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Abstract. The paper studies orthonormal wavelets in L2(Rn) with
dilations induced by expanding integer matrices of arbitrary determinant.
We provide a method for construction of all scaling sets and, hence, of all
orthonormal MSF wavelets with the additional property that the core space
of the underlying multiresolution structure is singly generated. Several
examples on the real line and in R2 are included. We also prove that
all MSF orthonormal wavelets whose dimension function is essentially
bounded by 1 are obtained by our construction method. Finally, we derive
a description of all wavelets (not necessarily MSF ones) that arise from a
single scaling function in terms of the underlying multiresolution structure.

1. Introduction

The classical Shannon wavelet with dyadic dilations on the real line is

given by ψ̂ = χ[−1,− 1

2
)∪[ 1

2
,1) = χ2I\I where I denotes the unit interval [− 1

2 ,
1
2 )

and ψ̂ is the Fourier transform of ψ. This is the simplest representative of the
class of MSF MRA orthonormal wavelets. By MSF (”minimally supported
frequency”) one refers to the fact that there is a set W called a wavelet set

such that ψ̂ is of the form χW . Another important feature of the Shannon
wavelet is the fact that it arises from a multiresolution analysis (MRA).

Recall that a multiresolution analysis (MRA) in L2(R) is a sequence
(Vj), j ∈ Z, of closed subspaces of L2(R) with the properties

(i) Vj ⊆ Vj+1, ∀j;
(ii) DVj = Vj+1, ∀j;
(iii) ∩j∈ZVj = {0}, ∪j∈ZVj = L2(R);
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(iv) there exists ϕ ∈ V0 such that the system {Tkϕ : k ∈ Z} is an
orthonormal basis for V0.

Here D and Tk, k ∈ Z, denote dilation and translation operators, respectively:
Df(x) =

√
2f(2x), Tkf(x) = f(x − k). The function ϕ from (iv) is called a

scaling function, and condition (iv) is usually described by saying that ϕ is
an orthonormal generator for the core space V0.

Given an MRA (Vj), we define, for all j ∈ Z, Wj = Vj+1 ⊖ Vj . One then
easily obtains DWj = Wj+1, ∀j, and L2(R) = ⊕j∈ZWj . Moreover, it turns
out that there is a function ψ ∈ W0 such that the system {Tkψ : k ∈ Z} is
an orthonormal basis for W0 and, consequently, ψ is an orthonormal wavelet.
Each orthonormal wavelet obtained in this way is called an MRA wavelet. The
MRA concept is well known; for a comprehensive discussion of MRA wavelets
we refer to Chapters 2 and 7 in [13]. In the case of the Shannon wavelet the
underlying scaling function ϕ is given by ϕ̂ = χI ; in this situation, when the
Fourier transform of a scaling function ϕ of an MRA is of the form ϕ̂ = χS ,
we say that S is a scaling set.

A characterization of scaling sets is known; in addition, there is a simple
relation between scaling sets and the corresponding wavelet sets.

Before stating the relevant result, let us recall the definition of a Z-tiling
domain: a measurable set F ⊆ R is said to be a Z-tiling domain if, for
a.e. ξ ∈ R, there exists a unique k ∈ Z such that ξ + k ∈ F .

The following proposition (easily deduced from [13, Theorem 7.5.2 and
Proposition 2.2.13], see also [15, Theorem 8]) is known.

Proposition 1.1. A measurable set S ⊆ R is a scaling set if and only if
the following conditions are satisfied:

(i) S is a Z-tiling domain;
(ii) 1

2 ξ ∈ S for a.e. ξ ∈ S;

(iii) for a.e. ξ ∈ R, there exists j0 ∈ N such that 1
2j ξ ∈ S, ∀j ≥ j0.

If S is a scaling set, the function ψ defined by ψ̂ = χ2S\S is an orthonormal
wavelet. Conversely, each MSF MRA orthonormal wavelet ψ is of the form

ψ̂ = χ2S\S where S is a scaling set.

The aim of the present article is to generalize this proposition to the case
of dilations in L2(Rn) induced by expanding matrices with integer coefficients
of arbitrary determinant. We shall find a suitable analog of the concept of
a scaling set for such dilations and provide both a characterization and a
construction method of scaling sets.

In the remaining part of this introductory section we summarize all the
relevant results known from the literature. This will also explain the difficulty
that arises when dealing with general dilations and a very special role played
by the dilation factor 2.
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Let us fix necessary notations. Throughout the paper A ∈ Mn(Z)
will denote an arbitrary expanding matrix (by expanding, we mean that all
eigenvalues of A have absolute value greater than 1). We denote by B the
transpose of A. Let d = |detA| = |detB|; clearly, d ∈ N, and d ≥ 2. Recall
that Z

n/BZ
n and B−1

Z
n/Zn are groups of order d. In the sequel we shall

fix a complete set of representatives {α0 = 0, α1, . . . , αd−1} for the quotient
group Zn/BZn. Note that the set {β0 = 0, β1, . . . , βd−1}, with βj = B−1αj ,
is then a complete set of representatives for B−1Zn/Zn.

Let D and Tk, k ∈ Zn, denote our dilation and translation operators on
L2(Rn), respectively: Df(x) =

√
df(Ax), Tkf(x) = f(x− k).

A function ψ ∈ L2(Rn) is an orthonormal wavelet (more precisely, we
shall say A-wavelet in order to specify the underlying dilation matrix A when
needed) if the system {DjTkψ : j ∈ Z, k ∈ Zn} is an orthonormal basis for
L2(Rn).

To each orthonormal wavelet ψ one can attach a so called dimension

function Dψ defined by Dψ(ξ) =
∑∞

j=1

∑
k∈Zn |ψ̂(Bj(ξ + k))|2. It is well

known that Dψ is well defined a.e. and Zn-periodic. Moreover, we have∫
T
Dψ(ξ)dξ = 1 where T denotes the n-dimensional torus. For these and

other facts concerned with dimension functions we refer the reader to [7].
Let us now turn to the concept of a generalized multiresolution analysis

which is another useful tool in our study.

Definition 1.2. A sequence (Vj) of closed subspaces of L2(Rn) is called
a generalized A-multiresolution analysis (A-GMRA, or simply GMRA) if the
following conditions are satisfied:

(i) Vj ⊆ Vj+1, ∀j;
(ii) DVj = Vj+1, ∀j;
(iii) ∩j∈ZVj = {0}, ∪j∈ZVj = L2(Rn);
(iv) V0 is a shift invariant space, i.e. f ∈ V0 ⇒ Tkf ∈ V0, ∀k ∈ Zn.

For a GMRA (Vj) we define, as in the multiresolution case, Wj = Vj+1 ⊖
Vj , j ∈ Z. Again, it turns out that DWj =Wj+1, ∀j, and L2(Rn) = ⊕j∈ZWj .
Thus, if we can find a function ψ ∈W0 such that the system {Tkψ : k ∈ Zn} is
an orthonormal basis for W0, it follows immediately that ψ is an orthonormal
wavelet. When this is the case, we say that (Vj) admits orthonormal wavelets
and each orthonormal wavelet that arises in the way described above is said
to be associated with (Vj).

The importance of the concept of a GMRA lies in the fact that each
orthonormal wavelet ψ is associated with a GMRA: one simply takes V0 as the
closed linear span of the set {DjTkψ : j < 0, k ∈ Zn} and Vj = DjV0, j ∈ Z.
In the dyadic case on the real line this is first observed in [14].

However, there is an important difference between GMRA’s and MRA’s.
If (Vj) is an MRA with dyadic dilations on the real line, then W0 always
contains a function ψ such that {Tkψ : k ∈ Z} is an orthonormal basis for
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W0; in other words, (Vj) admits orthonormal wavelets. In contrast, GMRA’s
need not allow orthonormal wavelets. To explain the difficulty, we need a
theorem from [5] that describes the structure of shift invariant spaces. First,
recall that a sequence (xn) in a separable Hilbert space H is a Parseval frame
for H if ‖x‖2 = ∑∞

n=1 |〈x, xn〉|2, ∀x ∈ H .

Remark 1.3. (a) ([5, Theorem 3.3.]) Let V ⊆ L2(Rn) be a shift invariant
space. Then there is a sequence (possibly finite) (Vj) of subspaces of V such
that V = ⊕∞

j=1Vj and, for each j, there exists a function ϕj ∈ Vj such that
the system {Tkϕj : k ∈ Zn} is a Parseval frame for Vj (in this situation we
say that ϕj is a Parseval generator for Vj and write Vj = 〈ϕj〉).

(b) It is well known that, in the above situation, for each j there exists a
measurable Zn-periodic set Ωj with the property

∑
k∈Zn |ϕ̂j(ξ+k)|2 = χΩj

(ξ)
a.e. In addition, the system {Tkϕj : k ∈ Zn} is an orthonormal basis for Vj if
and only if Ωj = Rn, up to a set of measure zero. The subspaces (Vj) in the
above decomposition can be arranged in such a way that Ω1 ⊇ Ω2 ⊇ . . ..

(c) The functions ϕj from (a) are not uniquely determined by V . However,
the dimension function dimV of V (see [5] for the details) satisfies dimV (ξ) =∑∞

j=1 χΩj
(ξ) a.e.; thus, the sets Ωj are determined by V , up to null-sets, in a

unique way.

In view of the above remark we see that a GMRA (Vj) is an MRA precisely
when the core space V0 is singly generated as a shift invariant space and,
additionally, when V0 possesses an orthonormal generator. Singly generated
core spaces will play the central role in our study; however, it will be seen that
it is necessary for our purposes to work with those singly generated core spaces
that admit only Parseval (and not orthonormal) generators. Such GMRA’s
can be called Parseval frame multiresolution analyses (PF MRA’s).

PF MRA’s were first studied in [4] for dyadic dilations on the real line.
We also refer the reader to [3] for an extensive study of PF MRA’s in L2(Rn)
with dilations induced by expanding matrices A with the property |detA| = 2.

We are now in position to recall a theorem that characterizes those
GMRA’s (with dilations induced by matrices of arbitrary determinant) that
admit orthonormal wavelets. Given a set S, we denote its Lebesgue measure
by |S|. The result that follows is known from the literature; for the details we
refer to [1] and [6].

Theorem 1.4. Suppose that (Vj) is a GMRA such that the core space V0
is decomposed as in Remark 1.3. Then (Vj) admits orthonormal wavelets if
and only if the following two conditions are satisfied:

(i)

(1.1) |
∞⋂

j=1

Ωj | = 0,
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(ii)

(1.2)

∞∑

j=1

d−1∑

i=0

χΩj
(ξ + βi)−

∞∑

j=1

χΩj
(Bξ) = 1 a.e.

If (Vj) admits orthonormal wavelets then the dimension function of each
associated orthonormal wavelet ψ satisfies

(1.3) Dψ(ξ) =

∞∑

j=1

χΩj
(ξ) a.e.

Notice that condition (1.1) is trivially satisfied when V0 has only finitely
many, say m, generators, since it is understood in this situation that Ωj =
∅, ∀j > m. As an immediate corollary, we state the corresponding result for
PF MRA’s that is most relevant for our study. Given a PF MRA (Vj) such
that V0 = 〈ϕ〉, the function ϕ will be called a scaling function (although ϕ is
only a Parseval, not necessarily orthonormal generator).

Corollary 1.5. Let (Vj) be a PF MRA with a scaling function ϕ such
that

∑
k∈Zn |ϕ̂(ξ + k)|2 = χΩ(ξ) a.e. Then (Vj) admits orthonormal wavelets

if and only if

(1.4)

d−1∑

i=0

χΩ(ξ + βi)− χΩ(Bξ) = 1 a.e.

If (Vj) admits orthonormal wavelets then the dimension function of each
associated orthonormal wavelet ψ satisfies

(1.5) Dψ(ξ) = χΩ(ξ) a.e.

The preceding corollary shows the difficulty that arises in the case d =
|detA| > 2. If d = 2, we see that each MRA (Vj) with an orthonormal
generator for the core space V0 admits orthonormal wavelets, since then Ω =
Rn (up to a null-set) and (1.4) is obviously satisfied. In contrast, when d > 2,
if we take an orthonormal generator for V0, the left hand side of (1.4) is equal
to d − 1 > 1 a.e., and, consequently, (1.4) cannot be satisfied (we note in
passing that, in this situation, (Vj) admits only orthonormal multi-wavelets
with d− 1 generators).

Thus, if we want to construct a PF MRA that admits orthonormal
wavelets, we must work with Parseval generators that are not orthonormal.
Roughly speaking, a construction of such PF MRA’s boils down to a
construction of those Zn-periodic measurable sets Ω that satisfy (1.4). In
this paper we provide a method of construction of all PF MRA’s (Vj) such
that the core space V0 is of the form V0 = 〈ϕ〉 where ϕ̂ = χS and the set
Ω = S+Zn satisfies (1.4). In this situation, we say that S is a scaling set. By
Corollary 1.5, such PF MRA’s admit orthonormal wavelets and we shall see
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that all these wavelets belong to the MSF class. Moreover, it turns out that
the relation between a scaling set S and the corresponding wavelet set W is
essentially the same as in Proposition 1.1: W = BS \ S.

Many examples of scaling sets and wavelet sets with dyadic dilations on
the real line are well known. Various methods of construction can be found
in the literature (see, for example, Section 6 of [15].) Moreover, it is known
from the literature that no major difficulties arise in Rn in the case d = 2.
It was shown in [12] that every expanding matrix A ∈ Mn(Z) such that
d = |detA| = 2 admits scaling sets; for this case we also refer the reader to
[3].

In contrast to that, construction of wavelet sets and, in particular, scaling
sets in the case d > 2 is a more difficult question, even on the real line. It
is proved in [10] that every expanding matrix with integer coefficients admits
wavelet sets. The first examples of wavelet sets with general dilations on the
real line appeared in [9]. Further examples of wavelet sets can be found in [16],
[11] and [1]; in particular [1] provides a general procedure for construction of
wavelet sets. Finally, it is proved in [8] that each expanding matrix admits
scaling sets and some new examples are presented. All these results and
examples are obtained by techniques that differ from ours. The essence of our
approach is a systematic use of the underlying multiresolution structure and,
hence, the central objects of our study are scaling sets.

This concludes our description of the background of the subject. The rest
of the article is organized as follows: In Section 2 we characterize all scaling
sets in Theorem 2.4. In Theorem 2.8 we give a construction method of scaling
sets and prove that all scaling sets arise in that way. After that, we prove
in Corollary 2.10 that each expanding matrix with integer coefficients admits
scaling sets. At the end of Section 2 we explain in detail how our results are
related to those from [1].

Section 3 is devoted to examples. First, we analyze the series of examples
on the real line presented in [9] from our viewpoint. This enables us to
construct new examples in L2(R) for all dilation factors d ∈ N, d > 2. Finally,
we present an example of a scaling set and the corresponding wavelet set in
L2(R2) for a matrix A such that d = |detA| = 3. The dilation matrix A used
in that example is similar to rotation by π/6 composed with the dilation by√
3 and may be regarded as a ”generalized quincunx” matrix.
Section 4 completes our study of PF MRA’s from Section 2. It is devoted

to PF MRA’s with general scaling functions. In Theorem 4.2 we give a
description of wavelets that arise from PF MRA’s in terms of the underlying
multiresolution structure. In this way, we generalize the well known high
pass filter technique for computing dyadic MRA wavelts. The paper ends
with more examples which are constructed by using the results obtained in
Section 4.
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Throughout the paper we denote by 〈·, ·〉 the standard inner product in
Rn. As already indicated in our description of the Shannon wavelet and in
the definition of the dimension function, we use the Fourier transform in the

form f̂(ξ) =
∫
Rn f(x)e

−2πi〈x,ξ〉dx. For a function ϕ ∈ L2(Rn) we denote
Sϕ = {ξ ∈ Rn : ϕ̂(ξ) 6= 0} and Ωϕ = Sϕ + Zn. We denote by σϕ the
periodization function of ϕ̂ defined by σϕ(ξ) =

∑
k∈Zn |ϕ̂(ξ + k)|2.

2. Scaling sets

We begin with a result that characterizes those functions that are scaling
functions for PF MRA’s for which there is an associated orthonormal wavelet.

Theorem 2.1. Let ϕ ∈ L2(Rn). Then ϕ is a scaling function for a PF
MRA that admits orthonormal wavelets if and only if the following conditions
are satisfied:

(SF1) σϕ(ξ) = χΩϕ
(ξ) a.e.;

(SF2) there exists a measurable Zn-periodic function m0 such that ϕ̂(Bξ) =
m0(ξ)ϕ̂(ξ) a.e. (and, hence, B

−1Sϕ ⊆ Sϕ, up to a set of measure zero);
(SF3) limj→∞|ϕ̂(B−jξ)| = 1 a.e.;

(SF4) hϕ(ξ) :=
∑d−1
i=0 χΩϕ

(ξ + βi)− χΩϕ
(Bξ) = 1 a.e.

Proof of Theorem 2.1. First observe that ϕ is a scaling function for
a PF MRA if and only if (SF1), (SF2), and (SF3) are satisfied. This is well
known; we refer the reader to [13, Theorem 7.5.2] for the proof in the dyadic
case on the real line. The same statement is proved in [3, Proposition 3.7] for
dilations induced by expanding matrices with the property d = 2. The general
proof (for d ≥ 2) can be obtained by an easy adaptation of these standard
arguments; hence, we omit the details.

The role of the last condition was explained in Corollary 1.5; once we
have a scaling function, (SF4) is precisely what is necessary and sufficient for
the existence of associated orthonormal wavelets.

We now focus our attention on (SF4). The following lemma provides more

insight into the equality
∑d−1
i=0 χΩϕ

(ξ + βi)− χΩϕ
(Bξ) = 1 a.e.

Lemma 2.2. Let S ⊆ Rn ba a measurable set such that B−1S ⊆ S. Denote
Ω = S + Z

n and h(ξ) =
∑d−1

i=0 χΩ(ξ + βi) − χΩ(Bξ). Then h(ξ) = 1 a.e. if
and only if the following conditions are satisfied:

(i) S +B−1Zn = Rn, up to a set of measure zero;
(ii) for a.e. ξ ∈ R := S \B−1Ω, ξ + β 6∈ S for all β ∈ B−1

Z
n \ Zn;

(iii) for a.e. ξ ∈ S ∩B−1Ω, there is a unique index j = j(ξ) ≥ 1 such that
ξ + βj(ξ) ∈ Ω.

Proof of Lemma 2.2. Suppose that h(ξ) = 1 a.e. First, we then have∑d−1
i=0 χΩ(ξ+βi) ≥ 1 a.e. Thus, for all such ξ’s, there exist i ∈ {0, 1, . . . , d−1}
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and k ∈ Zn such that ξ + βi + k ∈ S, in other words, ξ ∈ S + B−1Zn. This
proves (i). Similarly, one gets (ii) and (iii) immediately from the assumption
h(ξ) = 1 a.e. Conversely, suppose (i), (ii) and (iii). By observing that the
function h is B−1Zn-periodic and using (i), we see that it is enough to conclude
that h(ξ) = 1 for a.e. ξ ∈ S and this follows immediately from (ii) and (iii).

Remark 2.3. Suppose that, keeping the notations from the above lemma,
h(ξ) = 1 a.e. Then, in addition to (i), (ii) and (iii), we also have

(iv) S = R ∪ B−1S ∪ σ(B−1S) where σ(B−1S) = ∪ξ∈B−1Sσ(ξ) and, for
ξ ∈ B−1S, σ(ξ) = {η ∈ S : η = ξ + βj(ξ) + k for some k ∈ Zn}.

Observe that for ξ ∈ B−1S we have ξ ∈ S ∩ B−1S ⊆ S ∩ B−1Ω, so, by (iii),
there is a unique j(ξ) ≥ 1 such that ξ + βj(ξ) ∈ Ω. Thus, there is at least one
k ∈ Zn with the property ξ + βj(ξ) + k ∈ S. In general, k is not unique and,
consequently, σ(ξ) can be a set of cardinality greater than 1.

To prove (iv), we only have to show R ∪ B−1S ∪ σ(B−1S) ⊇ S. By the
definition of the set R (see (ii) in Lemma 2.2), this reduces to S ∩ (B−1Ω \
B−1S) ⊆ σ(B−1S). Let us now take ξ ∈ B−1Ω ∩ S. Then there exists η ∈ S
together with l ∈ Zn and some βk such that ξ = B−1η + βk + l ∈ S. This
implies, by the definition of σ(B−1η), that ξ = B−1η + βk + l ∈ σ(B−1η) ⊆
σ(B−1S).

We are now in position to prove a theorem that characterizes scaling sets.
As on the real line, we say that a measurable set F ⊆ Rn is a Zn-tiling
domain if for a.e. ξ ∈ Rn there exists a unique k ∈ Zn such that ξ + k ∈ F .
The definition of a B−1

Z
n-tiling domain is analogous. Clearly, a set F is a

Zn-tiling domain if and only if B−1F is a B−1Zn-tiling domain.

Theorem 2.4. A measurable set S ⊆ Rn is a scaling set if and only if
the following conditions are satisfied:

(S1) |(S + k) ∩ S| = 0, ∀k ∈ Zn, k 6= 0;
(S2) B−1S ⊆ S, up to a set of measure zero;
(S3) for a.e. ξ ∈ Rn there is an integer j0(ξ) for which B−jξ ∈ S, ∀j ≥

j0(ξ);
(S4) S0 = B−1S ∪ R is a B−1Zn-tiling domain, where R = S \ B−1Ω =

{ξ ∈ S : ξ + β 6∈ S, ∀β ∈ B−1Zn \ {0}};
(S5) for a.e. ξ ∈ B−1S there exist a unique β = β(ξ) ∈ B−1Zn \ {0} such

that σ(ξ) = ξ + β(ξ) ∈ S. Moreover, S = R ∪B−1S ∪ σ(B−1S) is, up
to a set of measure zero, a disjoint union.

Proof of Theorem 2.4. Let ϕ̂ = χS . By Theorem 2.1 (see also the
proof), ϕ is a scaling function for a PF MRA if and only if ϕ satisfies (SF1),
(SF2), and (SF3). Obviously, this reduces in our situation to (S1), (S2), and
(S3).
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Suppose that S is a scaling set. Then, by the above observation, S satisfies
(S1), (S2), and (S3). Moreover, ϕ is then a scaling function for a PFMRA that
admits orthonormal wavelets; hence, by (SF4) from Theorem 2.1, S satisfies
the hypothesis of Lemma 2.2.

Take any ξ ∈ B−1S. By Lemma 2.2 (iii), there exists a unique j(ξ) ≥ 1
such that ξ + βj(ξ) ∈ Ω = S + Zn. By (S1), ignoring a null-set, there is a
unique k ∈ Zn such that ξ + βj(ξ) + k ∈ S. Let us denote β(ξ) = βj(ξ) + k;

clearly, β(ξ) ∈ B−1Zn. Define σ(ξ) = ξ + β(ξ). This gives us a function
σ : B−1S → S.

We now claim that |B−1S ∩ σ(B−1S)| = 0.
Take any ξ ∈ B−1S and assume σ(ξ) ∈ B−1S. This means that there is

η ∈ B−1S such that ξ+β(ξ) = η which implies Bη−Bξ = B(β(ξ)) ∈ Zn. By
(S1), ignoring a null-set, we have B(β(ξ)) = 0; thus β(ξ) = 0. This implies
βj(ξ) = −k ∈ Zn which is impossible since j(ξ) ≥ 1.

Let us now prove that R = S \B−1Ω = {ξ ∈ S : ξ+β 6∈ S, ∀β ∈ B−1Zn \
{0}}. The inclusion ⊆ follows from (S1) and Lemma 2.2 (ii). To prove the
opposite inclusion, assume that ξ ∈ S, ξ+β 6∈ S, ∀β ∈ B−1Zn \ {0}. We must
show that ξ 6∈ B−1Ω. Suppose the opposite: ξ ∈ B−1Ω. This gives us η ∈ S
and k ∈ Zn such that ξ = B−1η + B−1k; thus, ξ − B−1k = B−1η. By (S2)
and our assumption on ξ, this implies k = 0, so we have ξ = B−1η ∈ B−1S.
Now, by the definition of σ, we have σ(ξ) = ξ+β(ξ) ∈ S with β(ξ) 6= 0 which
contradicts the assumption on ξ.

Next we claim that B−1S ∪ σ(B−1S) = S \R.
To see this, first observe that R = S \ B−1Ω implies S \ R = S ∩B−1Ω,

so we must show B−1S ∪ σ(B−1S) = S ∩ B−1Ω. The inclusion B−1S ⊆
S ∩ B−1Ω is obvious, while σ(B−1S) ⊆ S ∩ B−1Ω is seen in the following
way: first, σ(B−1S) ⊆ S is clear and, secondly, B(σ(ξ)) = Bξ + B(β(ξ)) ∈
Ω, ∀ξ ∈ B−1S. Thus, we have proved B−1S ∪ σ(B−1S) ⊆ S ∩ B−1Ω. The
opposite inclusion is already proved in Remark 2.3. Finally, we have S =
R ∪B−1S ∪ σ(B−1S) and it is clear from the preceding arguments that this
union is essentially disjoint. This proves (S5).

Put S0 = B−1S ∪R. Next we prove that S0 is a B−1Zn-tiling domain.
First, by Lemma 2.2 (i), we have S + B−1Zn = Rn, i.e., (B−1S ∪ R ∪

σ(B−1S)) + B−1Zn = Rn. Notice that, by the definition of σ, we have
σ(B−1S) + B−1Zn ⊆ B−1S + B−1Zn. This shows that S0 + B−1Zn = Rn.
It remains to prove that |(S0 + β) ∩ S0| = 0 for each β ∈ B−1Zn \ {0}. Let
us take an arbitrary β ∈ B−1

Z
n \ {0}. First observe that R + β does not

intersect S; hence (R+ β) ∩ (B−1S ∪R) = ∅. This gives us |(S0 + β) ∩ S0| =
|(B−1S ∪ R + β) ∩ (B−1S ∪ R)| = |(B−1S + β) ∩ (B−1R ∪ R)|. Finally,
notice that for ξ ∈ B−1S, ξ + β ∈ S implies β = β(ξ); hence ξ + β = σ(ξ).
Thus, (B−1S+β)∩ (B−1R∪R) ⊆ σ(B−1S)∩ (B−1R∪R) and, since the last
intersection has measure zero, the argument is completed.

The converse is clear.
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Remark 2.5. With the notations from the preceding theorem and its
proof, put F = BS0. If S is a scaling set then, by (S4), F is a Zn-tiling
domain such that B−1F ⊆ S ⊆ F ; in particular, B−1F ⊆ F . Moreover,
since S ⊆ F , it is clear that F satisfies (S3) as well. Recall from Proposition
1.1, that in the dyadic case (the same applies to the case d = 2), such tiling
domains are scaling sets. As the preceding theorem shows, when d > 2, scaling
sets are nested between F and B−1F .

Remark 2.6. (a) Suppose that S is a scaling set; put ϕ̂ = χS , V0 = 〈ϕ〉
and Vj = DjV0, j ∈ Z. If, for a subspace V ⊆ Rn, we denote V̂ = {f̂ : f ∈ V },
it is easy to see that V̂0 = L2(S), V̂1 = L2(BS) and Ŵ0 = L2(BS \ S). Thus,
if we denote W = BS \ S, W is a wavelet set. It is well known that this is
equivalent to the conditions Rn = ∪k∈Zn(W + k) = ∪j∈ZB

jW , up to a set of
measure 0.

(b) Since S ⊆ BS we have 1 = |W | = |BS \ S| = |BS| − |S| = d|S| −
|S| = (d − 1)|S|. This shows that all scaling sets have the same measure:
|S| = 1

d−1 . From this we see again that a Zn-tiling domain can be a scaling

set only when d = 2. Also, |B−1S| = |σ(B−1S)| = 1
d(d−1) and this implies

|R| = 1
d−1 − 2

d(d−1) =
d−2
d(d−1) . This shows that |R| = 0 if and only if S = F if

and only if d = 2.

Having obtained a characterization of scaling sets, we now turn to
a method of construction. Our next theorem provides an algorithm for
construction of scaling sets; moreover, we shall see that all scaling sets arise
in that way.

First we need an auxiliary result. Suppose that F is a Zn-tiling domain.
Observe that ξ 7→ ξ := ξ + Zn is a 1 − 1 measure-preserving correspondence
between F and the torus T

n = R
n/Zn. The group Γ = B−1

Z
n/Zn of order

d acts faithfully on Tn by translation. Since S0 is a B−1Zn-tiling domain,
its image in Tn is a cross-section for the Γ-orbits. This is, essentially, the
contents of the following lemma that provides us with a useful measurable
partition of F . We denote by B : Tn → Tn a group homomorphism defined
by B ξ = Bξ. Finally, for ξ ∈ Rn, we denote by τ(ξ) the translation projection
that is defined as the unique element τ(ξ) of F with the property ξ−τ(ξ) ∈ Zn.

Lemma 2.7. Let F be a Zn-tiling domain.

(i) Let C0 = τ(B−1)F . Then B|C0
: C0 → F is a bijection.

(ii) For each i = 1, . . . , d−1, let Ci = τ(C0+βi). Then {C0, C1, . . . , Cd−1}
is a partition of F .

Proof of Lemma 2.7. The proof of [3, Lemma 2.3] applies without
essential changes.
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Theorem 2.8. Let S ⊆ Rn. Then S is a scaling set if and only if S is,
up to a set of measure zero, of the form S = ∪∞

j=0Sj and the sequence (Sj) is
constructed by the following algorithm:

(A1) Pick a Zn-tiling domain F with the properties
(i) B−1F ⊆ F ;
(ii) S0 := B−1F satisfies (S3) from Theorem 2.4.

(A2) For j ≥ 0 choose inductively measurable functions γj : B−1Sj →
{β1, . . . , βd−1} and put σj(ξ) = τ(ξ + γj(ξ)), ∀ξ ∈ B−1Sj. Let
Sj+1 = σj(B

−1Sj).

Proof of Theorem 2.8. Suppose that S = ∪∞
j=0Sj and that the

sequence (Sj) is constructed by the above algorithm. Since B−1F ⊆ F , the
partition of F from the above lemma is here {S0, τ(S0+β1), . . . , τ(S0+βd−1)}.
Observe that S = ∪∞

j=0Sj is a disjoint union, for any choice of the sequence

(γj). Moreover, B−1S ⊆ S0, S0 is a B
−1Zn-tiling domain, and S0 = B−1S∪R

where R = S \ B−1Ω and Ω = S + Zn. With the function σ on B−1S =
∪∞
j=0B

−1Sj restricting to σj on B−1Sj , S satisfies (S1) - (S5) from Theorem
2.4; hence, S is a scaling set.

Conversely, suppose that S is a scaling set. Using the notations of
Theorem 2.4, let Sj = σ(B−1Sj−1) for j ≥ 1, and S′ = ∪∞

j=0Sj . By properties
(S1) - (S5) from Theorem 2.4, S′ is obtained from the algorithm (A1),(A2).
By the first part of the proof, S′ is a scaling set. Since S′ ⊆ S and, by Remark
2.6, |S′| = |S| = 1

d−1 , we conclude that S \ S′ is a null-set.

Remark 2.9. Notice that there are no conditions on the maps γj from
(A2). Each γj simply corresponds to a partition of the set B−1Sj that consists
of finitely many (up to d − 1) measurable sets. When d ≥ 3, there are
uncountably many choices for γj . Hence, every choice of a Zn-tiling domain
F that satisfies (i) and (ii) from (A1) gives rise to an uncountable family of
scaling sets S and corresponding wavelet sets W = BS \ S.

As we mentioned in the introduction, the existence of scaling sets in the
case d = 2 is proved in [12]. Essentially, the argument consists of proving
that, for each expanding matrix A with integer coefficients, there is a Zn-
tiling domain F such that B−1F ⊆ F (up to a null-set) and that F contains
an open neighborhood of 0. Observe that the later property obviously implies
that F satisfies (S3) from Theorem 2.4. In the case d = 2 this was enough to
conclude that S = F is a scaling set (cf. Remark 2.6).

By combining this result with the preceding remark and Theorem 2.4, we
conclude that scaling sets exist for all d ≥ 2. We note that corollary that
follows is not new; this result is already obtained in [8, Theorem 1] using a
different argument.

Corollary 2.10. Each expanding matrix with integer coefficients admits
scaling sets.
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As we already noted in the introduction, related results known from the
literature are mainly concerned with wavelet sets. In particular, a procedure
for construction of all wavelet sets is obtained in [1]. Let us now show how
our results are related to those from [1].

First, we need to recall the definition of a complementary pair introduced
in [1]. In what follows, we denote by C the unit cube in Rn. Suppose that
E is a measurable set with the property B−1E ⊆ E. We say that (T, T ′) is
a complementary pair for E if T : C → E and T ′ : E → E are measurable
one-to-one maps that satisfy (up to a set of measure 0)

(i) T ′(E) ⊆ E \ T (C),
(ii) B(T (ξ)) ≡ ξ and B(T ′(ξ)) ≡ ξ (where ≡ denotes congruence mod Zn),
(iii) E = ∪j≥0(T

′)j(T (C)).

By [1, Theorem 2.2], if E is a measurable set with the property B−1E ⊆ E
and if (T, T ′) is a complementary pair for E, thenW = BE\E is a (subspace)
wavelet set. Conversely, if W ⊆ Rn is a (subspace) wavelet set, there exists a
complementary pair (T, T ′) for the set E = ∪j<0B

jW .
Suppose that S is a scaling set. Then W = BS \ S is a wavelet set; in

particular,W is a Zn-tiling domain and we can identify W with the unit cube
C. Let us define T :W → S by T (ξ) = B−1ξ and T ′ : S → S by T ′ξ = B−1ξ.
Then both T and T−1 are injective measurable maps, T (W ) = B−1W =
S \ B−1S and T ′(S) = B−1S = S \ (S \ B−1S). The above property (ii) is
obvious and ∪j≥0(T

′)j(T (W )) = ∪j≥0B
−j(S \B−1S) = S. Thus, (T, T ′) is a

complementary pair for S.
In the opposite direction, we show how one can reconstruct the scaling

set S together with the corresponding Zn-tiling domain F from a wavelet set
W .

Let us fix a wavelet set W that arises from PF MRA. Observe that the
abovementioned [1, Theorem 2.2] describes wavelet sets that are associated,
in general, with GMRA’s. Thus, W arises from a scaling set only under the
additional assumption that the core space of the underlying multiresolution
structure is singly generated. Denote by ψ the corresponding wavelet which

is given by ψ̂ = χW . Notice that, by (1.5) in Corollary 1.5, we then have
Dψ(ξ) ≤ 1 a.e.

Consider, as in [1, Theorem 2.2], a complementary pair (T, T ′) for the
underlying set E = ∪j<0B

jW . Obviously, we have W = BE \ E. We shall
show that E is a scaling set for W .

First, it is obvious that the set E satisfies

(2.1) B−1E ⊆ E.
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By [1, Theorem 2.1], the function χΩ, where Ω = E + Zn, satisfies the
consistency equation (1.4)

d−1∑

i=0

χΩ(ξ + βi)− χΩ(Bξ) = 1 a.e.

Also by [1, Theorem 2.1], since W is a wavelet set, the set ∪j∈ZB
jE contains,

up to a set of measure 0, a neighborhood of the origin (this is the property
that distinguishes between wavelet sets and subspace wavelet sets). This
immediately implies that E has the property

(2.2) for a.e. ξ there is j0 ∈ N such that B−jξ ∈ E, ∀j ≥ j0.

Since W is a wavelet set, the family {BjW : j ∈ Z} is, up to a set of
measure zero, a partition of Rn. Thus, we can write

Dψ(ξ) =

∞∑

j=1

∑

k∈Zn

|ψ̂(Bj(ξ + k))|2 =
∑

k∈Zn

∞∑

j=1

χW (Bj(ξ + k))

=
∑

k∈Zn

∞∑

j=1

χB−jW (ξ + k) =
∑

k∈Zn

χ∪∞

j=1
B−jW (ξ + k)

=
∑

k∈Zn

χE(ξ + k).

This, together with our assumption Dψ(ξ) ≤ 1 a.e., immediately implies

(2.3) |E ∩ (E + k)| = 0, ∀k ∈ Z
n \ {0}.

From (2.1) - (2.3) and our Theorem 2.1 we see that the function ϕ defined
by ϕ̂ = χE is a scaling function for a PF MRA that admits orthonormal
wavelets

Thus, the set E satisfies (S1), (S2), (S3) from our Theorem 2.4 and the
function χΩ satisfies the consistency equation (1.4). Now the proof of Theorem
2.4 shows that this is enough to obtain (S4) and (S5). By Theorem 2.4, E is
a scaling set.

It is clear from our introductory remarks that all wavelets ψ which arise
from scaling sets belong to the subclass of MSF wavelets with the additional
property that Dψ(ξ) ≤ 1 a.e. (cf. the last assertion of Corollary 1.5). The
converse now follows immediately from the preceding discussion.

Corollary 2.11. Suppose that ψ is an MSF orthonormal wavelet such
that Dψ(ξ) ≤ 1 for a.e. ξ. Then the set S = ∪j<0B

jW is a scaling set and
W = BS \ S.
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3. Examples

In the first part of this section we shall be concerned with examples of
scaling sets and corresponding wavelet sets on the real line. Here we have, for
any d ∈ N, d ≥ 2, A = B = d. Our standard set of representatives for the
quotient group 1

d
Z/Z will be {β0, . . . , βd−1} where βj =

j
d
, 0 ≤ j ≤ d− 1.

Let us begin with the series of examples presented in [9].

Example 3.1. d ∈ N, d ≥ 2. As stated in [9], Example 4.5, part 10, the
set

W = [− d

d+ 1
,− 1

d+ 1
) ∪ [

1

d2 − 1
,

1

d+ 1
) ∪ [

d

d+ 1
,

d2

d2 − 1
)

is a wavelet set.
Here we show how one can reobtain this example using our technique.

Consider the set F = [−d
2+d+1
d2−1 , d

d2−1 ); clearly, F is a Z-tiling domain. If

we now take S0 = 1
d
F = [−d

2+d+1
d(d2−1) ,

1
d2−1 ) and the function σ : S0 → F \ S0

defined by

σ(ξ) =

{
ξ − 1

d
, ξ ∈ [ 1

d(d+1) ,
1

d2−1)

ξ + 1
d
, otherwise

,

the algorithm from Theorem 2.8 gives us

S = [− 1

d+ 1
,

1

d2 − 1
) ∪ [

1

d+ 1
,

d

d2 − 1
).

It is now easy to see that W = dS \S; i.e., the set S is the underlying scaling

set for the orthonormal wavelet ψ given by ψ̂ = χW .

Remark 3.2. In general, the algorithm from Theorem 2.8 enables us to
construct scaling sets S that are countable unions of the form S = ∪∞

j=0Sj
with S0 = B−1F . As the preceding example shows, it is possible to have a
scaling set that consists of only finitely many components. Thus, it is natural
to ask if there exist connected scaling sets. It is not hard to see that the
answer is negative; if d > 2 there are no intervals in R that are scaling sets.
In this sense, the preceding example is optimal. However, there are more
scaling sets that are unions of two intervals.

Example 3.3. Let d ≥ 3. Take any k such that 1 ≤ k ≤ d− 1 and

C = [
k − d

d2 − 1
,

k

d2 − 1
), A = [

dk − 1

d2 − 1
,

dk

d2 − 1
).

Then it is easy to see that S = C ∪ A is a scaling set. The function σ is
defined by σ(ξ) = 1

d
ξ − 1

d
for ξ ∈ A, and σ(ξ) = 1

d
ξ + k

d
for ξ ∈ C.

Observe that, for k = 1, this reduces to the scaling set S from Example
3.1.
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The corresponding wavelet set is

W = dS \ S = [
d(k − d)

d2 − 1
,
k − d

d2 − 1
) ∪ [

k

d2 − 1
,
dk − 1

d2 − 1
) ∪ [

d(dk − 1)

d2 − 1
,
d2k

d2 − 1
).

It can be shown that the scaling sets S from the preceding example,
together with the sets −S complete the list of all scaling sets that consists of
only two intervals.

In our next example we demonstrate a scaling set, for each d > 2, that
consists of three intervals.

Example 3.4. Here we construct a scaling set S that is a disjoint union
of 3 intervals: S = A ∪B ∪ C. The starting point will be A. Then B will be
of the form B = σ( 1

d
A) (σ will be specified later), and finally C = σ( 1

d
B)∪S0

where S0 = 1
d
F with a suitable Z-tiling domain F such that σ( 1

d
C) = A.

Before starting our construction, let us consider the measures of those
three sets. Put |A| = m. Then |B| = 1

d
m and |C| = 1

d2
m+ 1

d
. We must have

1
d
|C| = |A|, i.e., 1

d
( 1
d2
m + 1

d
) = m. The only solution is m = d

d3−1 . Notice

that then |S| = |A| + |B| + |C| = m + 1
d
m + 1

d2
m + 1

d
= 1

d−1 which is, by

Remark 2.6 (b), precisely what we need.
Let A = [a, a + d

d3−1 ) with a temporarily unspecified. Put B = 1
d
A − 2

d
.

This gives B = [ 1
d
a− 2

d
, 1
d
a+ 1

d3−1 − 2
d
).

Next, take σ( 1
d
ξ) = 1

d
ξ + 1

d
, ξ ∈ B, and translate the left endpoint of

σ( 1
d
B) = 1

d
B+ 1

d
by 1

d
to the left - this extension of σ( 1

d
B) gives us S0. Thus,

C = [ 1
d2
a− 2

d2
, 1
d2
a+ 1

d(d3−1) − 2
d2

+ 1
d
). Now we define σ( 1

d
ξ) = 1

d
ξ+ 1

d
, ξ ∈ C.

In order to ensure the equality σ( 1
d
C) = 1

d
C + 1

d
= A, it is enough to adjust

one pair of endpoints, since σ(C) and A are intervals of the same measure.
By considering the left endpoints we obtain the equation 1

d3
a − 2

d3
+ 1

d
= a

whose only solution is a = d2−2
d3−1 . It only remains to verify, for this choice of

the value of a, that F := dS0 contains A and B.

By the construction, we haveA = [d
2−2
d3−1 ,

d2+d−2
d3−1 ), B= [−2d2+d

d3−1 ,−2d2+d+1
d3−1 ),

C = [−2d+1
d3−1 ,

(d−1)2

d3−1 ).

Note that S0 = [−2d+1
d3−1 ,

−2d+1
d3−1 + 1

d
) ⊂ C. Observe that the left endpoint

of F = dS0 coincides with the left endpoint of B - this follows from the
construction (and shows that the construction is tight). It is obvious that
A ⊂ F . By our results, we now know that W = dS \ S is a wavelet set.

Since S = A∪B∪C, we conclude that dS\S consists of 5 disjoint intervals
T1, . . . , T5, where:

T1 = [−2d3+d2

d3−1 , −2d3+d2+d
d3−1 ) (this is dB),

T2 = [−2d2+d+1
d3−1 , −2d+1

d3−1 ) (this is the hole between B and C),

T3 = [ (d−1)2

d3−1 ,
d2−2
d3−1) (this is the hole between C and A),

T4 = [d
2+d−2
d3−1 , d(d−1)2

d3−1 ) (this is to the right of A inside dC),
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T5 = [d(d
2−2)

d3−1 , d(d
2+d−2)
d3−1 ) (this is dA).

We end this section with an example of a scaling set in R
2. Our dilation

matrix will represent the operator of rotation by π
6 composed with dilation

by
√
3 and, hence, it may be regarded as a generalization of the quincunx

matrix.

Example 3.5. Let A =

[
3 1

−3 0

]
. Notice that B =

[
3 −3
1 0

]
and

B−1 = 1
3

[
0 3

−1 3

]
. Since BZ2 = {(3x−3y, x) : x, y ∈ Z} = 3Z×Z, one can

take α0 = (0, 0), α1 = (1, 0), α2 = (2, 0); thus, {β0 = (0, 0), β1 = (0, 13 ), β2 =

(0, 23 )} is a complete set of representatives for the quotient group B−1Z2/Z2.

To apply the algorithm from Theorem 2.8, we first choose a suitable Z2-
tiling domain in R2. Let F be the parallelogram bounded by the lines y = − 1

2 ,

y = 1
2 , y = 2

3x + 1
6 , and y = 2

3x − 1
2 . The vertices of F are F 1 = (−1,− 1

2 ),

F 2 = (0,− 1
2 ), F

3 = (32 ,
1
2 ), and F

4 = (12 ,
1
2 ).

Put S0 = B−1F . The vertices of S0 are S1
0 = (− 1

2 ,− 1
6 ), S

2
0 = (− 1

2 ,− 1
2 ),

S3
0 = (32 ,

1
2 ) and S

4
0 = (12 ,

1
2 ). Clearly (see Figure 1), S0 ⊆ F and S0 contains

an open neighborhood of zero; thus, F and S0 satisfy conditions (A1)(i),(ii)
from Theorem 2.8.

We now proceed by applying the second part of the algorithm. Let

(3.1) σ(B−1ξ) = B−1ξ + (1,
1

3
), ξ ∈ S0, σ(B

−1S0) = P0.

The vertices of P0 are P 1
0 = (56 ,

1
3 ), P

2
0 = (12 , 0), P

3
0 = (1, 16 ) and P

4
0 = (43 ,

1
2 ).

Let

(3.2) σ(B−1ξ) = B−1ξ + (0,
1

3
), ξ ∈ P0, σ(B

−1P0) = Q0.

The vertices of Q0 are Q1
0 = (13 ,

7
18 ), Q

2
0 = (0, 16 ), Q

3
0 = (16 ,

1
6 ) and Q4

0 =

(12 ,
7
18 ). Finally, let

(3.3) σ(B−1ξ) = B−1ξ + (0,−1

3
), ξ ∈ Q0, σ(B

−1Q0) = S1.

The vertices of S1 are S1
1 = ( 7

18 ,− 1
18 ), S

2
1 = (16 ,− 1

6 ), S
3
1 = (16 ,− 2

9 ) and

S4
1 = ( 7

18 ,− 1
9 ).

We shall now iterate the preceding three steps. Let us define inductively

(3.4) σ(B−1ξ) = B−1ξ + (1,
1

3
), ξ ∈ Sj , σ(B

−1Sj) = Pj , j = 1, 2, . . . ,

(3.5) σ(B−1ξ) = B−1ξ + (0,
1

3
), ξ ∈ Pj , σ(B

−1Pj) = Qj , j = 1, 2, . . . ,

(3.6) σ(B−1ξ) = B−1ξ + (0,−1

3
), ξ ∈ Qj , σ(B

−1Qj) = Sj+1, j = 1, 2, . . . .
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One may additionally observe that B−6 = − 1
27I where I is the unit matrix.

Then one obtains from (3.4), (3.5), and (3.6), for all j ≥ 0, that

Sj+2 =
1

27
(−Sj+(4,−6)), Pj+2 =

1

27
(−Pj+(22, 2)), Qj+2 =

1

27
(−Qj+(2, 4)).

We omit the computational details.
By Theorem 2.8, it follows that

S = ∪∞
j=0(Sj ∪ Pj ∪Qj)

is a scaling set (see Figure 1 where S is indicated as the shaded area inside
F ; the largest three parallelograms contained in S are S0, P0, Q0).

3
2
_1

2
_

1
2
__

1
2
_

1
_ 1 1

2
__

Figure 1

4. PF MRA wavelets

In this section we continue our study of PF MRA’s. In contrast to
Section 2, here we do not assume any restrictions on PF MRA’s under
consideration. In other words, we work with general scaling functions, not
necessarily of the form ϕ̂ = χS . The main result is Theorem 4.2 that provides
a description of orthonormal wavelets that arise from PF MRA’s, in terms
of the underlying multiresolution structure. This will enable us to construct
wavelets associated with PF MRA’s with more general scaling functions. We
shall make an additional comment on that in the concluding remark of the
paper. In addition, we demontrate more examples that are constructed using
the techniques developed in this section.

Let us begin with summarizing some standards facts concerned with the
multiresolution technique. The assertions of the following remark are known
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and they will be stated without proofs. For the details, we refer the reader to
the corresponding statements in [3]1.

Remark 4.1. Let (Vj) be a PF MRA with a scaling function ϕ; put
σϕ = χΩ. Then the following statements are true:

(a) For each f ∈ V1 there is a unique measurable Z
n-periodic function t

(that is called the minimal filter for f) such that f̂(Bξ) = t(ξ)ϕ̂(ξ)
a.e. and t(ξ) = 0, ∀ξ 6∈ Ω. In particular, there is a unique
measurable Zn-periodic function m0 (the minimal low-pass filter) such
that ϕ̂(Bξ) = m0(ξ)ϕ̂(ξ) a.e. and m0(ξ) = 0, ∀ξ 6∈ Ω. For f ∈ V1 and
its minimal filter t, we denote td(ξ) = (t(ξ), t(ξ+β1), . . . , t(ξ+βd−1)) ∈
Rd, ξ ∈ Rn.

(b) The minimal low-pass filter m0 satisfies a generalized Smith-Barnwell
equation: ‖md

0(ξ)‖ = χB−1Ω(ξ) a.e., where ‖ · ‖ denotes the Euclidean
norm in Rn.

(c) A function f ∈ V1 belongs to W0 if and only if its minimal filter t
satisfies 〈td(ξ),md

0(ξ)〉 = 0 for a.e. ξ ∈ R
n.

(d) Suppose that µ is a measurable function which is unimodular and Zn-
periodic a.e. Then ϕ1 defined by ϕ̂1(ξ) = µ(ξ)ϕ̂(ξ) is a scaling function
for the same PF MRA (Vj).

(e) Suppose, additionally, that (Vj) admits orthonormal wavelets. Then a
function ψ ∈ W0 is an orthonormal wavelet associated with (Vj) if and
only if σψ(ξ) = 1 a.e.

[13, Proposition 2.2.13] provides a description of an MRA orthonormal
wavelet with dyadic dilations on the real line in terms of the underlying
MRA. The following theorem generalizes this result in two directions: first,
the ambient space is Rn and, secondly, it is concerned with arbitrary dilation
matrices with integer coefficients (so that d ≥ 2). It provides us with an
analog of the concept of a high-pass filter that appears in the aforementioned
classical result. In contrast to the dyadic situation, here we obtain only an
algorithm, rather than a formula, for the ”high-pass filter” of the PF MRA
in question. A similar result for GMRA’s that admit orthonormal wavelets in
the case d = 2 is proved in [2].

Theorem 4.2. Let (Vj) be a PF MRA that admits orthonormal wavelets.
Then there exists a measurable Zn-periodic map ξ 7→ v(ξ) with the properties

• ∑d−1
i=0 |v(ξ + βi)|2 = 1 a.e.;

• for each ψ ∈W0 there exists a measurable Zn-periodic function s such

that ψ̂(Bξ) = s(Bξ)v(ξ)ϕ̂(ξ) a.e.

1It should be mentioned that all of these assertions in [3] are proved in L
2(Rn), but

only in the case d = 2. However, it is not difficult to see that all the arguments do not
depend on d.
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A function ψ ∈W0 written as in 2. is an orthonormal wavelet associated with
(Vj) if and only if s is unimodular a.e.

Proof of Theorem 4.2. Put V0 = 〈ϕ〉. By Theorem 2.1, σϕ(ξ) =
χΩ(ξ) a.e. for some measurable Zn-periodic set Ω. Since (Vj) admits
orthonormal wavelets, we have, by Corollary 1.5,

(4.1)

d−1∑

i=0

χΩ(ξ + βi)− χΩ(Bξ) = 1 a.e.

Let ξ ∈ Rn.
If ξ 6∈ B−1Ω, Remark 4.1 (b) implies md

0(ξ) = 0. From (4.1) we conclude
that there is a unique i, 0 ≤ i ≤ d − 1, such that ξ ∈ Ω − βi and ξ 6∈
Ω − βk, ∀k 6= i. By Remark 4.1 (a), we now have, for each ψ ∈ W0 and the
corresponding filter t, td(ξ) = (0, . . . , 0, 1, 0, . . . , 0) where 1 is placed on the
coordinate place i+ 1. Denote L(ξ) = span{(0, . . . , 0, 1, 0, . . . , 0)} ⊆ Cd.

If ξ ∈ B−1Ω, Remark 4.1 (b) implies ‖md
0(ξ)‖ = 1. From (4.1) we conclude

that there are precisely two indices i and j, 0 ≤ i, j ≤ d − 1, such that
ξ ∈ Ω− βi, ξ ∈ Ω − βj and ξ 6∈ Ω− βk, ∀k 6= i, j. Thus, by Remark 4.1 (a),
(c), for any ψ ∈ W0 and the corresponding filter t, td(ξ) must be contained
in a 1-dimensional subspace L(ξ) of Cd (since both md

0(ξ) and td(ξ) must
have d− 2 trivial coordinates and non-trivial coordinates are possible only at
coordinate places i + 1 and j + 1, L(ξ) is in fact the orthogonal complement
of a 1-dimensional subspace of C2).

Note that in the preceding two paragraphs we have ignored a null-set
that consists of those point ξ for which the equalities from Remark 4.1 (b),
(c) and (4.1) are not satisfied. From the preceding discussion we conclude:
for a.e. ξ ∈ Rn there exists a 1-dimensional subspace L(ξ) of Cd such that
td(ξ) ∈ L(ξ), for all ψ ∈ W0. We shall now fix a unit vector (and, hence, a
basis) in L(ξ), for each such ξ. It suffices to do that for all ξ ∈ F , where F is
any Zn-tiling domain, since all our functions are Zn-periodic.

Consider the partition {C0, C1, . . . , Cd−1} of F from Lemma 2.7. First,
let us choose a unit vector vd(ξ) = (v0(ξ), v1(ξ), . . . , vd−1(ξ)) ∈ L(ξ), for each
ξ ∈ C0. By the preceding conclusions, for each ψ ∈W0 and the corresponding
filter t, there is a scalar valued function ξ 7→ λ(ξ), ξ ∈ C0, such that

(4.2) td(ξ) = λ(ξ)vd(ξ), ξ ∈ C0.

Extend λ(ξ) by Zn-periodicity.
Now, let ξ ∈ Ci, 1 ≤ i ≤ d−1. Recall from Lemma 2.7 that ξ 7→ τ(ξ+βi) is

a bijection from C0 onto Ci. Thus, ξ − β1 ∈ C0, up to an integer translation,
so that vd(ξ − βi) = (v0(ξ − βi), v1(ξ − βi), . . . , vd−1(ξ − βd−1)) is already
defined. By (4.2), we have

(t(ξ−βi), . . . , t(ξ+βd−1−βi)) = λ(ξ−βi)(v0(ξ−βi), . . . , vd−1(ξ+βd−1−βi)).
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In particular, this shows that t(ξ) = λ(ξ − βi)vi(ξ − βi) or, equivalently,

(4.3) t(ξ + βi) = λ(ξ)vi(ξ), ξ ∈ C0.

Let us now define a Zn-periodic function v on F using the partition of
F from the preceding lemma. Let v(ξ) = v0(ξ), ∀ξ ∈ C0, and v(τ(ξ + βi)) =
vi(ξ), ∀ξ ∈ C0, ∀i = 1, 2, . . . , d− 1.

We also extend λ from C0 to F = ∪d−1
i=0Ci by λ(τ(ξ + βi)) = λ(ξ), ξ ∈

C0, i ≥ 1. Now (4.3) can be rewritten in the form

(4.4) t(ξ) = λ(ξ)v(ξ), for a.e. ξ ∈ F.

Finally, let s(Bξ) = λ(ξ). Clearly, s is a measurable, Zn-periodic and
bounded function, and (4.4) now becomes t(ξ) = s(Bξ)v(ξ). Since all the
preceding conclusions are obtained for an arbitrary ψ ∈ W0, we have the

desired equality ψ̂(Bξ) = s(Bξ)v(ξ)ϕ̂(ξ) a.e., for all ψ ∈ W0. Moreover, we

have
∑d−1

i=0 |v(ξ + βi)|2 = 1 a.e. By a standard computation, it follows that

σψ(Bξ) = |s(Bξ)|2 ∑d−1
i=0 |v(ξ + βi)|2 = |s(Bξ)|2 a.e. Using Remark 4.1 (e),

we conclude that ψ is an orthonormal wavelet if and only if the function s is
unimodular a.e.

The preceding proposition together with its proof provides us with an
alternative argument to prove the relation between a scaling set S and the
corresponding wavelet set W stated in Remark 2.6 (a): W = BS \ S. The
following remark should also be compared with the proof of Theorem 2.4.

Remark 4.3. Suppose that S is a scaling set. Then, by definition, ϕ̂ = χS
is a scaling function for a PF MRA (Vj) that admits orthonormal wavelets.
In particular, If we denote Ω = S + Z, the set Ω satisfies equality (4.1).

In this situation the low-pass filter m0 is given by m0 = χB−1S+Zn . By
the proof of Theorem 2.4 and Remark 2.5, there is a Zn-tiling domain F such
that B−1S ⊆ B−1F ⊆ S ⊆ F . Recall from Theorem 2.4 that F = BR ∪ S
and observe that this implies C0 = B−1F = R ∪ B−1S, where C0 is the set
from Lemma 2.7.

From the preceding theorem we know that each orthonormal wavelet ψ

associated with (Vj) is of the form ψ̂(Bξ) = s(Bξ)v(ξ)ϕ̂(ξ). Obviously, to
obtain all these wavelets, it is enough to compute the function v - the simplest
wavelet associated with (Vj) will be then obtained by taking s ≡ 1.

In order to obtain v it is enough to compute vd(ξ) = (v0(ξ), v1(ξ), . . . ,
vd−1(ξ)) for ξ ∈ C0 = B−1F = R ∪B−1S.

By an easy computation (we omit the details) one finds:
If ξ ∈ R, then v0(ξ) = 1 and vj(ξ) = 0, ∀j ≥ 1. In particular, v(τ(ξ +

βj)) = 0, ∀ξ ∈ R, ∀j ≥ 1.
If ξ ∈ B−1S and if i > 0 is the unique index greater than zero with the

property ξ + βi ∈ Ω (see Theorem 2.4), then vi(ξ) = 1 and vj(ξ) = 0, ∀j 6= i.
Hence, v(τ(ξ + βi)) = vi(ξ) = 1. Observe that, by the definition of the map
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σ, we have τ(ξ + βi) = σ(ξ). Thus, v(σ(ξ)) = 1, ∀ξ ∈ B−1S. In addition, we
have v(τ(ξ + βj)) = 0, ∀ξ ∈ B−1S, ∀j 6= i.

This shows that v = χR∪σ(B−1S) on F . It only remains to extend v

by Zn-periodicity. By Theorem 4.2, we now have ψ̂(Bξ) = v(ξ)ϕ̂(ξ) =

χR∪σ(B−1S)(ξ)χS(ξ) = χR∪σ(B−1S)(ξ); in other words, ψ̂ = χBR∪Bσ(B−1S) =
χBS\S .

Remark 4.4. We are now in position to reobtain the assertion of
Corollary 2.11. Here we include the proof based on Theorem 4.2 as an
illustration of the technique developed in this section.

Let ψ be an orthonormal MSF wavelet such that Dψ(ξ) ≤ 1 a.e. We shall

show that there exists a scaling set S such that ψ̂ = χBS\S .
Since ψ is an MSF orthonormal wavelet, there exists a set W such that

ψ̂ = χW . We have already observed that ψ arises from a PF MRA (Vj) with
a scaling function ϕ. The proof consists of finding a new scaling function ϕ1

for (Vj) that is of the form ϕ1 = χS .
Claim: Let S = {ξ : ϕ̂(ξ) 6= 0}. Then |ϕ̂(ξ)| = 1 for a.e. ξ ∈ S.
Let us first show that the desired conclusion follows easily from the above

claim. Define a new function µ by µ(ξ) =

{ 1
ϕ̂(ξ) , ξ ∈ S,

1, ξ 6∈ S.
Clearly, µ is a

measurable function. By our claim, µ is unimodular and, since
∑
k∈Zn |ϕ̂(ξ+

k)| = χΩ(ξ) a.e., Z
n-periodic. Hence, by Remark 4.1 (d), ϕ̂1 = µϕ̂ = χS is a

new scaling function for the same PF MRA (Vj).
It remains to prove the claim.
Take ξ ∈ S. Since W is a wavelet set, we have Rn = ∪j∈ZB

jW ,
up to a set of measure zero. Thus, by ignoring this set, we can find

m ∈ Z such that ξ ∈ BmW . This gives us 1 = χW (Bmξ) = ψ̂(Bmξ) =
s(Bmξ)v(Bm−1ξ)ϕ̂(Bm−1ξ) wherer s and v are the functions from Theorem
4.2. Since |s(ξ)| = 1, ϕ̂(ξ)| ≤ 1, and |m0(ξ)| ≤ 1 for a.e. ξ (see Remark 4.1 and
the proof of Theorem 4.2), this implies |v(Bm−1ξ)| = 1 and |ϕ̂(Bm−1ξ)| = 1.
Now the equality ϕ̂(Bξ) = m0(ξ)ϕ̂(ξ) shows that |ϕ̂(Bjξ)| = 1, ∀j ≤ m− 1.
Moreover, since (v(Bm−1ξ), v(Bm−1ξ + β1), . . . , v(B

m−1ξ + βd−1)) is a unit
vector and |v(Bm−1ξ)| = 1, we have v(Bm−1ξ+β1) = 0, ∀i = 1, . . . , d−1. Now
(v(Bm−1ξ), . . . , v(Bm−1ξ + βd−1)) ⊥ (m0(B

m−1ξ), . . . ,m0(B
m−1ξ + βd−1))

implies m0(B
m−1ξ) = 0; hence ϕ̂(Bmξ) = 0. By induction, we conclude

that ϕ̂(Bjξ) = 0, ∀j ≥ m. Thus, since ξ ∈ S, we must have m > 0 and,
consequently, |ϕ̂(ξ)| = 1.

This completes our description of scaling sets and the corresponding
MSF wavelets. We end the paper with another two series of examples that
are obtained using the technique from the proof of Theorem 4.2. Before
presenting our examples, we shall state a general remark in order to explain
our construction scheme.
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Remark 4.5. For simplicity, we restrict ourselves to the real line. Let us
fix d ∈ N, d > 2. Let A = B = d and βi =

i
d
, i = 0, 1, . . . , d− 1.

Denote by F the unit interval: F = [− 1
2 ,

1
2 ). Let S0 = 1

d
F = [− 1

2d ,
1
2d ).

We wish to construct a scaling set S that will satisfy S0 ⊆ S ⊆ F . Observe
that this immediately implies (S1), (S2), and (S3) from Theorem 2.8. Let us

denote Ω = S+Z and h(ξ) =
∑d−1
i=0 χΩ(ξ+βi)−χΩ(dξ). In view of Theorem

2.1, it only remains to achieve h(ξ) = 1 a.e. Observe that χΩ is a Z-periodic
function; hence, the function h is 1

d
-periodic. This means that it will be

enough to ensure h(ξ) = 1 for a.e. ξ from a 1
d
Z-tiling domain (typically, this

will be an interval, or a finite union of intervals). The idea of our construction
is to find a function χΩ (i.e., a set Ω) with this property. In the examples
below this will be done by using the following scheme: (For simplicity we shall
write D instead of χΩ. Notice that this is in accordance with the last assertion
of Corollary 1.5; what we really do is a construction of the dimension function
of an orthonormal wavelet.)

(D1) Fix a 1
d
Z-tiling domain T ⊆ F disjoint from S0. Put N = F \ (S0∪T ).

Observe that F = S0 ∪N ∪ T is a disjoint union.

(D2) PutD(ξ) =

{
1, ξ ∈ S0

0, ξ ∈ N
. ExtendD to (S0∪N)+Z by Z-periodicity.

(D3) Let h(ξ) =
∑d−1

i=0 D(ξ + βi) − D(dξ). Define D on T with values in
{0, 1} in such a way that h(ξ) = 1 for a.e. ξ ∈ T . Extend D to T + Z

by Z-periodicity.
(D4) Put S = {ξ ∈ F : D(ξ) = 1}. Then S is a scaling set and, consequently,

W = dS \ S is a wavelet set.

Example 4.6. d = 2n+1, n ∈ N. With the notations from the preceding
remark, we have S0 = [− 1

2(2n+1) ,
1

2(2n+1) ). Let T = [− 1
2 ,− 1

2 + 1
2n+1 ) =

[− 1
2 ,

−2n+1
2(2n+1) ) and N = F \ (S0 ∪ T ). As in (D2), let D(ξ) = 1, ξ ∈ S0, and

D(ξ) = 0, ξ ∈ N ; in addition, we extend D to (S0 ∪N) + Z by Z-periodicity.
The key idea is now to define D on T using the equality

(4.5) D(ξ) = −
2n∑

i=1

D(ξ + βi) +D((2n+ 1)ξ) + 1, ξ ∈ T.

Obviously, this will ensure (D3). To do that, consider the intervals

Lk = [−1

2
+

1

(2n+ 1)k+1
,−1

2
+

n

(2n+ 1)k+1
), k = 0, 1, 2, . . . ,

Jk = [−1

2
+

n

(2n+ 1)k+1
,−1

2
+

n+ 1

(2n+ 1)k+1
), k = 0, 1, 2, . . . ,

Ik = [−1

2
+

n+ 1

(2n+ 1)k+1
,−1

2
+

1

(2n+ 1)k
), k = 0, 1, 2, . . . .



SCALING SETS AND ORTHONORMAL WAVELETS 211

One can easily verify that

(4.6) T = ∪∞
k=1(Lk ∪ Jk ∪ Ik),

(4.7) J0 = S0, L0 ∪ I0 = N,

(4.8) (2n+ 1)Lk = Lk−1 − n, ∀k > 0,

(4.9) (2n+ 1)Jk = Jk−1 − n, ∀k > 0,

(4.10) (2n+ 1)Ik = Ik−1 − n, ∀k > 0.

It is now clear that these equalities enable us to use (4.5) inductively to
define the function D on T (and, a posteriori, on T + Z). It turns out that
D(ξ) = 1, ∀ξ ∈ Jk, and D(ξ) = 0, ∀ξ ∈ Lk ∪ Ik, ∀k ∈ N. Thus, when we take
into account that D(ξ) = 1, ∀ξ ∈ S0 = J0, we conclude, by Remark 4.5, that

S = {ξ ∈ F : D(ξ) = 1} = ∪∞
k=0Jk

is a scaling set.

Example 4.7. Let d = 2n, n ∈ N . The construction is essentially the
same as the preceding one. The only difference is that the unit interval F
contains an even number of subintervals of length 1

d
, so that our set T is

going to be a union of two intervals.
First note that S0 = [− 1

4n ,
1
4n ). Let T = T−∪T+ where T− = [− 1

2 ,− 1
2 +

1
4n ) and T+ = −T− = [ 12 − 1

4n ,
1
4n ). As before, let N = F \ (S0 ∪ T ) and

D(ξ) = 1, ξ ∈ S0, D(ξ) = 0, ξ ∈ N . Again, we extend D to (S0 ∪N) + Z by
Z-periodicity. As in preceding example we will define D on T by

(4.11) D(ξ) = −
2n−1∑

i=1

D(ξ + βi) +D(2nξ) + 1, ξ ∈ T.

To do that, we need a partition of T similar to the preceding one. Let

ak =
1

2(2n+ 1)
(1− 1

22kn2k
), k = 0, 1, . . .

and

Ak = [−1

2
+ ak−1,−

1

2
+ ak−1 +

1

2

1

22kn2k
), k = 1, 2, . . . ,

Bk = [−1

2
+ ak−1 +

1

2

1

22kn2k
,−1

2
+ ak), k = 1, 2, . . . ,

Ck = [−1

2
+ ak+1 +

1

2

1

22k+2n2k+2
,−1

2
+ ak +

1

2

2n− 1

22k+1n2k+1
), k = 1, 2, . . . ,

Dk = [−1

2
+ ak +

1

2

2n− 1

22k+1n2k+1
,−1

2
+ ak +

1

2

1

22kn2k
), k = 1, 2, . . . .

Next, we note the following relations; a verification is left to the reader.

(4.12) T− = ∪∞
k=1(Ak ∪Bk ∪Ck ∪Dk),
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(4.13) 2nA1 + n = [0,
1

4n
), 2nB1 + n = [

1

4
,
1

2
− 1

4n
),

(4.14) 2nAk + n = −Dk−1, ∀k > 1,

(4.15) 2nBk + n = −Ck−1, ∀k > 1,

(4.16) 2nCk + n = −Bk, ∀k ≥ 1,

(4.17) 2nDk + n = −Ak, ∀k ≥ 1.

In addition, similar relation hold for the sets −Ak, −Bk, −Ck, and −Dk,
k ≥ 1, which make up a partition of T+ = −T−. These relations enable us to
define D on T using (4.11). First, using (4.13), one defines T on A1 and B1

and, by symmetry, on −A1 and −B1. After that, we use (4.16) and (4.17) to
define D on C1, D1, −C1, and −D1. Proceed by induction. It turns out that
D maps F onto {0, 1} and

S = {ξ ∈ F : D(ξ) = 1} = S0 ∪ ∪∞
k=1(Ak ∪Dk ∪ (−Ak) ∪ (−Dk)).

By Remark 4.5, S is a scaling set.

Concluding remark. The results of the paper provide a complete
description as well as a method of construction of all scaling sets. All wavelets
that arise from our construction method are MSF-wavelets; thus, a posteriori,
one obtains all wavelet sets that arise from scaling sets. It should be noted
that [1] provides a method for constructing all wavelet sets (i.e., not only those
that arise from PF MRA’s). However, we believe that our analysis of scaling
sets provides some new insight into the subject and, as demonstrated through
a series of examples, can be efficiently used as a construction method.

Moreover, there is some evidence that our approach can be extended to
a method of construction of non-MSF wavelets. The first step along that line
is the following observation: if ϕ1 is a scaling function of a PF MRA wavelet,
then it is relatively easy to prove that there exists a scaling set S contained

in the set supp ψ̂1. In the opposite direction, one should start with a scaling
set S and try to change the values of the function χS on a suitable subset of
S+Zn in order to obtain a new scaling function ϕ1 such that the support S1

of ϕ̂1 contains S and satisfies B−1S1 ⊂ S1. Such a construction, followed by
an application of Theorem 4.2, will result with a non-MSF wavelet(s).

More details, together with first examples of non-MSF wavelets with
general dilations, will appear elsewhere.
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