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The paper focuses on identification issues of the advanced controller ASPECT* that is implemented on a sim-
ple PLC platform with an extra mathematical coprocessor and is intended for the advanced control of complex
plants. The model of the controlled plant is obtained by means of experimental modelling using an online lear-
ning procedure that combines model identification with pre- and post-identification steps that provide reliable ope-
ration. It is shown that acceptable performance of the system is obtained despite difficult conditions that may
arise during operation.
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1 INTRODUCTION

The problem of control of nonlinear plants has
received a great deal of attention in the past. The
problem itself is fairly demanding, but if the model
of the plant is unknown or poorly known, the solu-
tion becomes considerably more difficult. Neverthe-
less, several approaches exist to solve the problem.

One possibility is to apply adaptive control that
was accommodated to treat not only linear time in-
variant plants but also nonlinear and time variant
plants. Adaptive control is avoided in the practice
due to the lack of robustness even though robust
adaptive control was proposed to overcome this
drawback [3]. Many successful applications of fuzzy
controllers [6] have shown their ability to control
nonlinear plants. Fuzzy controllers were later upgra-
ded with the ability of constructing fuzzy model of
the plant on-line and adjusting control parameters
accordingly. The universal approximation theorem
[8] provided a theoretical background for new fuzzy
direct and indirect adaptive controllers [1] whose
stability was proven using the Lyapunov theory.

The main drawback of most of the existing ap-
proaches for the control of nonlinear plants is that
they are very complex, difficult to understand since
they demand fairly good knowledge of mathematics
and are thus avoided by practising engineers. Since
our wish was to implement the controller on a sim-
ple platform, e.g. programmable logic controller,
the algorithm should be kept as simple as possible.
On the other hand, one of the most important
goals was to choose the algorithm that would be

simple to tune, i.e. to select the necessary design
parameters. In our case, Takagi-Sugeno fuzzy model
of low order [7] was chosen. The model is obtained
via experimental modelling using a special batch-
-wise on-line learning procedure combining model
identification with pre- and post-identification steps
providing reliable operation. Many different con-
troller types are possible to use with this model,
e.g. PID, predictive etc. The system was designed
such that we are not confined to a certain control-
ler type. Rather, many different controllers can be
incorporated.

Within the ASPECT project, an efficient and
user-friendly engineering tool for control of a cer-
tain practically very important class of non-linear
plants was built. This paper focuses on model iden-
tification issues but will also depict some of the
properties of the product.

In Section 2 the general overview of the con-
troller will be given, Section 3 focuses on the mod-
ule that is responsible for on-line identification (it
is referred to as the on-line learning agent – OLA).
Section 4 depicts the identification algorithm built
in, while the results of the simulation tests are pre-
sented in Section 5. Section 6 gives some conclu-
sions of the paper.

2 CONTROLLER OVERVIEW

Modular multi-agent structure of the controller
enables a choice of several control algorithms suit-
able for different processes. The parameters of the
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control algorithms are automatically tuned from the
model. The controller monitors the resulting con-
trol performance and may react to detected irregu-
larities. A distinguishing feature of the controller is
that the algorithms are adapted for implementation
on low-cost industrial hardware platforms such as
programmable logic or open controllers. The con-
troller code is subdivided into the Run-Time Mo-
dule (RTM), running on a PLC and performing all
activities mentioned above, and the Configuration
Tool (CT) that simplifies the initial configuration
from a personal computer, providing guidance thro-
ugh the configuration procedure.

The code that resides in the controller (RTM) can
be viewed as a multi-agent system where several
independent agents (modules) interact with each
other. The system includes the following agents, as
shown in Figure 1:
– Signal Preprocessing Agent (SPA) – provides the

signals to the other agents,
– Online Learning Agent (OLA) – identifies the

model of the plant (most of the paper will be
devoted to this module),

– Model Information Agent (MIA) – maintains the
active model (model-in-use) and its status infor-
mation – the OLA module provides new mo-
dels, but MIA module decides whether to accept
them or not,

– Control Algorithm Agent (CAA) – includes
functionality of an advanced industrial non-line-
ar control algorithm and automatic tuning of its
parameters from the model,

– Control Performance Monitor (CPM) – supervi-
ses the control performance and intervenes if
appropriate,

– Operation Supervisor (OS) – the main part of
the program that binds the other agents.

3 ON-LINE LEARNING AGENT (OLA)

The controller is model-based, founded on a
multi-faceted model (MFM) that includes several
model forms required by the online-learning mech-
anism and control algorithm agents. Takagi-Sugeno
model of the plant was chosen with m fuzzy do-
mains (maximal number is limited to 10 at the mo-
ment). In each fuzzy domain a local linear model
is used. First and second order local models are
considered. This means that identification of both
models is performed and better model is used if
not explicitly defined otherwise. The second order
model is more general and will be described here.
It takes the following form:

(1)

where k is the discrete time index, j is the number
of the local model, y(k) is the plant output, u(k) is
the plant input, v(k) is the (optional) measured dis-
turbance, rj is a constant that defines the operating
point in the j-th fuzzy domain (it compensates for
the nonlinearity in the static curve), a1j, a2j, b1j, b2 j,
c1 j – plant parameters in the j-th operating point,
duj, dvj – delays in the u-y and v-y paths, respec-
tively, βj – the degree of fulfilment of the j-th
membership function (it depends upon the schedul-
ing variable σ), and

(2)

where predefined coefficients kw, ky, ku, and kv are
used, and signal w(k) here represents the set-point.

Normalised triangular membership functions (MF)
are used, i.e. They are illustrated in

Figure 2.

Note that only 1 parameter is identified in the
numerator of the transfer functions in the MD-CV
path. Some tests were carried out with two identi-
fied parameters in the numerator, but then several
problems were encountered: the identifiability of
the parameters was lower, the identified transfer
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Fig. 1 Schematic representation of the controller



functions were often of non-minimum phase etc. It
has to be emphasised that v is measured distur-
bance that we cannot influence and often has low
level of excitation. Since our wish was to design
very robust algorithm the model was simplified
even though that it is sometimes not optimal.

During the regular closed-loop operation, the
RTM gathers information about the controlled
plant. This may be required to improve the plant
model. It is very likely that the system is started
with a limited knowledge about the controlled
plant. In order to improve the performance of the
system it is necessary to obtain better model of the
plant. These tasks are performed by the OLA agent. 

The OLA agent is a software module that per-
forms structural and parametric identification of
the plant on-line. As it is quite complex it is divid-
ed into smaller submodules:
– OLA main unit – performs parameter estimation;

its inputs are the structure of the model (order
and dead time of the plant, the position of MFs)
while it produces the set of identified parame-
ters;

– OLA verification unit – performs verification of
the parameters obtained in the main unit and
calculates the confidence indexes that are used
as model quality measures;

– excitation unit – this very important unit super-
vises the excitation; if the excitation is not suffi-
cient, the estimation is disabled, otherwise it is
enabled;

– membership functions unit – the module is used
to determine if another fuzzy domain should be
added to improve the over-all model;

– dead time unit – the block is used to determine
the dead time of the plant.

The OLA agent is invoked periodically or upon
demand by the OS. Since it is computationally in-
tensive, it runs as a low-priority task. Whenever
OLA is invoked, the procedure illustrated in Figure
3 is executed.

In the following the blocks in Figure 3 will be
described:
– Excitation check. If the variance of the signals

w(k), y(k), u(k), and v(k) in the active buffer is

below their specified thresholds, the further esti-
mation is cancelled. 

– Select local models. The local models for which
the sum of their corresponding membership func-
tions βj(s) over the active buffer normalised by
the active buffer length exceeds certain threshold
are selected. This means that only fuzzy domains
that have relatively high excitation are conside-
red. Further processing does not include other
local models. 

– Identification. The parameters of the selected lo-
cal models are identified using the novel fuzzy
instrumental variables (FIV) identification met-
hod, an extension of linear instrumental variab-
les (IV) [4] for the specified MFM. It will be
described in Section 4.

– Verification/validation. In this step the compari-
son of the old and new model is done and each
model is given a certain confidence index that
serves as a basis for the decision whether to re-
place the old model by the new one.

4 IDENTIFICATION ALGORITHM

The identification is batch-wise, i.e. signal buffers
of the certain size are analysed to obtain plant pa-
rameters. The identification is performed in each
sufficiently excited fuzzy domain. In general identi-
fication algorithm comprises of three phases. In the
first phase fuzzy least squares algorithm is used
that is initialised by the current model. The result
of the first phase is used for initialising the second
phase, i.e. fuzzy instrumental variables method. In
the third phase the two identified models are veri-
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Fig. 2 Fuzzy membership functions of local models in the MFM

Fig. 3 The flowchart of tasks running in the OLA module





of the plant. To prevent the drift of plant parame-
ters, another »dead zone« is used in the identifica-
tion algorithm. The actual model (that resides in
MIA) is favoured if the confidence indexes of the
old (VMIA) and the new model (VFIV or VFLS) are
similar. Only if the confidence index of the new
model is much better (for a certain multiplicative
constant), the model is replaced.

5 SIMULATION TESTS WITH THE RTM

The operation of the controller was tested on a
simulated neutralisation process in Figure 4 [2]. An
acid stream Q1, a buffer stream Q2 and a base
stream Q3 are mixed in a tank. The acid and base
streams are equipped with flow control valves. The
pH of the mixture is measured with a sensor loca-
ted downstream. The effluent pH is the controlled
variable y, and the manipulated variable u is the
flow of the base stream Q3. The static curve u-y of
the plant is highly non-linear (open-loop gain of
the plant changes by the factor 8). The consequence
is that the conventional control (e.g. by PID con-
troller) does not produce good results.

tracted. When the level of excitation of the distur-
bance is high enough, relatively good disturbance
model can be obtained. But unfortunately the sys-
tem would not behave very well even if the perfect
disturbance model were obtained if the control al-
gorithm does not take this information into account
to suppress the negative influence of the distur-
bance.

The experiment was conducted to test the abili-
ty of the system to identify the disturbance model.
The experiment was conceived that simulates the
batch-wise operation of the pH process. The refe-
rence signal was changing according to the prede-
fined periodic signal. Since the system was opera-
ting in the closed-loop during the experiment addi-
tional troubles can be expected. The disturbance
was constant most of the time. There were, howe-
ver, some step-like changes of relatively high am-
plitude. The quality of signals used for identifica-
tion is very low since they were obtained in the
closed loop operation from the TISO system. As
expected, the responses show that in certain oper-
ating regions the system starts to behave undesir-
ably. Oscillations of manipulated and controlled
variables can be noticed. It has to be stressed that
the problems were not encountered in all operating
points nor were fatal for the performance of the
system. The encouraging fact is that the desired be-
haviour of the system restored after the changes in
the disturbance had stopped (actually, some time
had passed before the »inconstant« disturbance left
the identification window).

In conclusion, it can be said that the option of
identifying both models (the control one and the
disturbance one) can be used, but one has to be
aware of the fact that the behaviour might not al-
ways be as expected. This is especially true if the
system is highly nonlinear, possesses high noise or
a lot of the optional components in the OLA are
enabled. The more possibilities are enabled in the
RTM, the lower robustness of the system can be
expected in general.

5.2 Behaviour of the RTM in the noisy environment 
when operating in the closed-loop

Another difficulty in the identification is the
presence of noise (or immeasurable disturbance) in
the plant. Because of the closed loop the noise
propagates to the manipulated variable causing cor-
relation between the latter and the controlled vari-
able. That problem is solved to some extent by in-
corporating the instrumental variables (FIV) into
the identification procedure. Nevertheless, the pro-
blem of noise in identification in the closed-loop is
not completely circumvented by the FIV alone.
Additional steps have to be taken to suppress the
influence of noise. In the product design the dead
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Fig. 4 The scheme of the neutralisation process

5.1 Behaviour of the RTM in the environment with 
measurable disturbance

The disturbance in the system is surely a possi-
bility of adding extra burden on the control system.
As already mentioned, OLA has got a very com-
plex identification algorithm built in. In addition to
having the possibility of identifying nonlinear (Taka-
gi-Sugeno modelled) systems, systems with changing
delays, membership functions and different combi-
nations of the mentioned, it also provides the pos-
sibility to estimate the disturbance model when the
latter is measured. From the system theory aspect,
the plant can be seen as two-input single-output
plant (TISO). It is generally known that such plants
are considerably more difficult to identify compared
to single-input single-output (SISO) plants, espe-
cially in the case when one of the inputs (distur-
bance in our case) cannot be influenced. It is obvi-
ous that in the case of a constant disturbance no
information on the disturbance model can be ex-



zone was included into the identification procedure.
This prevents the regressors that do not carry any
new information about the plant to take part in the
parameter calculation. The rationale behind the
idea is that the main component of such regressors
is probably noise that would lead the estimated pa-
rameters to the wrong direction.

Similar experiment as mentioned before (subsec-
tion 5.1) was conducted. The disturbance was not
measured in this case but the level of noise was
very high. Two identification algorithms were com-
pared: the one with two »dead zones« and the
other with only one (it did have the dead zone in
the least squares algorithm but it did not prevent
that only slightly better model be accepted).

The results in the latter case were discouraging
to some extent since they have shown the quality
of the model can decrease with time. The deterio-
ration was not instantaneous. Rather, the drift in
the parameters can be observed. Such drift would
not be possible if identification was performed in
the open loop. When the system operates in the
closed-loop and the noise is present, the scenario is
as follows. The system starts with no information
about the plant at all and by a very conservatively
tuned controller. The bandwidth of the system is
therefore low and the manipulated variable is rela-
tively slow (almost open loop). This is why a good
model is obtained in the beginning (see Figure 5).
The procedure of the controller tuning is such that
results in high-gain controller. This is why the ma-
nipulated variable is much more vivid and also cor-
related with the controlled variable. The obtained
model is worse because of that. The next controller
results in an even more oscillating system. Conse-
quently, the quality of signals used for identifica-
tion is very low (more or less only one frequency
is present). This cycle leads to the deterioration of
the performance. In Figure 6 the signals in the sys-
tem are depicted after a period of time when the
system is run with the OLA agent active.

The problem lies in the very core of the appro-
ach. Usually, one part of the signal is used for
identification and the other for validation. Since the
fuzzy model is used it is possible that the system
changes the fuzzy domain approximately in the mo-
ment when the »validation period« starts. In such
case the validation would be completely wrong.

It is obvious that something has to be done to
prevent very frequent changes of the model. The
other algorithm (with two »dead zones«) achieved
precisely that. Figures 7 and 8 represent the behav-
iour of the system in the same time intervals as
Figures 5 and 6 in the previous experiment. It can
be observed that the gradual deterioration of the
performance is prevented. However, this solution is
not absolute. It implicitly prevents small changes in
the model. Consequently, it is hard for the algo-
rithm to reach global optimum. As always, a trade-
off between the performance and the robustness is
performed. In this case, our standpoint is that ro-
bustness is more important than the optimal per-
formance.

Some experiments have also been made with
dead time unit and membership functions unit.
Both of them are called periodically (after a cer-
tain number of parameter identifications) if en-
abled. Both of them are not very robust and de-
mand the signals of high quality (high level of in-
formation). The dead time unit tries to fit the dras-
tic changes in the output by changing the delay in
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Fig. 6 Performance of the system after some time (without the se-
cond dead zone)

Fig. 5 Performance of the system in the beginning (without the
second dead zone)



the model. It is highly advisable to enable it only
in open loop – usually this is done when an open
loop experiment is being conducted and there are
some step-like changes in the system input.

The membership functions unit will add a new
fuzzy domain if it finds it appropriate. Again, it
calculates the performance indexes with and with-
out a new fuzzy domain added. It only tries to add

a new fuzzy domain if the augmented model is
much better (e.g. for a multiplicative constant 2)
from the original model.

6 CONCLUSION

The initial tests have shown that the ASPECT
controller is capable of controlling the nonlinear
plants, the plants with delay and slowly varying pa-
rameters. The identification algorithm is designed
such that it prevents parameter drift due to noise
especially when run in the closed-loop. It is also
capable of dealing with systems with (variable)
delay. This possibility is not suggested for the use
in closed-loop since it does not show high level of
robustness. The algorithm can also find the nonli-
nearity in the system and adds an extra member-
ship function when appropriate.
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Fig. 7 Performance of the system in the beginning (with the second 
dead zone)

Fig. 8 Performance of the system after some time (with the second 
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Jednostavna neizrazita identifikacija implementirana u naprednom regulatoru. Ovaj se rad usredoto~uje na
problematiku identifikacije na osnovi naprednog regulatora ASPECT* implementiranog na jednostavnoj PLC plat-
formi s dodatnim matemati~kim koprocesorom, koji se `eli koristiti za naprednu regulaciju slo`enih postrojenja.
Model reguliranog postrojenja dobiva se eksperimentalnim modeliranjem, pri ~emu se koristi on-line procedura
u~enja s pred- i post-identifikacijskim koracima koji osiguravaju pouzdan rad. Pokazano je da se prihvatljive per-
formance sustava dobivaju unato~ te{kim uvjetima koji se mogu pojaviti tijekom rada. 

Klju~ne rije~i: programirljivi logi~ki regulatori, neizrazito modeliranje, identifikacija, nelinearna regulacija, regu-
lacija pH
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