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Abstract. In this paper, the existence, uniqueness and stability of the solution of a co-
efficient inverse problem (IP) for the kinetic equation (KE) are proven. The approximate
solution of this IP for one-dimensional KE is investigated using two different techniques:
finite difference approximation (FDA) and symbolic computation approach (SCA). A com-
parison among the exact solution of the problem, the numerical solution obtained from
FDA and the approximate analytical solution obtained from SCA is presented.
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1. Introduction

Kinetic theory appeared in the second half of the nineteenth century with Maxwell
and Boltzmann, later with Hilbert, Enskog, Chapman, Vlasov, and Grad. Searching
for a form of matter which could explain Saturn’s rings, Maxwell imagined that they
were made of rocks colliding and gravitating around the planet. The density of mat-
ter is then parametrized by the space position x and the velocity p of the rocks, the
so-called phase space. A few years later, Boltzmann completely formalized the pro-
cess, giving a general representation of a ‘dilute gas’ as particles undergoing collisions
and with free motion between collisions, and he wrote the famous equation which
is now named after him. Vlasov wrote another kinetic equation (KE) for plasmas
of charged particles. There, each particle undergoes a collective Coulombic attrac-
tion from others. Nowadays kinetic equations (KEs) appear in a variety of sciences
and applications such as astrophysics, aerospace engineering, nuclear engineering,
particle fuid interactions, semi-conductor technology, social sciences or in biology
like chemotaxis and immunology. The common feature of these models is that the
underlying Partial Differential Equation is posed in the phase space (x, p) ∈ R2n,
n ≥ 1, [15].

∗Presented at the Sixth Conference on Applied Mathematics and Scientific Computing, Zadar,
Croatia, September 2009.
†For interpretation of color in all figures, the reader is referred to the web version of this article
available at www.mathos.hr/mc.
‡Corresponding author. Email addresses: golgeleyen@karaelmas.edu.tr (F.Golgeleyen),
amirov@karaelmas.edu.tr (A.Amirov)

http://www.mathos.hr/mc c©2011 Department of Mathematics, University of Osijek



284 F.Golgeleyen and A.Amirov

In this study, the solvability of a coefficient inverse problem (IP) for the KE is
proven in the case where the values of the solution are known on the boundary of a
domain. A numerical scheme based on the Finite Difference Approximation (FDA)
is described to obtain the approximate solution of the problem. In order to evaluate
the effectiveness and stability of the proposed method, a random noise is added to
the exact data and several computational experiments are performed. The obtained
numerical solutions are compared with the exact solution and with the approximate
analytical solution computed from Symbolic Computation Approach (SCA) which
is based on the Galerkin method.

2. Statement of the problem

Let Ω be a domain in the Euclidean space R2n, n ≥ 1. For the variables (x, p) ∈ Ω,
it is assumed that x ∈ D, p ∈ G, where D and G are domains in Rn with boundaries
of class C2, ∂Ω = Γ1 ∪ Γ2, Γ1 = ∂D ×G, Γ2 = D × ∂G.

We consider the following KE in the domain Ω

{u,H} − σ (x)u = 0, (1)

where H (x, p) is the Hamiltonian function, {., .} is the Poisson bracket of u and H
defined by

{u,H} =
n∑

i=1

(
∂H

∂pi

∂u

∂xi
− ∂H

∂xi

∂u

∂pi

)
.

In applications, u represents the number (or the mass) of particles in the unit volume
element of the phase space in the neighbourhood of the point (x, p), ∇xH is the force
acting on a particle and σ is the absorption term. The Hamiltonian function is often
of the form H(x, p) = 1

2 |p|2 + φ (x), where 1
2 |p|2 is the kinetic energy and φ (x) is

the potential energy of the physical system under consideration, [1, 3, 6].

Problem 1. Determine the functions u (x, p) and σ (x) that satisfy equation (1),
provided that u (x, p) > 0, the H (x, p) ∈ C2

(
Ω

)
is given and the trace of the solution

of equation (1) on the boundary ∂Ω exists and is known: u|∂Ω = u0.

IP for a differential equation is the problem of determining the coefficients, the
right-hand side, initial conditions or boundary conditions of the equation from some
additional data on the solution of the equation. If a differential equation describes a
physical process (physical field), its coefficients describe the characteristics (parame-
ters) of the medium in which the process (field) is considered. The right-hand side of
the equation describes the sources of the process. Therefore, from the physical point
of view, inverse problems (IPs) are concerned with determining the characteristics of
the medium and (or) the sources of the physical field by using some information on
the physical field (solution of the direct problem). In IPs, it is often required to find
these characteristics and (or) sources of the field inside a certain domain, and the
information is given only at the boundary of this domain. Direct problems consist
of finding the physical field in the domain under consideration if the characteristics
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of the medium and the sources are given, [12]. IPs, generally speaking, are nonlinear
and most of them are not well-posed in the sense of Hadamard. The general theory
of ill-posed problems and their applications are developed by A. N. Tikhonov, V. K.
Ivanov, M. M. Lavrent’ev and their students [9, 10, 16].

The theory and applications of IPs have long made a silent imprint in science and
engineering as a critical tool in establishing the link between the model and observa-
tions. In recent times, however, IPs have taken the center stage in many disciplines,
a trend spurred not only by the advances in sensor technologies, wireless communi-
cations, and signal processing, but also by the necessity to obtain physically relevant
parameters and input for computational models with ever-growing complexity and
sophistication. Examples of such disciplines include seismic and medical imaging,
non-destructive material characterization, and structural health monitoring, [7, 14].

IPs for KE are important both from theoretical and practical points of view.
Interesting results in this field are presented in [2-6, 8].

3. Definitions and notations

In this section, we give some necessary definitions and notations used throughout
the paper. For a bounded domain G, Cm (G) is the Banach space of functions that
are m times continuously differentiable in G; C∞ (G) is the set of functions that
belong to Cm (G) for all m ≥ 0; C∞0 (G) is the set of functions which have compact
support in G and belong to C∞ (G); L2 (G) is the space of measurable functions that
are square integrable in G, Hk (G) is the Sobolev space and H̊k (G) is the closure of
C∞0 (G) with respect to the norm of Hk (G). These standard spaces are described
in detail, for example, in [11, 13].

The following definitions and notations are based on [3].
Let C̃3

0 =
{
ϕ : ϕ ∈ C3 (Ω) , ϕ = 0 on ∂Ω

}
and select a set {w1, w2, ...} ⊂ C̃3

0 (Ω),
which is a complete and orthonormal set in L2 (Ω). We may assume here that the
linear span of this set is everywhere dense in H̊1,2 (Ω), where H̊1,2 (Ω) is the set
of all real-valued functions u (x, p) ∈ L2 (Ω) that have generalized derivatives uxi ,
upi , uxipj , upipj (i, j = 1, 2, ..., n), which belong to L2 (Ω) and whose trace on ∂Ω
is zero. Indeed, the space H̊1,2 (Ω) being separable, there exists a countable set
{ϕi}∞i=1 ⊂ C̃3

0 (Ω) which is everywhere dense in this space. If necessary, this set up
can be extended to a set which is everywhere dense in L2 (Ω). Orthonormalizing the
latter in L2 (Ω), we obtain {wi}∞i=1. The orthogonal projector of L2 (Ω) onto Mn is
denoted by Pn, where Mn is the linear span of {w1, w2, ...wn}. By Γ (A) we denote
the set of all functions u ∈ L2 (Ω) with the following properties:

i) For any u ∈ Γ (A) there exists a function v ∈ L2 (Ω) such that 〈u,A∗η〉 = 〈v, η〉
holds for all η ∈ C∞0 (Ω), where

Au = L̂Lu, L =
n∑

i=1

(
∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi

)
, L̂ =

n∑

i=1

∂2

∂xi∂pi

and A∗ is the differential expression conjugate to A in the sense of Lagrange, and
〈., .〉 is the scalar product in L2 (Ω).
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ii) There exists a sequence {uk} ⊂ C̃3
0 (Ω) such that uk → u weakly in L2 (Ω)

and 〈Auk, uk〉 → 〈Au, u〉 as k →∞.

4. Solvability of the problem

By introducing a new unknown function lnu = y, Problem 1 can be reduced to the
following problem.

Problem 2. Find a pair of functions (y, σ) satisfying the equation

Ly ≡
n∑

i=1

(
∂H

∂pi

∂y

∂xi
− ∂H

∂xi

∂y

∂pi

)
= σ (x) , (2)

provided that the Hamiltonian H (x, p) ∈ C2
(
Ω

)
is given and y is known on ∂Ω:

y|∂Ω = ln u0 = y0, where u0 > 0.

The main difficulty in studying the solvability of such IPs for KEs is their overde-
terminancy. In the theory of IPs, if the number of free variables in the additional
data exceeds the number of free variables in the unknown coefficient (σ(x)) or right-
hand side of the equation, then the problem is called overdetermined, but this is not
the case for n = 1 here. However, for dimension n ≥ 2, Problem 2 is overdetermined
in this sense. On the other hand, inverse problems for KE and integral geometry
problems (IGP) are closely connected, i.e., many problems of integral geometry can
be reduced to the corresponding IP for KE, and vice versa [3]. And here, the under-
lying operator of the related IGP for Problem 2 is compact and its inverse operator
is unbounded. Therefore, it is impossible to prove general existence results. So,
the initial data for these problems cannot be arbitrary; they should satisfy some
”solvability conditions” which are difficult to establish, [3]. In this paper, we use the
term ”overdetermined problem” in this meaning.

On using some extension of the class of unknown functions σ, overdetermined
Problem 2 is replaced by a determined one. This is achieved by assuming the
unknown function σ depends not only upon the space variables x, but also upon
the direction p in some special manner, i.e., consider σ(x, p). The dependence upon
p of σ(x, p) cannot be arbitrary, because the problem would be underdetermined in
this case. This special dependence means that σ(x, p) satisfies a certain differential
equation

(
L̂σ = 0

)
with the following properties:

1) Problem 2 with the function σ(x, p) becomes a determined one. In other
words, the class of unknown functions σ is extended so that Problem 2 becomes a
well-posed problem for the new class.

2) The sufficiently smooth functions σ depending only on x satisfy this equation.
Suppose that we have found a differential equation for σ(x, p) satisfying prop-

erties 1 and 2. Suppose also that we know a priori that the function ye
0 represents

the exact data of Problem 2 related to a function σ depending only on x. Then,
utilizing ye

0, a solution σ̃ to Problem 2 can be constructed. By the uniqueness,
σ̃ and σ(x) coincide. At the same time, knowing the approximate data ya

0 with
‖ye

0 − ya
0‖H3(∂Ω) ≤ ε, an approximate solution σa(x, p) can be constructed such that

‖σ − σa‖L2(Ω) ≤ Cε.
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Recall that, if σ depends only on x and ya
0 does not satisfy the ”solvability con-

ditions”, the solution σa depending only on x does not exist. In other words, a
regularising procedure is constructed for Problem 2.

Application of this method of solvability of Problem 2 leads to a Dirichlet problem
for the third order equation of the form

Au ≡ L̂Lu = F .

The method was firstly proposed by Amirov [2] for the transport equation.

Problem 3. Find a pair of functions (y (x, p) , σ (x, p)) defined in Ω from equation
(2), provided that σ (x, p) satisfies the equation

〈
σ, L̂η

〉
= 0, L̂ =

n∑

i=1

∂2

∂xi∂pi
(3)

for any η ∈ C∞0 (Ω), the trace of y (x, p) on ∂Ω exists and given is y|∂Ω = y0, where
〈., .〉 denotes the inner product in L2 (Ω). Equation (3) is satisfied in the generalized
function sense.

Theorem 1. Assume that H ∈ C2
(
Ω

)
and the following inequalities hold for all

ξ ∈ Rn, (x, p) ∈ Ω :

n∑

i,j=1

∂2H

∂pi∂pj
ξiξj ≥ α |ξ|2 ,

n∑

i,j=1

∂2H

∂xi∂xj
ξiξj ≤ 0, (4)

where α is a positive number. Then Problem 3 has at most one solution (y, σ) such
that y ∈ Γ (A) and σ ∈ L2 (Ω).

Proof. Since Problem 3 is linear, in order to prove the uniqueness of the solution of
the problem, it is sufficient to establish that the homogeneous version of the problem
has only a trivial solution.

Let (y, σ) be a solution to Problem 3 such that y = 0 on ∂Ω and y ∈ Γ (A).
Equation (2) and condition (3) imply Ay = 0. Since y ∈ Γ (A), there exists a
sequence {yk} ⊂ C̃3

0 such that yk → y weakly in L2 (Ω) and 〈Ayk, yk〉 → 0 as
k →∞. Observing that yk = 0 on ∂Ω, we get

−〈Ayk, yk〉 = −
〈
L̂Lyk, yk

〉
=

n∑

i=1

〈
∂

∂pi
(Lyk) ,

∂yk

∂xi

〉
. (5)
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We consider the identity

n∑

j=1

∂yk

∂xj

∂

∂pj
(Lyk) =

n∑

j=1

∂yk

∂xj

∂

∂pj

(
n∑

i=1

(
∂H

∂pi

∂yk

∂xi
− ∂H

∂xi

∂yk

∂pi

))

=
1
2

n∑

i,j=1

(
∂2H

∂pi∂pj

∂yk

∂xi

∂yk

∂xj
− ∂2H

∂xi∂xj

∂yk

∂pi

∂yk

∂pj

)

+
1
2

n∑

i,j=1

∂

∂pj

[
∂yk

∂xj

(
∂yk

∂xi

∂H

∂pi
− ∂yk

∂pi

∂H

∂xi

)]

−1
2

n∑

i,j=1

∂

∂xj

[
∂yk

∂pj

(
∂yk

∂xi

∂H

∂pi
− ∂yk

∂pi

∂H

∂xi

)]

+
1
2

n∑

i,j=1

∂

∂xi

(
∂H

∂pi

∂yk

∂xj

∂yk

∂pj

)
− 1

2

n∑

i,j=1

∂

∂pi

(
∂H

∂xi

∂yk

∂xj

∂yk

∂pj

)
.(6)

If the geometry of the domain Ω and the condition yk = 0 on ∂Ω are taken into
account, then ∂yk

∂pi
= 0 on Γ1 and ∂yk

∂xi
= 0 on Γ2, i = 1, n. Therefore the divergent

terms will disappear in (6), so from (5) we obtain

−〈Ayk, yk〉 = J (yk) , (7)

where

J (yk) ≡ 1
2

n∑

i,j=1

∫

Ω

(
∂2H

∂pi∂pj

∂yk

∂xi

∂yk

∂xj
− ∂2H

∂xi∂xj

∂yk

∂pi

∂yk

∂pj

)
dΩ. (8)

From (4) and (8), we have

J (yk) ≥ 1
2

n∑

i,j=1

∫

Ω

∂2H

∂pi∂pj

∂yk

∂xi

∂yk

∂xj
dΩ ≥ α

2

∫

Ω

|∇xyk|2 dΩ.

The use of Poincaré inequality yields

∫

Ω

y2
kdΩ ≤ C0

∫

Ω

|∇xyk|2 dΩ ≤ CJ (yk) ,

where C0 > 0 depends on the Lebesgue measure of the domain Ω and does not
depend on k, C = 2α−1C0 and ∇xyk =

(
ykx1

, ykx2
, ..., ykxn

)
. Thus from (7) and the

definition of Γ (A), we get

∫

Ω

y2dΩ ≤ lim
k→∞

‖yk‖2 ≤ C lim
k→∞

J (yk) = −C lim
k→∞

〈Ayk, yk〉 = 0,

i.e., y = 0 in Ω. Then (2) implies σ (x, p) = 0. Hence uniqueness of the solution of
the problem is proven.
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It is worth to note that, if y|∂Ω = y0 6= 0, then Problem 3 will not have a solution
from Γ (A). Because as can be seen from the proof of Theorem 1, if a pair (y, σ)
satisfies equation (2), condition (3) and y ∈ Γ (A), then y = 0 on Ω. So in the case
when y0 6= 0 the solution would not satisfy the boundary condition.

Remark 1. The geometry of the domain Ω is essential for the uniqueness of the
solution of Problem 3. More precisely, it is important that Ω can be represented in
form of a direct product of two domains in the spaces of x and p, correspondingly.
Indeed, the assertion of the theorem does not hold if for Ω we take a ball of the form
Ω̃ =

{
(x, p) ∈ R1 × R1 : x2 + (2− p)2 < 1

}
. To prove this, consider the equation

pux = σ (x, p) in Ω̃. It is obvious that condition (4) is satisfied, since H = 1
2p2.

Also, it can be directly verified that the pair of functions u = 1
2p

(
x2 + (2− p)2 − 1

)

and σ = x satisfies the equation pux = σ, σ satisfies condition (3) and u = 0 on ∂Ω̃.

If y0 ∈ C3 (∂Ω) and ∂D ∈ C3, ∂G ∈ C3, then Problem 3 can be reduced to the
following problem.

Problem 4. Find a pair of functions (y,σ) satisfying the equation

Ly = σ + F (9)

provided that F is a known function in H2 (Ω), the trace of the solution y on ∂Ω
exists and is zero, and σ satisfies condition (3).

In this reduction, we simply consider a new unknown function y = y −Φ, where
Φ is a function such that Φ|∂Ω = y0 and Φ ∈ C3 (Ω). Since y0 ∈ C3 (∂Ω) and
∂D ∈ C3, ∂G ∈ C3 the existence of the function Φ follows from Theorem 2 in [13,
p. 130]. Finally, if we again denote y by y, we can obtain (9) and the condition
y|∂Ω = 0, where F = −LΦ.

The following theorem establishes the existence and stability of the solution of
the problem.

Theorem 2. If H ∈ C2
(
Ω

)
, F ∈ H2 (Ω) and the inequalities

n∑

i,j=1

∂2H

∂pi∂pj
ξiξj ≥ α1 |ξ|2 ,

n∑

i,j=1

∂2H

∂xi∂xj
ξiξj ≤ −α2 |ξ|2 (10)

hold for all (x, p) ∈ Ω, ξ ∈ Rn, then there exists a solution (y,σ) of Problem 4 such
that y ∈ Γ (A) ∩ H̊1 (Ω), σ ∈ L2 (Ω) and the inequality

‖y‖H̊1(Ω) + ‖σ‖L2(Ω) ≤ C ‖|5pF |‖L2(Ω) + ‖F‖L2(Ω)

holds, where C depends on the given functions and the Lebesgue measure of the
domain Ω, 5pF = (Fp1 , ..., Fpn). In (10), α1 and α2 are some positive numbers.

Assumption (10) of the theorem has a physical meaning: The family of rays
corresponding to the Hamiltonian H(x, p) is regular, which implies the absence of
waveguides in the domain Ω.
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Proof. Let us consider the following auxiliary problem

Ay = F , (11)

y|∂Ω = 0, (12)

where F = L̂F .
An approximate solution of problem (11)-(12) is sought in the form

yN =
N∑

i=1

αNi
wi; αN = (αN1 , αN2 , ..., αNN

) ∈ RN ,

where the unknown vector αN is determined from the following system of linear
algebraic equations:

〈AyN −F , wi〉 = 0, i = 1, 2, ..., N . (13)

We shall prove that there exists a unique solution αN of system (13) for any F ∈
H2 (Ω) under the hypotheses of the theorem. For this purpose, the i-th equation of
the homogeneous system (F = 0) is multiplied by −2αNi

and the sum from 1 to N
with respect to i. Hence

−2 〈AyN , yN 〉 = 0

is obtained. If the identity−〈AyN , yN 〉 = J (yN ) is considered, then the assumptions
of the theorem imply ∇yN = 0, where ∇yN =

(
yNx1

, ..., yNxn
, yNp1

, ..., yNpn
,
)
. As a

result of the condition yN |∂Ω = 0, we have yN = 0 in Ω. Since the system {wi} is
linearly independent, we get αNi = 0, i = 1, 2, ..., N . Thus the homogeneous version
of system (13) has only a trivial solution. Therefore, the original inhomogeneous
system (13) has a unique solution αN = (αNi), i = 1, ..., N for any function F ∈
H2 (Ω).

Now we estimate the solution yN in terms of F . We multiply the i-th equation
of the system by −2αNi and the sum from 1 to N with respect to i. Since F = L̂F ,
we obtain

−2 〈AyN , yN 〉 = −2
〈
L̂F, yN

〉
. (14)

Observing that yN = 0 on ∂Ω, the right-hand side of (14) can be estimated as
follows:

−2
〈
L̂F, yN

〉
= 2

∫

Ω

n∑

i=1

∂F

∂pi

∂yN

∂xi
dΩ

≤ β

∫

Ω

|∇pF |2 dΩ + β−1

∫

Ω

|∇xyN |2 dΩ, (15)

where β > 0. As can be seen from (7), the left hand-side of (14) is equal to 2J (yN ).
Then from (14) and (15), we have

2J (yN ) ≤ β

∫

Ω

|∇pF |2 dΩ + β−1

∫

Ω

|∇xyN |2 dΩ.
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Recalling that Ω is bounded and yN |∂Ω = 0, the last inequality implies

‖yN‖H̊1(Ω) ≤ C ‖|OpF |‖L2(Ω) , (16)

where β−1 < α1 and the constant C > 0 does not depend on N .
This implies that the set of functions yN , N = 1, 2, 3, ... is bounded in H̊1 (Ω).

Since H̊1 (Ω) is a Hilbert space, {yN} is weakly compact in it. Hence, there exists
a subsequence in this set that is denoted again for simplicity by {yN} converging
weakly in H̊1 (Ω) to a certain function y ∈ H̊1 (Ω). From inequality (16) and weak
convergence of {yN} to y in H̊1 (Ω), it follows that

‖y‖H̊1(Ω) ≤ lim
N→∞

‖yN‖H̊1(Ω) ≤ C ‖|OpF |‖L2(Ω) . (17)

On the other hand, from estimate (16), it is easy to prove that there exists a subse-
quence of {yN} and using (13), we have

〈
LyN − F, L̂wi

〉
= 0. (18)

Since the linear span of the functions wi, i = 1, 2, 3, ... is everywhere dense in
H̊1,2 (Ω), passing to the limit as N →∞ in (18) yields

〈
Ly − F, L̂η

〉
= 0, (19)

for any η ∈ H̊1,2 (Ω). Setting σ = Ly−F , from (19) we see that σ satisfies condition
(3) for any η ∈ C∞0 (Ω) ⊂ H̊1,2 (Ω) and the following estimate is valid:

‖σ‖L2(Ω) ≤ C ‖y‖
H̊1(Ω)

+ ‖F‖L2(Ω) . (20)

Consequently, by using inequality (17), we obtain

‖y‖H̊1(Ω) + ‖σ‖L2(Ω) ≤ C ‖|5pF |‖L2(Ω) + ‖F‖L2(Ω) . (21)

In expression (21), C stands for different constant that depend only on the given
functions and the size of the domain Ω. Thus we have found a solution (y, σ) to
Problem 4, where y ∈ H̊1 (Ω) and σ ∈ L2 (Ω). Now it will be proven that y ∈ Γ (A).
Since y ∈ L2 (Ω) and F ∈ H2 (Ω), it follows that F = Ay ∈ L2 (Ω) in the generalized
sense. Indeed, for any η ∈ C∞0 (Ω) we have

〈y, A∗η〉 =
〈
y, L∗

(
L̂

)∗
η
〉

=
〈
Ly,

(
L̂

)∗
η
〉

=
〈
F,

(
L̂

)∗
η
〉

= 〈F , η〉 .

Here F = L̂F ∈ L2 (Ω).
To complete the proof, it remains to show the convergence

〈AyN , yN 〉 → 〈Ay, y〉 as N →∞.

From (13), it follows that PNAyN = PNF . Since PN is an orthogonal projector,
PNF strongly converges to F in L2 (Ω) as N →∞, i.e., PNAyN → F = Ay strongly
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in L2 (Ω) as N → ∞. Then we have 〈PNAyN , yN 〉 → 〈Ay, y〉 as N → ∞ because
{yN} weakly converges to y and {PNAyN} strongly converges to Ay in L2 (Ω) as
N → ∞. By the definition of PN and yN (since the operator PN is self adjoint in
L2),

〈AyN , yN 〉 = 〈AyN ,PNyN 〉 = 〈PNAyN , yN 〉 .

Hence 〈AyN , yN 〉 → 〈Ay, y〉 as N →∞, which completes the proof.

5. Approximate solution of the problem

In this section, we present and compare two different approaches for the approximate
solution of Problem 1 for n = 1. The first one is ”finite difference approximation
(FDA)” which is based on the finite difference method and the second one is ”sym-
bolic computation approach (SCA)” which is based on the Galerkin method.

5.1. The finite difference approximation

We shall consider the following auxiliary Dirichlet problem with homogeneous bound-
ary data:

Problem 5. Find a function y which satisfies the following third order partial dif-
ferential equation

Ay ≡ yxpxHp−yppxHx+yxxHpp−yppHxx+yxpHpx−ypxHxp+yxHppx−ypHxpx = F ,
(22)

and the boundary condition

y|∂Ω = 0, (23)

where Ay = L̂Ly and F =L̂F .

Equation (22) can be derived by applying the operator L̂ to equation (9) in
Problem 4. We establish the FDA to the solution of Problem 5 on Ω = (a, b)×(c, d),
where a, b, c, d ∈ R. Application of central FDA to Problem 5 yields the following
system of linear algebraic equations:

(−k1 + k2) ỹi−1,j−1 + (2k1 − k4 + k6) ỹi,j−1 + (−k1 − k2) ỹi+1,j−1

+(−2k2 + k3 − k5) ỹi−1,j + (−2k3 + 2k4) ỹi,j + (2k2 + k3 + k5) ỹi+1,j

+(k1 + k2) ỹi−1,j+1 + (−2k1 − k4 − k6) ỹi,j+1 + (k1 − k2) ỹi+1,j+1

= Fi,j , i = 1, ..., I, j = 1, ..., J , (24)



A coefficient inverse problem for the kinetic equation 293

where

k1 =
hi,j+1 − hi,j−1

4 (∆x)2 (∆p)2
, k2 =

hi+1,j − hi−1,j

4 (∆x)2 (∆p)2
,

k3 =
hi,j+1 − 2hi,j + hi,j−1

(∆x)2 (∆p)2
, k4 =

hi+1,j − 2hi,j + hi−1,j

(∆x)2 (∆p)2
,

k5 =
hi+1,j+1 − 2hi+1,j + hi+1,j−1 − hi−1,j+1 + 2hi−1,j − hi−1,j−1

4 (∆x)2 (∆p)2
,

k6 =
hi+1,j+1 − 2hi,j+1 + hi−1,j+1 − hi+1,j−1 + 2hi,j−1 − hi−1,j−1

4 (∆x)2 (∆p)2
.

In the above equations, I, J are positive integers, ∆x = (b−a)
(I+1) and ∆p = (d−c)

(J+1) are
step sizes in the directions x, p, respectively. The notation ỹi,j denotes the finite
difference approximation to the solution y(xi, pj) = y(a + i∆x, c + j∆p) and hi,j is
the approximation to H(xi, pj) = H(a + i∆x, c + j∆p). The condition y|∂Ω = 0 in
Problem 5 is discretized as

ỹ0,j = ỹI+1,j = ỹi,0 = ỹi,J+1 = 0, (i = 0, 1, ..., I + 1, j = 0, 1, ..., J + 1).

System (24) can be written in the matrix form as follows

T ỹ = b. (25)

Here T is a block tridiagonal matrix of order I × J with tridiagonal blocks of order
I and it consists of the coefficients of system (24), ỹ is the column matrix:

ỹ = [ỹ1,1, ỹ2,1,, ..., ỹI,1, ỹ1,2, ỹ2,2, ..., ỹI,2, ..., ỹ1,J , ỹ2,J , ..., ỹI,J ]T ,

and b is the column matrix, which consists of the values Fi,j . By solving the matrix
equation (25), we obtain the approximate values ỹi,j at I × J mesh points of Ω.
Finally, by taking into account the relation lnu = y and the reduction of Problem
3 to Problem 4, the approximate values of u can be easily obtained by setting
ũi,j = exp(ỹi,j + Φi,j).

Numerical solution for σ can be obtained using the approximate values ỹi,j from
the difference equation

∆x∆p [k1ỹi+1,j − k1ỹi−1,j − k2ỹi,j+1 + k2ỹi,j−1] = σ̃i,j , (26)

which is a discrete form of equation (2) for n = 1, i = 1, 2, ..., I, j = 1, 2, ..., J . Here
σ̃i,j is the finite difference approximation to the unknown coefficient σ(xi, pj) =
σ(a + i∆x, c + j∆p).

5.2. The symbolic computation approach

The approximate analytical solution of Problem 5 will be sought in the following
form:

YN =
N−1∑

i,j=0

αi,jwi,jζ (x) ξ (p) , (27)
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where the functions ζ (x), ξ (p) are selected such that they vanish on the boundary
and outside of the corresponding domains. In (27), wi,j = xipj and

{
xi

}∞
i=0

,
{
pj

}∞
j=0

are complete systems in L2 (D) and L2 (G), respectively. The unknown coefficients
αi,j (i, j = 0, ..., N − 1) are determined from the following system of linear algebraic
equations:

N−1∑

i,j=0

(A (αi,jwi,j) ζ (x) ξ (p) , wi′,j′ζ (x) ξ (p))L2(Ω) = (F , wi′,j′ζ (x) ξ (p))L2(Ω) ,

where i′, j′ = 0, ..., N − 1. Finally, we obtain the approximate u by setting UN =
exp(YN +Φ), where Φ is the function used in the reduction of Problem 3 to Problem
4. The unknown coefficient σ can be computed approximately from (9) with the
help of YN , [4].

6. Numerical experiments

The proposed methods have been implemented and evaluated on various IPs. Two
examples are presented below. We test the robustness of the FDA by using noisy
data in the experiments. For this aim, we added multiplicative random noise to the
exact boundary data ub as follows:

unoisy (xi, pj) = ub (xi, pj)
[
1 +

α (umax − umin) γ

100

]
.

Here, (xi, pj) is a mesh point at the boundary ∂Ω, α is a random number in the
interval [−1; 1], umax and umin are maximal and minimal values of the boundary
data ub, respectively, and γ is the noise level in percents. We compared the result
of FDA with the exact solution of the problem and with the result obtained by the
SCA which was developed by the authors in [4]. The maximum absolute percentage
error δ is calculated as follows:

δ =
|uexact − uapproximate|

|uexact| × 100%.

Example 1. Let us consider the problem of finding (u, σ) in Ω = (−1, 1) × (1, 2)
from the equation

Hp (x, p)ux (x, p)−Hx (x, p) up (x, p)− σ (x, p) u = 0, (28)

provided that H (x, p) = x− ln(p), L̂σ = 0, and the boundary conditions

u (−1, p) = exp(−p +
p

8(4 + p2)
+

arc tan(p/2)
16

),

u (1, p) = exp(p +
p

8(4 + p2)
+

arc tan(p/2)
16

),

u (x, 1) = exp(x3 +
1
40

+
arc tan(1/2)

16
),

u (x, 2) = exp(2x3 +
1
32

+
arc tan(1)

16
),
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Figure 1: (a) Computed u, (b) Exact u, (c) Computed σ, (d) Exact σ

are given. The exact solution pair of the problem is u (x, p) = exp(x3p+
p

8(4 + p2)
+

arc tan(p/2)
16

), σ (x, p) = −3x2 − x3 − 1
(4 + p2)2

.
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Figure 2: The exact solution and numerical solution for different noise levels

In Figure 1 above, the exact solution and a finite difference solution of the prob-
lem are given for I = 24, J = 199. Figure 2 displays one-dimensional cross sections
(p = 1.5) of computed approximate solutions with different noise levels superim-
posed with the exact solution of the IP. In Figure 3, we present the results obtained
from SCA for the approximate analytical solution of the same problem.



296 F.Golgeleyen and A.Amirov

The maximum absolute percentage error in the finite difference solution is
δ = 0.4× 10−4% and in symbolic computation δ = 0.6× 10−14%.

Figure 3: A symbolic computational approach: (a) for u, (b) for σ

Example 2. Determine a pair of functions (u, σ) defined in Ω = (−1, 1) × (−1, 1)
that satisfies equation (28), L̂σ = 0 and the boundary conditions

u (−1, p) = exp((p− 1)3e5p), u (1, p) = exp(4 + (p− 1)3e5p),
u (x,−1) = exp(2(x + 1)− 8e−5), u (x, 1) = exp(2(x + 1)),

where H (x, p) = −x + p2 is given. The exact solution of the problem is
u (x, p) = exp(2(x + 1) + (p− 1)3e5p), σ (x, p) = 4p + (3(p− 1)2 + 5(p− 1)3)e5p.

In Figure 4, the numerical solution and the exact solution of the problem are
shown for I = J = 39.
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Figure 4: (a) Computed u, (b) Exact u, (c) Computed σ, (d) Exact σ
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In Figure 5, a comparison between the exact solution and the approximate solu-
tion of the inverse problem for different noise levels is presented by one-dimensional
cross sections (p = 0).
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Figure 5: The exact solution and finite difference solutions with different noise levels

Figure 6 shows the results obtained from SCA for the approximate analytical
solution of the problem.

Figure 6: Approximate analytical solution of the problem using SCA: (a) for u, (b) for σ

Maximum absolute percentage error of the FDA is δ = 0.1×10−10% and in sym-
bolic computation the error is δ = 0.9× 10−14%. In computations, matrix equation
(25) is solved using a Matlab program and symbolic computations are performed
using a Maple program on a PC with Intel Core 2 T7200 2 GHz. Computational ex-
periments show that proposed methods provide highly accurate numerical solutions
and they are robust against the data noises.
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