − z)− ωεk
(y2 − z)| ≤ Cωk1+m |y1 − y2| ,

where Cω = ‖ω‖W1,∞(Rm), it implies that uk
n are Lipschitz continuous as functions

from Rm to L2(R1+d), with the Lipschitz constant independent of n.

The following lemma associates variant H-measures to sequences of regularised
functions

(
uk

n(·,y)
)
, y ∈ Rm.

Lemma 2. There exists a subsequence (un′) ⊆ (un) and a family {µpq
k : p,q ∈ Rm}

of parabolic variant H-measures such that for each k ∈ N, every ϕ1, ϕ2 ∈ C0(R1+d),
and ψ ∈ C(Pd):

lim
n′

∫

R1+d

(
Pψ ϕ1u

k
n′(·,p)

)
(t,x)ϕ2(t,x)uk

n′(t,x,q)dtdx

=
∫

R1+d×Pd

ϕ1(t,x)ϕ2(t,x)ψ(τ, ξ)dµpq
k (t,x, τ, ξ).

(6)

Proof. Let us first notice that it is enough to prove the Lemma for a fixed k ∈ N,
as an application of the diagonalisation procedure will give a subsequence such that
the above relation holds for every k as well.

According to Theorem 2, for fixed p,q ∈ Rm there exist a subsequence of (un)
and the corresponding complex Radon measure µpq

k over R1+d × Pd such that (6)
holds. Using the diagonalisation procedure, we conclude that for a countable dense
subset D × D ⊂ Rm × Rm there exists a subsequence (un′) ⊂ (un) such that (6)
holds for every (p,q) ∈ D ×D.

Let us take now an arbitrary point (p,q) ∈ Rm×Rm. Let (pj ,qj) be a sequence
in D ×D converging to (p,q). It defines a sequence of variant H-measures (µpjqj

k ),
which is bounded inMb(R1+d×Pd), due to the bounds of (uk

n) in L∞(Rm;L2(R1+d))
and Corollary 1.

Therefore, by the Banach-Alaoglu-Bourbaki theorem there exists a complex Ra-
don measure µpq

k such that, along a subsequence, µ
pjqj

k ⇀ µpq
k vaguely. Thus, for
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arbitrary functions ϕ = ϕ1ϕ̄2, ψ we have
∫

ϕ(t,x)ψ(τ, ξ) dµpq
k (t,x, τ, ξ) = lim

j

∫
ϕ(t,x)ψ(τ, ξ) dµ

pjqj

k (t,x, τ, ξ)

= lim
j

lim
n′

V k
n′(pj ,qj),

(7)

where V k
n denotes the function defined by

V k
n (p,q) :=

∫

R1+d

(
Pψ ϕ1u

k
n(·,p)

)
(t,x)ϕ2(t,x)uk

n(t,x,q)dtdx . (8)

On the other hand,

V k
n′(pj ,qj)− V k

n′(p,q) = V k
n′(pj ,qj)− V k

n′(p,qj) + V k
n′(p,qj)− V k

n′(p,q)

≤ Ck

(
|pj − p|+ |qj − q|

)
,

where in the last step we combined Cauchy-Schwartz inequality, boundedness of the
multiplier Pψ on L2(R1+d), and Lipschitz continuity of functions uk

n. The constant
Ck appearing above is independent of n′. Thus, we can exchange limits in (7). This
actually means that the functional µpq

k does not depend on the defining subsequence
(i.e. it is well defined for every p,q ∈ Rm), which completes the proof.

Using the previous assertion, we prove the existence of variant H-measures as-
sociated to functions taking values in L2(Rm). First, we need to recall a few basic
facts about Bochner spaces L2(Rm, E), where E is an arbitrary Banach space with
dual E′.

We say that f : Rm → E′ is weakly ∗ measurable if it is measurable with respect
to weak ∗ σ(E′, E) topology. The same term is also used for another concept that
some authors called scalarwise measurability: a function f has the latter property
if for each e ∈ E the scalar function x 7→ 〈f(x), e〉 is measurable. However, in case
of a separable Banach space E, two concepts coincide.

The dual of L2(Rm, E) corresponds to the Banach space L2
w∗(R

2m; E′) of weakly
∗ measurable functions f : Rm→E′ such that

∫
Rm ‖f(x)‖2E′dx < ∞ [6, p. 606].

In our case E = C0(R1+d × Pd) and we get a measure that belongs to the
topological dual of L2(R2m; C0(R1+d × Pd)) corresponding to the Banach space
L2

w∗(R
2m;Mb(R1+d × Pd)).

Theorem 3. For the subsequence (un′) ⊆ (un) extracted in Lemma 2 there exists
a measure µ ∈ L2

w∗(R2m;Mb(R1+d × Pd)) such that for all v ∈ L2
c(R2m), ϕ1, ϕ2 ∈

C0(R1+d) and ψ ∈ C(Pd):

lim
n′

∫

R2m

∫

R1+d

v(p,q)
(
Pψ ϕ1un′(·,p)

)
(t,x) ϕ2(t,x)un′(t,x,q)dtdxdpdq

=
∫

R2m

v(p,q) 〈µ(p,q), ϕ1ϕ̄2 ⊗ ψ〉dpdq.

(9)
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Proof. The estimates on (uk
n) give us that the sequence (V k

n ), defined by (8), is
uniformly bounded in L2(R2m), while for a fixed k it is bounded in L∞(R2m). By
taking an arbitrary v ∈ L2

c(R
2m) we have

lim
k

∫

R2m

v(p,q)〈µpq
k , ϕ1ϕ̄2ψ〉dpdq = lim

k

∫

R2m

v(p,q) lim
n′

V k
n′(p,q)dpdq

= lim
k

lim
n′

∫

R2m

v(p,q)V k
n′(p,q)dpdq ,

where in the last step we used the Lebesgue dominated convergence theorem.
According to Lemma 3 (below), we can exchange the limits in the last relation,

providing

lim
k

∫

R2m

v(p,q)〈µpq
k , ϕ1ϕ̄2ψ〉dpdq = lim

n′

∫

R2m

v(p,q)Vn′(p,q)dpdq , (10)

where Vn is defined similarly to V k
n , with uk

n replaced by un in (8).
On the other hand, Corollary 1 and L2-estimates on (uk

n) enable us to define a
bounded sequence of operators µk ∈ L2

w∗(R
2m;Mb(R1+d × Pd)):

µk(p,q)(φ) := 〈µpq
k , φ〉, φ ∈ C0(R1+d × Pd).

(Notice that the mapping (p,q) 7→ 〈µpq
k , φ〉 is measurable on R2m as it is defined

as a limit of measurable functions in Lemma 2).
Therefore, there exists a subsequence (µk′) ⊆ (µk) such that µk′

∗−−⇀ µ in the
space L2

w∗(R
2m;Mb(R1+d × Pd)). By passing to the limit on the left-hand side of

(10), we get relation (9).

Remark 4. Notice that the last theorem remains valid in the case when the test
functions ϕ1, ϕ2 depend on the velocity variable (p or q) as well, i.e. when they are
taken from the space C0(R1+d ×Rm).

Lemma 3. For a given v ∈ L2
c(R

2m) the sequence of averaged quantities∫
R2m

v(p,q)V k
n (p,q)dpdq converges to

∫

R2m

v(p,q)Vn(p,q)dpdq

=
∫

R2m

∫

R1+d

v(p,q)
(
Pψ ϕ1un(·,p)

)
(t,x) ϕ2(t,x)un(t,x,q)dtdxdpdq,

uniformly with respect to n.
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Proof. We need to estimate
∫

R2m

v(p,q)(V k
n − Vn)(p,q)dpdq

=
∫

R2m

∫

R1+d

v(p,q)
(
Pψ ϕ1(uk

n − un)(·,p)
)
(t,x)ϕ2(t,x)uk

n(t,x,q)dtdxdpdq (11)

+
∫

R2m

∫

R1+d

v(p,q)
(
Pψ ϕ1un(·,p)

)
(t,x)ϕ2(t,x)(uk

n − un)(t,x,q)dtdxdpdq.

Obviously, it is enough to obtain the estimate for a dense set of functions (with com-
pact support) in L2. Furthermore, we can take v of the form v(p,q) = v1(p)v2(q),
where v1, v2 belong to W1,∞

c (Rm). Indeed, each v ∈ C∞c (R2m) can be uniformly ap-
proximated by a finite sum of tensor products of functions of the form v1⊗v2, where
v1, v2 ∈ C∞c (Rm) (e.g. [8, p. 44]). Due to compact supports, we get an approximation
by such a sum in L2 as well.

Denote vk
1 (p) :=

∫
Rm

v1(p+z/k)−v1(p)
|z|/k |z|ω(z)dz. By using a definition of functions

uk
n and a change of variables, the first integral on the right-hand side of the last

relation equals

1
k

∫

R2m

∫

R1+d

(
Pψ ϕ1un(·,p)

)
(t,x)vk

1 (p)v2(q)ϕ2(t,x)uk
n(t,x,q)dtdxdpdq

and it is bounded by

1
k
‖ψ‖L∞(Pd)

∫

Rm

‖(ϕ1un)(·,p)‖L2(R1+d)|vk
1 (p)|dp

∫

Rm

|v2(q)|‖(ϕ2u
k
n)(·,q)‖L2(R1+d)dq .

As the functions un, uk
n belong to a bounded set in L2(R1+d+m) (for all n and k),

we get the required estimate.
Application of a similar procedure to the last integral in (11) completes the proof.

3. Proof of the main result

We consider a parabolic version of the classical Riesz potential. More precisely, we
introduce the multiplier operator R2, defined via the Fourier transform:

F (R2u) (τ, ξ) =
1− θ(τ, ξ)
ρ2(τ, ξ)

û(τ, ξ) ,

where, let it be repeated, ρ(τ, ξ) = 4
√

(2πτ)2 + (2π|ξ|)4, while θ ∈ C∞c (R1+d), such
that θ ≡ 1 on a neighbourhood of the origin.

In the proof of the main theorem we use the following statement.

Lemma 4. The multiplier operator R2 is a bounded operator from L2(R1+d) to
H1,2(R1+d).
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Proof. It is enough to notice that there exists a constant C1 > 0 such that for any
u ∈ L2(R1+d) :

‖∂α
xR2(u)‖L2(R1+d) = ‖(2πξ)α (1− θ)

ρ2
û‖L2(R1+d) ≤ C1‖u‖L2(R1+d),

where α ∈ Nd
0 is a multiindex of length less than or equal to 2. Similarly, for a time

derivative there is a constant C2 > 0 such that

‖∂tR2(u)‖L2(R1+d) ≤ C2‖u‖L2(R1+d) .

The obtained estimates imply that ‖(1 + ρ4)1/2û‖L2(R1+d) ≤ C3‖u‖L2(R1+d) for
some constant C3 > 0, giving that R2 : L2(R1+d) → H1,2(R1+d) is bounded. As
H1,2(R1+d) is continuously embedded in H1(R1+d), notice that, according to the
Rellich theorem, R2 is a compact operator from L2(R1+d) to L2

loc(R
1+d).

Proof of Theorem 1. In the first step, let us define functions

fn(t,x,y) :=
∫

Rm

v(p,y)
(
(R2 ◦ Pψ) ϕ1un(·,p)

)
(t,x)ϕ2(t,x) dp,

where ϕ1, ϕ2 ∈ C2
c(R

1+d), ψ ∈ C(Pd), and v ∈ Cl
c(R

2m), while l is the highest order
of derivative with respect to the velocity variable y appearing in (2). Notice that,
according to the last lemma, the sequence (fn) is bounded in Hl(Rm; H1,2(R1+d)).

By applying fn to (2) we get

〈
∑

|β|≤l

(−1)|β|∂β
y fn, Fβ

n 〉 = 〈fn, ∂t(bun)〉 − 〈fn,
∑

|α|≤2

∂α
x

(
aαun

)〉,

where duality on L2
c(R

m; H1,2(R1+d)) is considered.
Based on the estimates on (fn) and (Fβ

n ), the above relation can be rewritten as

∫
R2m

∫
R1+d

v(p,y)

(
∂t

(
(R2 ◦ Pψ)ϕ1un(·,p)

)
(t,x)(bun)(t,x,y)ϕ2(t,x)

+
∑
|α|=2 ∂α

x

(
(R2 ◦ Pψ)ϕ1un(·,p)

)
(t,x)(aαun)(t,x,y)ϕ2(t,x)

)
dtdxdpdy = 0,

(12)

where we have omitted terms converging to zero.
The operators ∂t(R2 ◦ Pψ),

∑
|α|=2

∂α
x (R2 ◦ Pψ) have symbols

2πiτ

ρ2(τ, ξ)
(
1− θ(τ, ξ)

)
(ψ ◦ πP )(τ, ξ), − (2π)2

∑
ξα

ρ2(τ, ξ)
(
1− θ(τ, ξ)

)
(ψ ◦ πP )(τ, ξ),

respectively, which are parabolic homogeneous outside a compact set, thus being
admissible symbols for the parabolic variant H-measures according to Remark 2.
Thus we can apply Theorem 3, and express the limit of (12) as

∫

R2m

v(p,y)
〈(

2πiτb− (2π)2
∑

|α|=2

ξαaα

)
µ(p,y), ϕ1ϕ̄2 ⊗ ψ

〉
dpdy = 0 ,
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where µ ∈ L2
w∗(R

2m;Mb(R1+d × Pd)) is a variant H-measure associated to a (sub)se-
quence (of) (un).

As v is taken from a dense subset in L2(R2m), the dual product under the above
integral equals zero for almost every (p,y) ∈ R2m. On the other hand, as finite
sums of tensor products ϕ ⊗ ψ, ϕ ∈ Cc(R1+d), ψ ∈ C(Pd) form a dense subset in
Cc(R1+d × Pd), we conclude:

(
2πiτb− (2π)2

∑

|α|=2

ξαaα

)
µ(p,y) = 0 (a.e. (p,y) ∈ R2m).

Taking into account the ellipticity condition (1), as well as b > 0 (or b < 0), the
term multiplying µ differs from zero for (τ, ξ) ∈ Pd, which gives µ = 0.

Finally, putting ψ ≡ 1, ϕ1 = ϕ2 = ϕ ∈ C0(R1+d) and v = v1 ⊗ v1, v1 ∈ L2
c(R

m),
in Theorem 3 we get:

lim
n′

∫

R1+d

∣∣∣ϕ(t,x)
∫

Rm

v1(p)un′(t,x,p)dp
∣∣∣
2

dtdx = 0,

which proves the theorem.
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