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In order to perform useful tasks the mobile robot's current pose must be accurately known. Problem of find-
ing and tracking the mobile robot's pose is called localization, and can be global or local. In this paper we ad-
dress the problem of mobile robot's local localization or pose tracking with prerequisites of known starting pose,
robot kinematics and world model. Pose tracking is mostly based on odometry, which has the problem of accu-
mulating errors in an unbounded fashion. To overcome this problem sensor fusion is commonly used. This paper
describes a simple odometry calibration method and compares two fusion methods of calibrated odometry data
and sonar range data fusion based on a Kalman Filter framework. One fusion method is based on the standard
Extended Kalman Filter and another one, proposed in this paper, on the Unscented Kalman Filter. Occupancy
grid map is used as the world model, which is beneficial because only sonars' range measurement uncertainty has
to be considered. If a feature-based map is used, as the world model, then an additional uncertainty regarding
the feature/range reading assignment must be also considered. Experimental results obtained with the Pioneer
2DX mobile robot (manufacturer ActivMedia Robotics) show that better accuracy of pose estimation and smoother
robot motion can be obtained with Unscented Kalman Filter.
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1 INTRODUCTION

Mobile robot localization is one of the very im-
portant tasks in navigation of autonomous mobile
robots [1]. In a typical indoor environment with a
flat floor plan, mobile robot localization becomes a
matter of estimating its pose, i.e. its position given
with its x and y coordinates and its orientation
given with angle Θ. There are two types of locali-
zation: global and local. Using global localization
methods mobile robot can solve the unknown start
pose and lost-robot problem, i.e. current pose in
an a priori known world model can always be de-
termined. On the other hand, using local localiza-
tion or pose tracking the mobile robot becomes lost
when predicted sensor readings become significant-
ly different from real sensor readings. In spite of
this drawback of pose tracking methods they are
extensively used due to their computational simplic-
ity, which is of particular importance in applica-
tions where all algorithms should be computed in
onboard computer. A global localization algorithm
should also be implemented, but its execution is
started only in cases when robot is lost. In such a
situation robot interrupts its normal operation and
start wandering through the environment trying to
find its pose. When it succeeds, execution of global
localization algorithm is stopped and robot continu-
es with normal operation.

One of the most important means of solving the
pose tracking problem is odometry. This method
uses data from encoders mounted on robot wheels
and is a simple, inexpensive and easy way to deter-
mine the offset from a known start pose in real
time. The encoders' data are passed to the central
processor that in turns continually updates the mo-
bile robot's pose using geometric equations descri-
bing robot kinematics. The disadvantage is its un-
bounded accumulation of errors due to wheel slip-
page, floor roughness, discretized sampling of wheel
speed data, inaccessibility to the angular velocities
of the wheels in some mobile robots etc. So this
method can be successfully used only for pose
tracking between pose updates using additional sen-
sors [2].

A lot of research has been undergone in order to
improve the accuracy of odometry, i.e. to eliminate
the systematic error, mobile robot construction con-
straints and environment influences on the mobile
robot pose tracking. A common approach consists
of two parts. The first part is about a better error
[3] or odometry model [4] and the second part in-
volves usage of additional sensors [2]. Most often
used additional sensors are sonar, laser range find-
er, stereo or mono vision, gyro, compass and GPS
(for outdoor mobile robots). Additional sensors can
be used for correction of the estimated robot pose,
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for online odometry calibration [5], or for both si-
multaneously. In case of mobile robot pose correc-
tion local and global world model matching [6] or
sensor fusion techniques are used [7, 8].

In this paper we propose an approach to odo-
metry calibration based on two simple experiments
and the fusion of the so calibrated odometry data
with sonar range data. For the sake of sensors' data
fusion we implemented and tested two versions of
nonlinear Kalman filters: (i) standard Extended
Kalman Filter (EKF) and (ii) Unscented Kalman
Filter (UKF). The idea of their use is to match re-
cent sensory information against prior knowledge
of the environment, i.e. world model that is in our
case an occupancy grid map. Occupancy grid maps
are the dominant paradigm for environment mode-
ling in mobile robotics and they facilitate various
key aspects of mobile robot navigation, such as lo-
calization, path planning and collision avoidance.
Since occupancy grid maps are used, only sonar
range measurement uncertainty has to be conside-
red, unlike feature-based maps where an additional
uncertainty regarding the feature/range reading as-
signment must be considered. Thus the numerical
complexity is reduced.

The paper is organized as follows. Section 2
presents used mobile robot kinematic model and
applied offline calibration procedure. Section 3 de-
scribes EKF and UKF based mobile robot localiza-
tions. Experimental results obtained using men-
tioned pose estimation techniques are presented
and analyzed in Section 4.

2 MOBILE ROBOT KINEMATIC MODEL AND 

ITS CALIBRATION

Odometry is one of the most important means
for mobile robot pose tracking. This method uses
encoders' data and robot kinematic model to calcu-
late its displacement between two time instants.

Main disadvantage of this method is unbounded
accumulation of errors due to wheel slippage, floor
roughness, discretised sampling of wheel speed
data, and inaccessibility to the angular velocities of
the wheels in some mobile robots etc. Improved
odometry can significantly reduce the rate of er-
rors accumulation, and consequently increase the
autonomy range of the mobile robot. This property
is vital for many applications, particularly in cases
when absolute information of robot pose is tempo-
rarily unavailable. Therefore, before the fusion of
odometry and any other sensors it is advisable to
calibrate the odometry in order to obtain the best
possible accuracy of pose estimation. Moreover, the
price of the system is a limiting factor in many
commercial applications, where it is beneficial to

avoid the use of compass/gyro, but at the same
time to keep accuracy of the robot pose estimation
as high as possible. Below we describe kinematic
model of differential drive mobile robots and then
the proposed calibration procedure. 

2.1 Kinematic model off differential drive mobile robots

Differential drive mobile robots have usually
three or four wheels, where two front wheels are
motor driven wheels with encoder mounted on
them and other wheels are castor wheels needed
for robot stability. Driving wheels are controlled in-
dependently from each other. The encoders meas-
ure the speed of the wheels. The kinematics of the
differential drive mobile robots is described with
the following equations (Figure 1):

(1)

(2)

(3)

(4)

(5)

(6)

(7)

where we denote with: xk and yk coordinates of the
centre of axle [mm]; Dk, traveled distance between
time steps k and k + 1 [mm], vt,k mobile robot trans-
lation speed [mm/s]; T sampling time [s]; Θk angle
between the vehicle and x-axis in degrees; ∆Θk, ro-
tation angle between time steps k and k + 1 in de-
grees, vL,k(k) and vR,k(k) velocities of the left and
right wheel, respectively [mm/s]; ωL,k(k) and ωR,k(k)
angular velocities of the left and right wheel, re-
spectively [rad/s]; R radius of the two wheels [mm],
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Fig. 1 The mobile robot kinematics



and b vehicle axle length [mm]. It is assumed that
the wheels have equal radius. Sampling time T was
0.1 [s]. Equations (1) to (7) describe the basic odo-
metry pose tracking model and pose tracking re-
sults obtained by simply propagating these equa-
tions through time are marked as uncalibrated
odometry (UO). 

2.2 Mobile robot kinematics model calibration

Experiments with differential drive mobile robots
reveal that pose tracking, which relies on velocities
returned by the encoders, produces very large er-
rors in the pose estimates, especially in the orien-
tation estimation, e.g. [2]. As it was said above,
there are many factors that deteriorate accuracy of
odometry based pose estimation, but the most in-
fluential ones are deviations of the wheels radiuses
and axle length from their nominal values. These
two factors contain the majority of the systematic
errors and it is worthy to compensate their influ-
ences [2]. In order to implement these compensa-
tions we expand the equations (6) and (7) with
three additional parameters:

(8)

(9)

where parameters k1 and k2 compensate the devia-
tions of the wheel radius and parameter k3 the de-
viation of the axle length. Thus replacing (6) and
(7) with (8) and (9) defines the calibrated odome-
try pose tracking technique (CO), which is also
used as the motion model for both Kalman filter
implementations.

Proposed calibration procedure consists of two
steps. First, two simple experiments with the mo-
bile robot are performed and then collected data
are used for the parameters optimization with re-
spect to a certain criteria. The choice of the exper-
iments is based on the facts that the parameters k1
and k2 affect mostly the position estimation and
parameter k3 the orientation estimation. The experi-
ment used for parameters k1 and k2 calibration is a
»straight-line« experiment (Figure 2). It was accom-
plished by providing equal speed references to the
both wheels. The experiment used for parameter k3
calibration is a »turn in place experiment« (Figure
3). The mobile robot had to turn for 180 degrees
in place. During the experiments wheel speeds and
sampling rate were measured and collected. Both
experiments were repeated for five times to im-
prove the accuracy of odometry calibration. These
data are then used as input data for the optimiza-
tion scripts.
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Optimal values of the compensation parameters
k1, k2 and k3 were calculated using the fsolve opti-
mization function from the MATLAB Optimization
Toolbox [9]. This optimization function uses Gauss-
-Newton non-linear optimization method to find the
optimum for any non-linear function at hand. Opti-
mization of parameters k1 and k2 were implemen-
ted as fsolve("optimize_k1_k2", [k10, k20], options),
and optimization of parameter k3 as fsolve("opti-
mize_k3", [k30], options), where k10, k20 and k30
are initial values of corresponding parameters,
which were set to 1.0. Pseudo-codes of scripts opti-
mize_k1_k2 and optimize_k3 are given in Table 1.
Both scripts use the collected data and the mobile
robot model, given with equations (1)–(5) and (8)–
(9), to calculate the mobile robot pose. Based on
the computed mobile robot pose and actual mobile
robot pose orientation error was calculated. The
goal of the optimization procedure is to minimize
the orientation error by adjusting the calibration
parameters. This optimization criteria is chosen due
to robot orientation Θ is the most significant of
the localization parameters (x, y, Θ ) in terms of its
influence on accumulated odometry errors. The first
script is used for the calculation of the parameters
k1 and k2 from the data collected in the straight-
-line experiment and the second one for the calcu-
lation of the parameter k3 from the data collected
in the turn-experiment. Optimization function fsolve
invokes these two scripts alternately. When it invo-
kes the first script it uses new value of the para-
meter k3 calculated in the previous step, and con-
sequently when it invokes the second script it uses
new values of the parameters k1 and k2 calculated
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Fig. 2 The straight-line experiment

Fig. 3 The turn in place experiment



in the previous step. As the stopping criteria for
optimization procedure we set the number of iter-
ations for the fsolve optimization function to 50.

3 SONAR BASED POSE TRACKING

The challenge of mobile robot pose tracking
using sensor fusion is to weigh its pose (i.e. robot's
state) and sonar range reading (i.e. robot's output)
uncertainties to get the optimal estimate of the
pose, i.e. to minimize its covariance. The Kalman
filter [10] assumes the Gaussian probability distri-
butions of the state random variable (mobile robot
pose in our case) such that it is completely de-
scribed with the mean and covariance. The optimal
state estimate is computed in two major stages:

time-update and measurement-update. In the time-
-update, state prediction is computed on the base
of its preceding value and the control input value
using the motion model. Measurement-update uses
the results from time-update to compute the out-
put predictions with the measurement model. Then
the predicted state mean and covariance are cor-
rected in the sense of minimizing the state covari-
ance with the weighted difference between predic-
ted and measured outputs. In succession, motion
and measurement models needed for the mobile
robot sensor fusion are discussed, and then EKF
and UKF algorithms for mobile robot pose track-
ing are presented. Block diagram of our Kalman
filter based pose tracking implementation is given
in Figure 4.

3.1 Mobile robot motion model

The motion model represents the way in which
the current state follows from the previous one.
State vector is expressed as the mobile robot pose,
xk = [xk yk Θk]

T, with respect to a global coordinate
frame, where k denotes the sampling instant. Its
distribution is assumed to be Gaussian, such that
the state random variable is completely determined
with a 3 × 3 covariance matrix Pk and the state ex-
pectation (mean, estimate are used as synonyms).
Control input, uk, represents the movement com-
mands which are acted upon the mobile robot to
move it from time step k to k + 1. In the motion
model control input, uk = [Dk ∆Θk]

T, represents
translation through distance Dk followed by a rota-
tion through angle ∆Θk. The state transition func-
tion f(⋅) uses the state vector at the current time
instant and current control input to compute the
state vector at the next time instant:

xk + 1 = f(xk, uk, vk),             (10)

where vk = [v1, k v2, k]T represents unpredictable pro-
cess noise, that is assumed to be Gaussian with
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Table 1 Pseudo-codes of optimization scripts

Function: optimize_k1_k2 (k1, k2) Function: optimize_k3 (k3)

Input: new k1 and k2 values Input: new k3 value

File Input: measurement data (wheel velocities and time File Input: measurement data (wheel velocities and time  

data, exact start and final mobile robot poses) data, exact start and final mobile robot pose) 

Output: difference between exact and computed mobile Output: difference between exact and computed mobile

robot orientation robot orientation

load collected data of straight-line experiment load collected data of turn experiment

load the parameter k3 value load the parameter k1 and k2 value

compute the final pose using the expanded robot model compute the final pose using the expanded robot model

and the measurement data and the measurement data

return difference between exact and computed mobile return difference between exact and computed mobile

robot orientation robot orientation

Fig. 4 Block diagram of our nonlinear Kalman filter based mobile 

robot pose tracking
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Fig. 5 Model of our department corridor used for the first pose 

tracking experiment

Fig. 6 Model of our department room used for the second pose

tracking experiment

ment world, shown in Figure 5, is that it has little
features along the axis through the corridor middle
and the used occupancy grid model is accurate. The
mobile robot starts in the right corridor end and
travels to the left end. Main characteristic of the
second one, shown in Figure 6, is that it has
enough features along both axis but used occupan-
cy grid model is less accurate because this room is
full of easily movable furniture (like chairs, tables,
trash baskets, etc.) which never stays for long time
in the same place. In this experiment setup the mo-
bile robot starts in the left room and has to reach

the right room. These two setups enable us to test
the local localization algorithm performance in an
environment with little features and in a badly/in-
completely-modelled environment. Traversed paths
for both experiment setups (Figure 6 and 7) are
presented by a line with arrows showing mobile

Fig. 7 Position and orientation estimation performance obtained in the first experiment



robot motion succession. A gradient navigation mo-
dule [13] is used for mobile robot control, i.e. for
path planning and local obstacles avoidance. Regar-
ding navigation module's mobile robot pose input;
two experiments in each of the environments were
made. For navigation module pose input, EKF pose
estimation is used in the first one and UKF in the
second one.

New sonar range measurements zk are available
every three time steps on this mobile robot. Raw
sonar data zk and predicted readings hk differ be-
cause the real mobile robot pose is not exactly
known and due to sonar measurement noise, occlu-
sions, specular reflections, outliers, and used occu-
pancy grid model inaccuracy. So zk are first com-
pared to hk and only those readings with difference
under a certain threshold are accepted. Used thres-
hold is set to 5 cells. That means, in a grid map
with cell size of 100 [mm] × 100 [mm], as in our
case, readings with difference less then 500 [mm]

are accepted. Note that this procedure is repeated
once more in UKF case when prediction was
obtained.

Obtained results are presented in Figure 7 for
the first experiment setup and in Figure 8 for the
second experiment setup. The left figure side pres-
ents position estimation performance, and the right
side orientation estimation performance for each
Kalman filter implementation separately in both ex-
periment setups. Uncalibrated odometry and cali-
brated odometry pose estimation where working si-
multaneously with here described non-linear Kal-
man filter localization. Exact final mobile robot
pose was manually measured at experiment end. In
presented figures final mobile robot position part is
denoted by a black cross, and final mobile robot
orientation part by a short thick line.

Estimated final position for each tested tech-
nique is denoted by a black dot.

,î kz−
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Fig. 8 Position and orientation estimation performance obtained in the second experiment



Position error is calculated as:

(39)

where Posact denotes the actual final position, Posest
denotes the estimated final position and Dist total
distance traversed by the mobile robot. Orientation
error is calculated as:

(40)

where Orientact is actual final orientation and
Orientest estimated final orientation. Average error
is calculated as the average value between the posi-
tion and orientation error. Table 2 summaries the
results of all performed experiments.

100%,act est

act

Orient Orient
OrientationError

Orient

−
= ⋅

100%,act estPos Pos
PositionError

Dist

−
= ⋅

mance while the EKF localization framework is
somewhat computationally simpler because it pre-
dicts the sonar range measurements only for the
predicted state and not like the UKF localization
for every pre-sigma point. UKF approach performs
better in an accurately modeled environment. Both
approaches can cope with an environment with lit-
tle features and a badly modeled environment. Fu-
ture work on this topic will include a dual estima-
tion of both robot pose and calibration parameters
in kinematic model.

REFERENCES

[1] J. Borenstein, H. R. Everett, L. Feng, Where am I? Sensors
and Methods for Mobile Robot Positioning. Ann Arbor,
MI 48109: University of Michigan. 1996.

[2] P. Goel, S. I. Roumeliotis, G. S. Sukhatme, Robust Localiza-
tion Using Relative and Absolute Position Estimates. Pro-
ceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 1999.

[3] J. Borenstein, L. Feng, Measurement and Correction of Sy-
stematic Odometry Errors in Mobile Robots. IEEE Trans-
actions in Robotics and Automation, Vol. 12, No. 2, 1996.

[4] E. Ivanjko, I. Petrovi}, N. Peri}, An Approach to Odometry
Calibration of Differential Drive Mobile Robots. Procee-
dings of International Conference on Electrical Drives and
Power Electronics EDPE'03, 2003, pp. 519–523.

[5] N. Roy, S. Thrun, Online Self-calibration for Mobile Ro-
bots. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 1999.

[6] K. Konolige, Markov Localization Using Correlation. In
International Joint Conference on Artificial Intelligence,
Stockholm, Sweden, July, 1999.

[7] D. Lee, The Map-Building and Exploration Strategies of a
Simple Sonar-Equipped Robot. Cambridge University Press,
1996.

[8] G. Dudek, M. Jenkin, Computational Principles of Mobile
Robotics. Trumpington Street, Cambridge CB2 1RP: Cam-
bridge University Press, 2000.

[9] ..., Optimisation Toolbox For Use with Matlab, User's Gui-
de. The MathWorks Inc. 2000.

[10] R. E. Kalman, A New Approach to Linear Filtering and
Prediction Problems. Transactions of the ASME, Journal
of Basic Engineering, Vol. 82, pp. 35–45, March 1960.

[11] E. Ivanjko, I. Petrovi}, Extended Kalman Filter Based Mo-
bile Robot Pose Tracking using Occupancy Grid Maps.
Proceedings of The 12th IEEE Mediterranean Electro-tech-
nical Conference – MELECON 2004, May 12–15, 2004,
Dubrovnik, Croatia, pp. 311–314.

[12] S. Haykin, Kalman Filtering and Neural Networks. Ch. 7.
The Unscented Kalman Filter. John Wiley and Sons, 2001.

[13] K. Konolige, A Gradient Method for Realtime Robot Con-
trol. Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2000), Kagawa
University, Takamatsu, Japan, 2000.

AUTOMATIKA 45(2004) 3–4, 145–154 153

E. Ivanjko, I. Petrovi}, M. Va{ak Sonar-based Pose Tracking...

Table 2 Error comparison of different pose tracking techniques

EKF UKF CO UO

Position error [%] 1.53 1.35 3.71 11.07

Orientation error [%] 2.08 1.39 4.72 10.71

Average error [%] 1.81 1.37 4.22 10.89

5 CONCLUSION

Two non-linear Kalman filter based local locali-
zation techniques are implemented and experimen-
tally compared using a real mobile robot. The here
presented approach uses an occupancy grid map as
the world model to avoid an additional uncertainty
calculation. Extended and unscented Kalman filter
based mobile robot local localization techniques are
implemented and they are used for calibrated
odometry and sonar range measurements fusion. So
the problem of unbounded odometry error increase
is solved. Two implementations of the Unscented
Kalman filter are described. The first one is a
straightforward implementation and the second one
uses the additive properties of obtained sonar range
measurements. It can be seen from the presented
results that the UKF localization results in a more
smoother and accurate mobile robot pose estimate
making that approach more suitable for navigation-
al tasks. The EKF localization correction results in
bigger correction values reacting thus faster to in-
creased real and estimated mobile robot pose dis-
crepancy but aggravating simultaneously the naviga-
tional tasks. UKF has a better localization perfor-
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Pra}enje polo`aja mobilnog robota ultrazvu~nim osjetilima. Mobilni robot mora u svakome trenutku znati svoj
polo`aj, da bi mogao obavljati korisne zada}e. Problem pronala`enja i pra}enja polo`aja mobilnog robota naziva
se lokalizacijom, koja mo`e biti globalna ili lokalna. U ovome se radu obra|uje lokalna lokalizacija, koja podrazu-
mijeva pra}enje polo`aja mobilnog robota uz pretpostavku da su poznati njegov po~etni polo`aj, kinemati~ki mo-
del te model radnog prostora. Pra}enje polo`aja se naj~e{}e temelji na odometriji, kod koje je glavni problem
neograni~ena akumulacija pogre{ke. Za rje{avanje toga problema uobi~ajeno se koristi fuzija informacija ve}eg
broja osjetila. Ovaj ~lanak opisuje jednostavnu metodu kalibracije odometrije i uspore|uje dvije metode fuzije
odometrijskih podataka s podacima iz ultrazvu~nih osjetila (sonara) koji predstavljaju udaljenosti robota do okol-
nih prepreka. Primijenjene metode fuzije temeljene su na teoriji Kalmanova filtra. Jedna metoda koristi ve} stan-
dardni pro{ireni Kalmanov filtar, a druga, predlo`ena u ovome radu, nederivacijski tzv. »Unscented« Kalmanov fil-
tar. Za modeliranje prostora primijenjena je mre`asta karta popunjenosti, jer je u tom slu~aju dovoljno uzeti u
obzir samo nesigurnost mjerenja udaljenosti do najbli`ih prepreka za razliku od karata temeljenih na zna~ajkama
prostora kod kojih se mora uzeti u obzir i nesigurnost dodjeljivanja zna~ajki izmjerenim udaljenostima. Eksperi-
menti napravljeni mobilnim robotom Pioneer 2DX (proizvo|a~ ActivMedia Robotics) pokazuju da se ve}a to~nost
estimacije polo`aja i gla|e gibanje mobilnog robota posti`u primjenom nederivacijskog Kalmanova filtra.

Klju~ne rije~i: nelinearni Kalmanov filtar, mobilan robot, lokalizacija, mre`asta karta zauze}a prostora
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