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The repeated measures designs provide an efficient 
strategy for examining the effect of treatments administered 
consecutively or examining the evolution of behaviour over 
time, given that they permit the extraction of individual dif-
ferences from the experimental error. It is for this reason that 
they have become the most widely used tool for diagnos-
ing, explaining and predicting biological, psychological and 
social processes (Keselman, Algina, & Kowalchuk, 2001). 

The most common type of design involves two factors, be-
tween-subjects (A) and within-subject (B). Subjects (i=1,..., 
nj, Σ nj=N), classified according to, or assigned at random 
to the between-subjects levels (j=1,..., p), are observed and 
measured at all levels of the within-subject factor (k=1,..., 
q), be they different treatments or a small number of meas-
urement occasions that result from the systematic choice of 
fixed and equidistant time intervals.

Given that the present work and the recommendations 
made at the end of it are addressed to psychologists carrying 
out applied research, with a view to achieving greater con-
textualization of the application of the statistics tested here, 
we begin by describing two real studies:

Study 1 (S.1): Palmero, Breva, Diago, Díez and García 
(2002) carry out an experiment for exploring the role of 
Type A and Type B emotional patterns (between-subjects 
classification variable: nA=28 and nB=28) in activation, vari-
ability and cardiac recovery (dependent variables), in three 
situations represented by the within-subject independent 
variable (habituation, task –presentation of stressful stim-
uli– and recovery).
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The present article examines the behaviour of four univariate statistics for analyzing data in a mixed repeated 
measures design, the procedures of Greenhouse and Geisser (1959), of Lecoutre (1991), of Hearne, Clark and Hatch 
(1983) and of Jones (1985), which differ in how they approach the absence of sphericity, assuming either arbitrary 
correlation or serial autocorrelation. These four approaches were compared with respect to empirical power in 
conditions of multivariate normality and absence of normality, and of different underlying structures of covariance. 
Overall, when the distribution is normal, Monte Carlo comparisons indicate that when the matrix is stationary au-
toregressive or structured non-stationary autoregressive, the Lecoutre and Hearne et al. statistics are more powerful, 
the former enjoying slightly higher empirical power, with no large differences between the two in either direction of 
the autocorrelation (positive and negative first-order serial correlation). For an arbitrary non-stationary matrix, the 
Hearne et al. procedure is considerably more powerful than the Lecoutre statistic when the deviation of the spheric-
ity is slight and severe, both in the two directions of the autocorrelation (positive and negative first-order serial cor-
relation) and when it is arbitrary (correlation=0). When the data are underlain by a non-normal distribution, the HCH 
procedure is that with the greatest empirical power when the serial correlation is positive, and the JN procedure 
when the serial correlation is negative whatever the underlying deviation matrix.
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Study 2 (S.2): Méndez, Orgiles and Espada (2004) carry 
out another experiment to test the effectiveness of the staged 
emotional situations program for the treatment of nyctopho-
bia (fear of the dark). Forty-five children were assigned at 
random to two experimental conditions: treatment group 
(staged emotional situations) or control group (waiting list). 
This was the between-subjects independent variable. The 
two groups were observed at four time points –pretest, post-
est, 3-month follow-up and 6-month follow-up (assigned 
within-subject independent variable).

The nature of the q levels of the within-subject variable 
(S.1=3 levels; S.2=4 levels) will determine not only the na-
ture of the dependent variable, but also certain character-
istics that may accompany it. The dependent variable may 
be the same in each measurement made for each one of the 
treatments administered randomly for each subject, there-
by avoiding order effects; moreover, if a prudent distance 
is kept between applications, residual effects will also be 
avoided. In this case, the variance-covariance matrix under-
lying the data may be spherical (this is the expectation in 
S.1). Sphericity is present when the variances correspond-
ing to the differences between the different measurement 
occasions are equal, or when there are equal variances and 
equal covariances. The matrices represented by the first 
condition are called Type H or Huynh-Feldt (1970). Those 
represented by the second condition are called Type S or 
Combined Symmetry, and are a particular case of Type H 
matrices. In both matrices there is a correlation between 
subjects’ responses, but this correlation is constant.

It may be essential for the dependent variable to be re-
corded on different measurement scales for each treatment. 
Another possibility is for it to be the same in each appli-
cation, but with the measurement done in accordance with 
age or time, rather than with the different treatments. In the 
latter two situations the variance-covariance matrix most 
probably deviates from sphericity, though for quite differ-
ent reasons. In the first case, the variances of the treatments 
might simply be arbitrarily heterogeneous (leading at the 
same time to a heterogeneity of covariances, also without a 
defined structure), so that the correlation matrix is arbitrary. 
In the second case, it is very probable that we will observe 
certain trends related to maturation or learning processes 
producing residual and/or autocorrelation effects and, even-
tually, giving rise to a certain heterogeneity in the variances 
of the treatments (this is the expectation in S.2). 

 The importance of the above is crucial for deciding on 
the statistical technique to use for testing the different null 
hypotheses of the design (see Fernández, Livacic-Rojas, & 
Vallejo, 2007 for a full review of them, both univariate and 
multivariate). It is well known that the power of multivariate 
techniques is low when samples sizes are relatively small; 
moreover, if the number of subjects in each group is smaller 
than the number of repeated measures minus one (it should 
hold that N-p ≥ q-1), no multivariate statistic can be calcu-
lated because the covariance matrix will be singular. In this 

case the researcher will only be able to use univariate sta-
tistics. Univariate Analysis of Variance (AVAR) is undoubt-
edly the most powerful technique when the assumptions of 
the model are satisfied (Keselman, Lix, & Keselman, 1996), 
that is, multivariate normality, independence between the 
vectors of observations of the different experimental units, 
homogeneity of the dispersion matrices (Σ), and their 
sphericity. The immediate consequence of violating the as-
sumption of sphericity is that the null hypotheses of the ef-
fects of the design are falsely rejected more often than they 
should be, and more so the greater the deviation (Collier, 
Baker, Mandeville, & Hayes, 1967). In order to solve this 
problem, and depending on whether or not the remaining 
assumptions of the AVAR are met, different authors have 
developed different univariate alternatives, examples being 
the Greenhouse and Geisser (1959) (ε), Huynh and Feldt 
(1976) (ε) and Lecoutre (1991) (εL) tests, (Quintana & Max-
well, 1994; Fernández et al., 2007 have carried out thorough 
reviews). All of these aim to correct the critical values of the 
univariate F by multiplying the degrees of freedom (df) by 
a value of ε that indicates the deviation from the covariance 
matrix of the required sphericity pattern and which is calcu-
lated from Σ (covariance matrix averaged from the design 
data). However, all assume arbitrary correlation between 
scores, that is, that the correlation between observations at 
different time points is not a function of the time distance 
between them. But, as there may be serial dependence un-
derlying the data, some authors (Hearne, Clark, & Hatch, 
1983; Jones, 1985, among others) have proposed univariate 
models of variance that take it into account. Thus, for ex-
ample, Hearne et al. (1983) and Jones (1985) give priority 
to first-order serial autocorrelation. The former calculates 
the value of ε over Σp (estimated covariance matrix assum-
ing that the data show first-order serial autocorrelation), and 
the latter proposes modifying the calculation of the summed 
squares of the AVAR incorporating the serial correlation in 
them and subtracting one df in the within-subject error (see 
also, Fernández, 1995).  

Another, more flexible approach to the analysis of re-
peated measurements, and particularly useful when sample 
size is sufficiently large to support asymptotic inference, is 
the mixed linear model (MLM). Under this approach, im-
plemented in commercial software packages, including the 
widely used SAS® and SPSS programs, researchers, rather 
than presuming a certain type of covariance structure, may 
model the structure before testing for treatment effects. For 
example, the best covariance structure can be selected based 
on Akaike’s Information Criterion (AIC) and/or Schwarz’s 
Bayesian Information Criterion (BIC) values for various 
potential covariance structures. According to advocates of 
the mixed-model approach, selecting the most parsimoni-
ous covariance structure possible is very important, as it 
may result in more accurate and efficient inferences of the 
fixed-effects parameters of the model, and consequently 
more powerful tests of the treatment effects. However, it 
has weak points as well, and two in particular: on the one 
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hand, potential problems with identifying the structure of 
the underlying Σ matrix, given that the AIC and BIC criteria 
do not always select it correctly (Keselman, Algina, Kowal-
chuck, & Wolfinger, 1999a, 1999b; Livacic, 2005; Vallejo, 
Fernández, & Ato, 2003); and on the other, the estimators 
of accuracy and inference are based on its/their asymptotic 
distribution –with very large samples it fits well– so that se-
rious problems can occur when working with small samples 
(Vallejo et al., 2002). 

There is an abundance of research testing the behaviour 
of univariate procedures that correct the absence of spheric-
ity without assuming the existence of serial autocorrelation, 
in addition to those testing the MLM (excellent reviews can 
be found in Keselman et al., 1996; Keselman et al., 2001; 
Blanca Mena, 2004; Fernández et al., 2007). However, there 
are very few studies on univariate procedures that correct 
the absence of sphericity assuming the existence of serial 
correlation, so that we shall consider just two. 

Recently, Fernández, Vallejo, Livacic-Rojas, Herrero 
and Cuesta (2008) examined the behaviour of six univari-
ate estimators with respect to Type I error, namely, AVAR, 
the Greenhouse-Geisser Test (1959) (GG), the Huynh-Feldt 
Test (1976) (HF), the Lecoutre Test (1991) (LEC), the 
Hearne et al. test, (1983) (HCH), and the Jones Procedure 
(1985) (JN), in a split-plot factorial design (p × q). Their 
results showed that no statistic was robust in all the condi-
tions studied. The AVAR, HF and JN procedures displayed 
the poorest behaviour, since they were the most dependent 
of all the variables manipulated, and GG, LEC and HCH 
more often maintained the Type I error within the limits of 
robustness. The differences between them depended on the 
structure of the underlying covariance matrix. When the un-
derlying matrix was stationary autoregressive and decreas-
ing structured non-stationary autoregressive, the HCH pro-
cedure was the most robust of them all, its estimation did 
not depend on ρ at all (either its magnitude or its direction) 
or on nj, or on q; however, when the matrix was increasing 
structured non-stationary autoregressive and arbitrary non-
stationary autoregressive the most robust procedures were 
GG and LEC. When the matrix was non-structured (absence 
of serial correlation and of sphericity), GG displayed the 
best behaviour. 

Subsequently, Fernández, Vallejo and Livacic-Rojas 
(2008) compared, by means of simulation, the GG, LEC and 
HCH procedures, together with the MLM (with the matrix 
correctly identified) under the same matricial conditions as 
in the previous research. The results obtained with the GG, 
LEC HCH procedures replicated those of the previous work. 
The MLM showed less robustness than the previous proce-
dures when the underlying matrix was decreasing structured 
non-stationary autoregressive and when the matrix was un-
structured.

In the two previous studies it was shown that the four 
procedures (GG, LEC, HCH and MLM) made better esti-
mation under serial autocorrelation (better when it is posi-

tive than when it negative) than under arbitrary correlation. 
However, only HCH and MLM depended significantly on 
its magnitude, HCH making better estimation the greater the 
autocorrelation, and MLM doing so the smaller the correla-
tion. GG, LEC and HCH showed better estimation the clos-
er the matrix to sphericity, but MLM was not affected by 
the value of ε.  For the same sample size, the GG, LEC and 
MLM procedures were more robust the greater the q. The 
HCH procedure was the least dependent on q, except when 
the underlying matrix was arbitrary autoregressive, in which 
case, for the same sample size, its estimation improved the 
greater the q. All the procedures improved their estimation 
the greater the sample size, GG and MLM being the most 
dependent on this variable.

This being the case, and assuming that the choice of con-
trast statistic for analyzing a repeated-measures design data 
is a univariate one, the general purpose of the present study 
is to evaluate the performance of the procedures which in 
the two previous studies were the most robust (GG, LEC, 
HCH) and also the procedure JN. Up to now, no research 
has examined the sensitivity for detecting the treatment ef-
fect of the HCH and JN procedures. The research was car-
ried out in the same conditions as in our previous work, that 
is, when there is absence of sphericity in both situations, 
under serial correlation and under arbitrary correlation, and 
for data collected in the format of a split-plot factorial de-
sign (p × q). As it is known that educational and behavioural 
research data rarely follow a normal distribution (Micceri, 
1989), the procedures will be examined both under normal 
distribution and in the absence of normality. 

METHOD

To evaluate the sensitivity of the GG, LEC, HCH and JN 
approaches, we carried out simulation studies for a balanced 
split-plot factorial design (3 × q) underlain by an additive 
model. Bearing in mind that we have just briefly defined the 
three procedures, we shall not describe their formulation for 
two reasons: first, because the GG and LEC procedures are 
described in numerous publications (see, e.g., Vallejo, 1991; 
Fernández et al., 2007) and the HCH and JN procedures are 
clearly explained in Hearne et al. (1983) and Jones (1985), 
respectively, and secondly, because their calculation is ex-
tremely simple.

In the first study, we compared the power of the ap-
proaches proposed with data generated from multivariate 
normal distributions when the assumption of multisample 
sphericity was unfulfilled. For this purpose, three variables 
were manipulated: (a) sample sizes (nj); (b) measurement 
occasions (q) and (c) structure of the population covariance 
matrix (Σ). The behaviour of the test statistics was investi-
gated with three total sample size conditions: N=15 (nj=5);, 
N= 30 (nj=10) and N= 46 (nj=16). These sample sizes were 
selected because the last two (N= 30 and N= 46) are typical 
of what is encountered in practice, particularly in areas such 
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as animal psychology and applied behaviour analysis, while 
in applied clinical psychology the sample size is frequently 
very small, which is why we chose N=15. There were four 
levels of the within-subject factor: 4, 6, 8 and 12. It is com-
mon in simulation research to study within-subject factors 
with 4 levels, and to a lesser extent with 8 levels. With the 
aim of observing the trend of the power of the test statistics 
depending on the number of levels, we decided to use the 
numbers mentioned.

Simulated data were generated using four covariance 
structures: stationary autoregressive (AR), decreasing and 
increasing structured non-stationary autoregressive (ARSH-
D and ARSH-I, respectively), arbitrary non-stationary au-
toregressive (ARAH) and unstructured (UN). The AR ma-
trix displays stationarity in the variances (σ2 = 10 in our 
case) and the correlation between the kth and k’th observa-
tion is ρ |k-k’| (ρ= [-0.8:0.8: (0.2)] in our case). The ARSH 

matrices express covariance matrices with the same posi-
tive and negative serial correlation design as the AR matri-
ces, but exhibit structured within-subject heterogeneity, so 
that the variances vary through q in increasing (ARSH-I) or 
decreasing (ARSH-D) arithmetic progression. All of these 
matrices have a deviation from sphericity that can be cal-
culated by means of ε or by means of εp, and whose size 
depends on each of the elements used in their construction 
(Edwards, 1991). Of paramount interest for us was to ob-
serve the behaviour with respect to the power of the test of 
the procedures referred to above when for the same degree 
and intensity of autocorrelation there is a different deviation 
from sphericity. This aspect has not been studied up to now. 
In this way we could observe whether the power of a statis-
tic was more strongly affected by one aspect or by another. 
For this purpose we used matrices that we called ARAH, 
which express covariance matrices with the same positive 

Table 1
Theoretical power for the within-subjects main effect (α=.05). AR and ARSH-I (q=4 and 6); ARAH (ε=.50 y ε=.75) and  

NE (ε=.56 y ε=.75), both (q=4). Mean value of ε depending on Σ for GG, LEC and HCH tests
Σ AR ARSH-I ARHA ε=.50 ARHA ε=.75

Ρ nj GG LEC GG LEC GG LEC GG LEC
.20 5 .78(-) .79(-) .77(-) .79(-) .73 .74 .76 .77

10 .82(-) .85(-) -(-) -(-) .89 .89 - -
.40 5 .78(-) .79(-) .77(-) .79(-) .74 .75 .77 .79

10 - (-) - (-) - (-) - (-) .89 .89  -  -
.60 5 .77(-) .79(-) .77(-) .79(-) .76 .77 .80 .80
.80 5 .77(-) .78(-) .76(-) .77(-) .78 .78  -  (-)

Pw.R .77 .77 .75 .77
-.20 5 .76(-) .78(-) .76(-) .78(-) .72 .73 .75 .77
-.40 5 .74(-) .77(-) .73(-) .76(-) .70 .72 .74 .76

10 .89(-) .89(-) .79(-) .79(-) .89 .89 .88 .89

-.60
5 .67(.79) .69(.79) .66(.79) .69(.79) .68 .70 .73 .75

10 .78(.) .78(-) .78(-) .78(-) .87 .88 .88 .88
16 - (-) - (-) .79(-) .79(-) .65 .69 .74 .73

-.80
5 .55(.69) .56(.71) .54(.69) .56(.71) .87 .88 .88 .89

10 .71(.78) .71(.79) .70(.78) .71(.79) .95 .97 (-) (-)
16 .76(-) .75(-) .75(-) .76(-)

Pw.R .77 .77 .74 .77
nj NE ε=.56 nj NE ε=.75

GG LEC GG LEC
5 .64 .66 5 .73 .74

10 .87 .87 10 .84 .86
16 .96 .93 16 - -

Pw.R .64 .73
Mean value of ε depending on Σ

AR ARSH-I ARSH-D
ρ GG LEC HCH GG LEC HCH GG LEC HCH

.20 .78 .99 .95 .73 .91 .95 .78 .99 .95

.40 .75 .94 .90 .71 .88 .90 .75 .94 .90

.60 .71 .87 .82 .67 .81 .82 .71 .87 .82

.80 .65 .79 .73 .61 .72 .74 .65 .78 .73
-.20 .78 .99 .94 .72 .89 .94 .78 .98 .94
-.40 .72 .90 .84 .67 .81 .84 .72 .89 .84
-.60 .62 .74 .68 .58 .68 .70 .62 .74 .68
-.80 .48 .54 .50 .46 .51 .52 .48 .53 .50

Note. Σ= Population covariance structure; AR= Stationary autoregressive; ARSH-I Increasing structured non-stationary autoregressive; ARSH-D Decreas-
ing structured non-stationary autoregressive; ARAH= Arbitrary non-stationary autoregressive; GG= Greenhouse-Geisser Test (1959); LEC= Lecoutre Test 
(1991); HCH= Hearne et al. Test (1983; nj= subjects in each one of the groups of the between-subjects variable; ρ= autocorrelation; ε= deviation from 
sphericity. Under the structures of Matrix AR and Matrix ARSH-I, figures outside the brackets indicate theoretical power for q=4, and those inside the 
brackets indicate it for q=6, q being the number of levels of the within-subjects variable. The dash (-) indicates theoretical power over .90. The rows for 
nj=10 and 16 do not appear because in all the columns of the table the theoretical power was greater than .90; Pw.R= Power Reference of the test.
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and negative serial correlation design as the AR matrices, 
but displaying arbitrary within-subject heterogeneity, so 
that the variances vary through q without any defined struc-
ture, and which were constructed with two deviations from 
sphericity (ε=.50 and ε=.75). The UN matrices are also arbi-
trary non-stationary symmetrical, so that both the variances 
and covariances vary without any defined structure. They 
lack serial correlation but display absence of sphericity. We 
constructed matrices with moderate (ε=0.75) and severe 
(ε=0.56) deviation from sphericity by means of the algo-
rithm developed by Cornell, Young and Bratcher (1991). 

While the procedures examined are based on the nor-
mality assumption, when we work with real data it is com-
mon to find that the skewness (γ1) and kurtosis (γ2) indices 
divert from zero (Micceri, 1989), which could lead us to an 
incorrect interpretation of the results obtained. Therefore, in 
order to explore the possible effects of distribution shape on 
the power of the tests, we carried out a second study in which 
the assumption of normality underlying the data was vio-
lated. Specifically, we chose to investigate the distributions 
Laplace or double exponential distribution (γ1=0 and γ2=3); 
exponential distribution (γ1=2 and γ2=6); and lognormal dis-
tribution (γ1=6.18 and γ2=110.94). In this second study we 
manipulated the same variables as in the first study.

In each of the two studies we made comparisons with 
regard to the accuracy of the estimations and with regard to 
the empirical power of the three procedures for detecting the 
within-subject main effect. In order to estimate the degree of 
bias of the parameters ρ, ε, γ1 and γ2 , we compared the mean 
value of the parameters used, assuming that the estimator is 
unbiased, so that the mean value will closely approximate 
the true value of the population parameter. The empirical 
power rate was calculated by dividing the number of times 
the null hypothesis is correctly rejected at the specified α 
level by the number of executions. For the calculation of the 
theoretical power in those situations where there is absence 
of sphericity we followed the recommendations of Muller 
and Barton (1989). Table 1 shows the values of theoretical 
power of the test.

Generation of data. In order to explore the possible ef-
fects of distribution shape on the robustness of the tests, we 
generated data, both normal and non-normal in form, sam-
pling from the g-and-h distributions introduced by Tukey 
(1977). Specifically, apart from the standard normal distri-
bution (g = h = 0; γ1 = γ2 = 0), we chose to investigate dis-
tributions where (a) g = 0 and h = .109, a distribution with 
skew and kurtosis equal to that for a Laplace or double ex-
ponential distribution d1= (γ1 = 0 and γ2 = 3); (b) g = .76 and 
h = –.098, a distribution with skew and kurtosis equal to that 
for an exponential distribution d2= (γ1 = 2 and γ2 = 6); and (c) 
g = 1 and h = 0, a distribution with skew and kurtosis equal 
to that for a lognormal distribution d3= (γ1 = 6.18 and γ2 = 
110.94); The g-and-h distributions were obtained by trans-
forming the standard normal variable Zijk generated using 
the algorithm proposed by Kinderman and Ramage (1976) 

by means of the GAUSS program (V. 3.2.32), to Z*
ijk= g-

1[exp(g Zijk )-1]exp(h Z2
ijk /2) where g and h are real num-

bers controlling the skewness and kurtosis, respectively. It 
should be noted that when g = 0, the g-and-h distribution 
reduces to Z*

ijk= Zijk exp(h Z2
ijk /2) which is also known as the 

h-distribution. Similarly, when h = 0, the g-and-h distribu-
tion reduces to Z*

ijk= [exp(g Zijk )-1] /g, which is also known 
as the g-distribution. Finally, The pseudorandom observa-
tion vectors y’ij1,...,y’ijq  with variance-covariance matrix Σ 
were obtained through triangular decomposition of Σj, Yijk 
= T×(Z*

ijk–μgh) where T is the lower triangular matrix that 
satisfies the equation Σj=TT’, and the population mean of 
the g-and-h distribution is μgh={exp[g2/(2-2h)-1]}/[g(1-
h)1/2] (see Headrick, Kowalchuk, & Sheng, 2008; Wilcox, 
1994, for details). Subsequently, using a program written 
in GAUSS (1992), we carried out as many simulations as 
experimental conditions described. Each one of these in-
cluded sampling 5000 independent observations for each of 
the three procedures.

RESULTS

The tables that follow show the results for a selected 
subset of studied conditions that adequately show the dif-
ferences between the different procedures. Table 1, as men-
tioned earlier, shows the values of theoretical test power for 
the GG and LEC procedures according to the variables in 
this study. To highlight the results in the tables (empirical 
power’s smaller than theoretical power’s), we took as a ref-
erence (Reference Test Power, Pw.R) the mean value of the 
theoretical test power of the GG procedure GG for nj=5 and 
q=4 for all the correlation magnitudes (see Table 1).

Accuracy of the estimations: In each of the situations 
studied, the values of ε, ρ (positive, negative or zero), γ1 
and γ2 were systematically adjusted to the parameters of the 
known populations from those that were simulated. 

Estimated Power Rates for the within-subjects main ef-
fect:

Normally Distributed Data. Table 2 contains the empiri-
cal power for the main effect when data were obtained from 
a multivariate normal distribution. 

1. Stationary autoregressive (AR) and structured non-
stationary autoregressive (ARSH-D and ARSH-I) matrices: 
while it is true that there are differences between the three 
procedures, these differences are maintained in these three 
matrix structures. In Table 2 it can be seen that when the 
serial correlation is positive, the GG, LEC and HCH proce-
dures have an empirical power greater than the theoretical 
power for all nj, q and magnitude of ρ when the underlying 
matrix structure is ARSH-I (results such as those indicated 
previously are not presented for this reason) and, except 
when nj=5 and q=4, also when the underlying deviation ma-
trix is AR and ARSH-D. JN is the procedure with the lowest 
empirical power.
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It can also be seen that when the serial correlation is neg-
ative, the empirical power of the GG, LEC and HCH proce-
dures is much lower, to a greater degree the greater the serial 
correlation. In this situation the three previous procedures 
attain an empirical power greater than the theoretical one 

when q=8 (if ρ≤.60) for nj=5. The JN procedure is in this 
situation the most powerful, the more so the greater the ρ.

2. Arbitrary non-stationary autoregressive (ARAH) and 
unstructured (UN) matrices: In Table 2 it can be seen that 
when the underlying matrix in the data is ARAH and the 

Table 2
Empirical power for the within-subjects main effect (α=.05). Normal distribution.

Stationary autoregressive matrix. Matrices AR
Positive first-order correlation Negative first-order correlation

GG LEC HCH JN GG LEC HCH JN
nj ρ q=4 q=6 q=4 q=6 q=4 q=6 q=4 q=6 q=4 q=6 q=4 q=6 q=4 q=6 q=4 q=6

5

.20 .529 .954 .574 .971 .567 .972 .512 .949 .469 .960 .535 .981 .523 .980 .633 .993

.40 .518 .910 .566 .935 .559 .937 .491 .878 .347 .909 .401 .942 .391 .938 .671 .998

.60 .510 .862 .555 .891 .553 .892 .435 .728 .211 .698 .244 .777 .229 .757 .706 1

.80 .505 .781 .540 .813 .531 .818 .410 .644 .097 .242 .111 .287 .103 .263 .756 1

10

.20 .889 1 .899 1 .898 1 .871 .999 .876 1 .888 1 .886 1 .938 1

.40 .859 .995 .893 .995 .886 .996 .839 .998 .788 .990 .807 .997 .802 1 .954 1

.60 .837 .992 .869 .974 .869 .994 .783 .985 .534 .996 .559 .997 .549 .996 .972 1

.80 .834 .980 .844 .982 .844 .993 .740 .945 .205 .727 .213 .747 .209 .736 .979 1

16

.20 .990 1 .991 1 .991 1 .986 1 .987 1 .989 1 .988 1 .995 1

.40 .980 1 .981 1 .981 1 .967 1 .969 1 .972 1 .971 1 .996 1

.60 .976 .999 .978 1 .978 .998 .950 .998 .849 1 .858 1 .855 1 .999 1

.80 .965 .999 .966 .999 .966 .990 .928 .997 .340 .989 .347 1 .342 .990 .999 1
Decreasing structured non-stationary autoregressive matrix. Matrices ARSH-D

5

.20 .511 .962 .560 .977 .556 .977 .510 .962 .423 .964 .488 .983 .472 .983 .594 .999

.40 .499 .925 .548 .949 .542 .950 .460 .895 .325 .930 .383 .958 .368 .958 .650 .999

.60 .495 .875 .535 .899 .534 .900 .418 .798 .186 .735 .233 .803 .220 .791 .693 1

.80 .483 .792 .518 .825 .510 .825 .386 .667 .104 .254 .115 .296 .109 .276 .727 1

10

.20 .878 .999 .893 .999 .892 .999 .859 .999 .842 1 .858 1 .856 1 .918 .999

.40 .876 .995 .885 .999 .885 .999 .824 .998 .757 1 .776 1 .773 1 .944 1

.60 .844 .985 .855 .995 .854 .995 .767 .987 .519 .906 .542 .920 .532 .916 .961 1

.80 .811 .978 .822 .986 .823 .987 .707 .956 .170 .761 .177 .781 .172 .779 .974 1

16

.20 .948 1 .986 1 .986 1 .977 1 .983 1 .984 1 .985 1 .992 .999

.40 .979 1 .980 1 .979 1 .963 1 .958 1 .963 1 .961 1 .996 1

.60 .971 .999 .973 .999 .973 .999 .943 .999 .823 1 .834 1 .831 1 .997 1

.80 .959 .999 .962 .999 .962 .999 .913 .996 .327 .994 .332 .996 .330 .996 .999 1
Increasing structured non-stationary autoregressive matrix. Matrices ARSH-I

5

.20 .992 1 .993 1 .995 1 .993 1 .990 1 .996 1 .994 1 .998 1

.40 .998 1 .993 1 .995 1 .985 1 .972 1 .984 1 .979 1 .999 1

.60 1 1 1 1 1 1 1 1 .504 1 .510 1 .508 1 .940 1

.80 1 1 1 1 1 1 1 1 .423 1 .462 1 .454 1 1 1
Arbitrary non-stationary autoregressive matrix. Matrices ARAH

GG LEC HCH JN GG LEC HCH JN
q ε .50 .75 .50 .75 .50 .75 .50 .75 .50 .75 .50 .75 .50 .75 .50 .75

4

5

.20 .390 .494 .416 .534 .530 .573 .500 .539 .355 .417 .378 .465 .490 .515 .583 .631

.40 .422 .561 .444 .605 .555 .631 .490 .553 .336 .406 .361 .458 .450 .487 .670 .752

.60 .523 .690 .543 .719 .635 .731 .546 .643 .296 .363 .324 .397 .377 .409 .840 .876

.80 .672 .896 .688 .910 .749 .913 .695 .836 .289 .292 .313 .317 .309 .397 .976 .980

10

.20 .762 .852 .770 .860 .859 .885 .832 .852 .734 .846 .742 .859 .852 .893 .912 .942

.40 .808 .902 .814 .910 .887 .992 .836 .876 .727 .876 .738 .890 .834 .912 .963 .989

.60 .874 .959 .879 .961 .922 .964 .874 .934 .740 .807 .751 .823 .802 .855 .998 .996

.80 .945 .997 .947 .997 .963 .998 .947 .996 .699 .690 .708 .711 .704 .712 1 1

16

.20 .954 .975 .955 .976 .986 .983 .979 .960 .955 .986 .958 .988 .985 .992 .993 .998

.40 .969 .989 .970 .989 .989 .990 .979 .985 .957 .994 .959 .995 .986 .997 .999 1

.60 .985 .995 .986 .995 .993 .997 .987 .995 .980 .979 .971 .981 .978 .994 1 1

.80 .996 1 .996 1 .998 1 .996 1 .966 .963 .968 .968 .966 .969 1 1
Non-stationary matrix with arbitrary correlation. Matrices UN (ρ=0)

ε .56 .75 .56 .75 .56 .75 .56 .75

4
5 .236 .383 .252 .414 .334 .482 .324 .468

10 .442 .713 .452 .724 .562 .793 .544 .772
16 .661 .911 .665 .914 .772 .947 .750 .939

6 5 .837 .953 .869 .968 .934 .982 .932 .981
10 .996 .992 .997 1 .996 1 .999 1

Note. JN= Jones test (1985); ρ= Correlation in absolute value. For each row, figures in bold indicate empirical power lower than the empirical power of 
reference. For the rest, see Table 1. 
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serial correlation is positive, all the procedures have an em-
pirical power greater than the theoretical one when the with-
in-subject variable has 4 levels only where nj≥10. When the 
serial correlation is negative, the empirical power is greatly 
inferior for GG, LEC and HCH, but not for the JN proce-
dure, which increases its power as ρ increases. 

When the underlying matrix is NE, the empirical power 
of the four procedures is greater than the theoretical power 

of reference for q=4, only where ε=.56 and nj=16 and where 
ε=.75 and nj ≥10. The greatest test power is observed in the 
JN procedure. 

Under both matrix structures, ARAH and NE, the em-
pirical power is greater the greater the ε.

Non-normally Distributed Data. Tables 3, 4 and 5 show 
the empirical power for the main effect with the data ob-
tained from a non-normal distribution. 

Table 3
Empirical power for the within-subjects main effect. Covariance structure: AR (α=.05). No normal distribution.

GG LEC HCH JN
nj d ρ q=4 q=6 q=8 q=12 q=4 q=6 q=8 q=12 q=4 q=6 q=8 q=12 q=4 q=6 q=8 q=12

5

d1 .20 .385 .815 .988 1 .436 .864 .993 1 .439 .872 .995 1 .398 .819 .987 1
.80 .376 .607 .816 .979 .407 .651 .849 .986 .405 .651 .853 .987 .299 .479 .672 .931

d2 .20 .361 .775 .977 1 .404 .825 .987 1 .421 .843 .991 1 .380 .791 .977 1
.80 .313 .580 .779 .968 .349 .623 .817 .976 .353 .630 .825 .980 .241 .445 .629 .901

d3 .20 .150 .348 .598 .903 .176 .409 .664 .924 .211 .482 .676 .972 .188 .419 .681 .952
.80 .095 .219 .361 .642 .112 .258 .414 .689 .129 .287 .453 .730 .088 .174 .264 .484

10

d1 .20 .750 .993 1 1 .765 .994 1 1 .769 .995 1 1 .723 .991 1 1
.80 .681 .918 .988 1 .692 .925 .989 1 .693 .927 .991 1 .579 .822 .951 .999

d2 .20 .716 .990 1 1 .732 .992 1 1 .741 .994 1 1 .693 .986 1 1
.80 .661 .907 .980 .999 .673 .915 .982 .999 .679 .918 .985 .999 .533 .804 .936 .997

d3 .20 .318 .660 .896 .991 .334 .683 .905 .992 .369 .738 .945 .998 .332 .677 .911 .996
.80 .240 .485 .693 .907 .253 .502 .710 .913 .277 .537 .739 .929 .189 .346 .516 .786

16 d3 .20 .485 .856 .976 .998 .497 .863 .977 .998 .528 .893 .989 .999 .480 .851 .981 .999
.80 .417 .700 .870 .974 .424 .709 .875 .975 .447 .732 .888 .980 .320 .542 .743 .930

5

d1

-20 .319 .819 .993 1 .369 .874 .997 1 .368 .882 .998 1 .476 .948 1 1
-40 .235 .711 .985 1 .282 .787 .993 1 .276 .792 .994 1 .512 .975 1 1
-60 .151 .472 .895 .999 .180 .552 .935 .999 .173 .547 .936 1 .555 .989 1 1
-80 .082 .159 .397 .956 .090 .192 .468 .973 .085 .177 .444 .974 .589 .996 1 1

d2

-20 .303 .763 .982 1 .350 .827 .991 1 .365 .845 .995 1 .459 .930 .999 1
-40 .241 .660 .964 1 .281 .733 .981 1 .283 .751 .985 1 .496 .960 .999 1
-60 .168 .434 .826 .999 .195 .502 .878 1 .193 .505 .886 1 .544 .979 1 1
-80 .126 .189 .383 .988 .139 .217 .442 .939 .137 .212 .430 .940 .601 .992 1 1

d3

-20 .130 .309 .573 .999 .159 .373 .646 .930 .191 .454 .748 .979 .242 .582 .858 .992
-40 .114 .241 .481 .877 .137 .303 .566 .911 .160 .364 .653 .964 .271 .660 .906 .995
-60 .105 .162 .315 .756 .119 .201 .387 .808 .132 .227 .437 .876 .310 .708 .840 .998
-80 .113 .109 .144 .372 .120 .125 .176 .443 .130 .134 .190 .477 .355 .775 .959 .991

10

d1

-20 .693 .997 1 1 .711 .997 1 1 .716 .998 1 1 .808 .999 1 1
-40 .571 .991 1 1 .595 .994 1 1 .595 .993 1 1 .842 .999 1 1
-60 .355 .942 .999 1 .376 .952 .999 1 .368 .952 .999 1 .880 1 1 1
-80 .132 .449 .930 1 .138 472 .941 1 .134 .464 .941 1 .899 1 1 1

d2

-20 .643 .991 1 1 .664 .993 1 1 .672 .995 1 1 .768 .999 1 1
-40 .532 .979 1 1 .555 .983 1 1 .559 .986 1 1 .819 .999 1 1
-60 .347 .889 .999 1 .364 .905 .999 1 .363 .907 .999 1 .847 .999 1 1
-80 .165 .424 .866 1 .170 .445 .880 1 .170 .438 .883 1 .882 1 1 1

d3

-20 .277 .639 .890 .991 .292 .666 .903 .992 .325 .728 .946 .998 .402 .828 .978 .999
-40 .230 .548 .847 .988 .245 .578 .865 .989 .269 .634 .913 .997 .449 .888 .989 .999
-60 .165 .367 .693 .971 .174 .391 .718 .974 .187 .430 .766 .988 .492 .920 .993 .999
-80 .128 .173 .315 .787 .134 .183 .337 .808 .138 .192 .359 .834 .541 .945 .997 1

16

d1

-20 .910 1 1 1 .916 1 1 1 .917 1 1 1 .955 1 1 1
-40 .847 1 1 1 .857 1 1 1 .958 1 1 1 .971 1 1 1
-60 .643 .999 1 1 .653 .999 1 1 .653 .999 1 1 .981 1 1 1
-80 218 .837 .999 1 .223 .845 .999 1 .221 .843 .999 1 .988 1 1 1

d2

-20 .875 .999 1 1 .882 .999 1 1 .885 .999 1 1 .938 1 1 1
-40 .796 .999 1 1 .807 .999 1 1 .811 1 1 1 .956 1 1 1
-60 .580 .995 1 1 .591 .995 1 1 .591 .996 1 1 .971 1 1 1
-80 .246 .733 .995 1 .249 .745 .996 1 .249 .743 .996 1 .981 1 1 1

d3

-20 .421 .843 .979 .998 .433 .852 .980 .999 .466 .889 .992 .999 .560 .944 .997 1
-40 .339 .771 .964 .998 .351 .784 .967 .998 .374 .823 .983 .999 .603 .969 .998 1
-60 .234 .596 .903 .995 .241 .611 .909 .995 .253 .640 .934 .998 .651 .981 .999 1
-80 .142 .248 .539 .952 .144 .256 .554 .955 .150 .264 .572 .966 .701 .986 .999 1

Note. d: d1= (γ1=0, γ2=3); d2= (γ1=2, γ2=6); d3= (γ1=6.18, γ2=110.94). For the rest, see Tables 1 and 2. 
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1. Stationary autoregressive (AR) and decreasing struc-
tured non-stationary autoregressive (ARSH-D) matrices: 
Behaviour of the four procedures is highly similar when the 
data are underlain by two matrix structures, the only dif-
ference being that the empirical power is slightly less in 
ARSH-D.

In Table 3 it can be seen that when the serial correla-
tion is positive, none of the four procedures has an empirical 
power greater than the theoretical power of reference when 
q=4, nj≤10 in any of the non-normal distributions studied. 
For the test power to be greater than that of reference it is 
necessary, in addition to the data distribution not diverging 
too much from normality, that when nj=5 the number of lev-
els of the within-subject variable to be 8 or more, and if 
nj=10, q must be 6 or more.

When the serial correlation is negative the power is low-
er for all procedures, except JN, which when nj=10 attains 
a test power greater than that of reference in all q under the 
distributions d1 and d2.

2. Increasing structured non-stationary autoregressive 
(ARSH-I) matrix: In Table 4 it can be seen that when the 
serial correlation is positive the four procedures exhibit very 
high empirical power for all ρ, q and nj when the distribution 
underlying the data is d1 and d2. When the serial correlation 
is negative, the JN procedure shows excellent behaviour, 
and the GG, LEC and HCH procedures, except when the 
correlation magnitude is high and nj=5, also show power 
greater than that of reference.

3. Arbitrary non-stationary autoregressive (ARAH) ma-
trix: Table 5 shows that when the serial correlation is posi-

Table 4
Empirical power for the within-subjects main effect. Covariance structure: ARSH-I. (α=.05). No normal distribution.

GG LEC HCH JN
nj

ρ q=4 q=6 q=8 q=12 q=4 q=6 q=8 q=12 q=4 q=6 q=8 q=12 q=4 q=6 q=8 q=12

5

d1 .20 .934 .997 .999 1 .947 .948 .999 1 .955 .999 1 1 .944 .998 .999 1
.80 .854 .845 .980 .997 .867 .953 .984 .998 .882 .962 .988 .999 .820 .911 .957 .991

d2 .20 .958 .999 1 1 .970 1 1 1 .977 1 1 1 .962 1 1 1
.80 .899 .980 .993 .999 .913 .984 .996 .999 .935 .991 .998 .999 .862 .956 .978 .998

d3 .20 .527 .795 .915 .979 .572 .828 .933 .983 .648 .909 .980 .998 .590 .861 .962 .997
.80 .357 .531 .661 .833 .394 .575 .710 .867 .458 .657 .782 .918 .321 .428 .511 .661

10

d1 .20 .999 1 1 1 .999 1 1 1 .999 1 1 1 .999 1 1 1
.80 .991 .999 1 1 .991 .999 1 1 .993 .999 1 1 .986 .998 1 1

d2 .20 .999 1 1 1 .999 1 1 1 .999 1 1 1 .999 1 1 1
.80 .999 1 1 1 .999 1 1 1 1 .998 .998 1 .998 1 1 1

d3 .20 .880 .976 .993 .998 .889 .978 .994 .998 .918 .992 .999 1 .889 .986 .998 .999
.80 .821 .931 .976 .994 .831 .937 .978 .994 .874 .966 .989 .998 .747 .854 .921 .976

5

d1

-20 .912 .998 .999 1 .930 .998 1 1 .943 .999 1 1 .970 1 1 1
-40 .852 .995 .999 1 .878 .997 .999 1 .894 .998 1 1 .981 1 1 1
-60 .656 .962 .998 1 .691 .972 .998 1 .712 .982 .999 1 .982 1 1 1
-80 .288 .600 .865 .995 .312 .640 .893 .997 .321 .666 .910 .998 .989 1 1 1

d2

-20 .917 .999 1 1 .938 .999 1 1 .951 .999 1 1 .982 1 1 1
-40 .820 .996 1 1 .849 .998 1 1 .876 .999 1 1 .986 1 1 1
-60 .607 .942 .997 1 .643 .957 .998 1 .666 .972 .999 1 .990 1 1 1
-80 .296 .549 .808 .990 .314 .587 .841 .993 .330 .612 .866 .997 .992 1 1 1

d3

-20 .460 .752 .896 .971 .501 .796 .918 .976 .570 .887 .976 .998 .680 .646 .991 .999
-40 .399 .652 .838 .957 .407 .704 .872 .965 .469 .798 .945 .994 .726 .965 .995 .999
-60 .269 .467 .663 .897 .295 .517 .712 .918 .332 .593 .805 .972 .769 .973 .996 .999
-80 .177 .220 .307 .551 .188 .246 .346 .606 .203 .277 .396 .680 .786 .979 .996 .999

10

d1

-20 .999 1 1 1 .999 1 1 1 .999 1 1 1 .999 1 1 1
-40 .998 1 1 1 .999 1 1 1 .999 1 1 1 .999 1 1 1
-60 .982 1 1 1 .984 1 1 1 .988 1 1 1 .999 1 1 1
-80 .715 .990 .999 1 .726 .991 .999 1 .747 .993 1 1 .999 1 1 1

d2

-20 .999 1 1 1 .999 1 1 1 1 1 1 1 1 1 1 1
-40 .998 1 1 1 .998 1 1 1 .998 1 1 1 1 1 1 1
-60 .968 1 1 1 .971 1 1 1 .976 1 1 1 1 1 1
-80 .640 .971 .999 1 .651 .974 .999 1 .671 .979 .999 1 1 1 1 1

d3

-20 .813 .969 .991 .997 .826 .971 .991 .997 .871 .991 .998 .999 .928 .995 .999 1
-40 .715 .943 .984 .997 .728 .950 .985 .997 .775 .976 .996 .999 .937 .996 .999 1
-60 .519 .843 .951 .991 .533 .853 .956 .991 .576 .901 .980 .998 .950 .998 .999 1
-80 .268 .443 .685 .931 .273 .459 .701 .938 .295 .505 .756 .965 .949 .998 .999 1

16 d3

-20 .948 .944 .998 999 .951 .995 .998 .999 .967 .999 .999 .999 .985 1 .999 .999
-40 .902 .990 .997 .999 .906 .991 .997 .999 .929 .996 .999 .999 .989 .999 .999 .999
-60 .757 .968 .992 .999 .763 .969 .992 .999 .796 .982 .997 .999 .989 .999 1 1
-80 .411 .726 .914 .999 .416 .734 .917 .999 .442 .770 .940 .999 .988 .999 1 1

Note. See Tables 1, 2 and 3 
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tive and q=4, all four procedures attain a test power greater 
than that of reference when ρ=.80, nj=10, and the distribu-
tion underlying the data is d1 and d2. When the correlation is 

negative, only the JN procedure attains high test powers. If 
nj=16, the test power is always high, whether the serial cor-
relation is positive or negative. 

Table 5
Empirical power for the within-subjects main effect. Covariance structure: ARAH and NE (α=.05). No normal distribution.

Arbitrary non-stationary autoregressive matrix. Matrices ARAH
GG LEC HCH JN

q 4 8 4 8 4 8 4 8
ε .50 .75 .50 .75 .50 .75 .50 .75 .50 .75 .50 .75 .50 .75 .50 .75

nj d ρ

5

d1

.20 .316 .364 .336 .398 .428 .437 .406 .398

.40 .338 .423 .961 .999 .356 .463 .972 .994 .448 .489 .987 .996 .390 .413 .951 .989

.60 .404 .542 .978 .425 .577 .984 .503 .589 .990 .425 .499 .958

.80 .519 .760 .538 .785 .601 .786 .542 .677

d2

.20 .202 .283 .228 .321 .346 .385 .315 .346

.40 .233 .354 .986 .999 .259 .397 .991 .999 .366 .442 .998 1 .307 .353 .981 .999

.60 .313 .493 .995 .337 .530 .996 .439 .552 .999 .357 .455 .984

.80 .446 .727 .472 .752 .562 .761 .495 .657

d3

.20 .059 .074 .071 .093 .121 .136 .120 .125

.40 .065 .092 .538 .615 .077 .116 .614 .680 .126 .150 .789 .790 .124 .123 .581 .642

.60 .074 .187 .603 .088 .217 .668 .134 .250 .803 .126 .199 .539

.80 .114 .410 .128 .435 .186 .458 .162 .358

10

d1

.20 .591 .692 .598 .706 .701 .748 .667 .705

.40 .642 .756 .999 .999 .650 .768 .999 1 .748 .794 .999 1 .679 .725 1 1

.60 .728 .868 1 .735 .874 1 .800 .884 1 .730 .820 1

.80 .835 .973 .838 .976 .877 .976 .835 .948

d2

.20 .581 .677 .595 .695 .736 .739 .681 .687

.40 .633 .756 1 1 .645 .769 1 1 .768 .799 1 1 .681 .714 1 1

.60 .730 .852 1 .739 .862 1 .827 .874 1 .734 .743 1

.80 .859 .947 .863 .950 .905 .954 .866 .921

d3

.20 .150 .218 .159 .235 .260 .306 .225 .263

.40 .165 .268 .938 .932 .174 .281 .945 .940 .275 .345 .987 .972 .225 .266 .930 .941

.60 .216 .421 .996 .225 .437 .970 .324 .480 .991 .257 .386 .933

.80 .332 .661 .341 .672 .435 .691 .369 .590

16 d3

.20 .298 .408 .306 .418 .455 .490 .389 .436

.40 .340 .481 .993 .989 .348 .494 .993 .989 .489 .553 .993 1 .397 .450 .994 1

.60 .443 .634 .995 .450 .641 .995 .568 .674 .999 .451 .568 .994

.80 .585 .800 .590 .804 .683 .819 .608 .742

5

d1 -20 .263 .297 .285 .338 .376 .380 .457 .479
-80 .204 .209 .224 .228 .218 .223 .898 .903

d2 -20 .162 .216 .181 .253 .298 .322 .397 .428
-80 .256 .252 .272 .268 .271 .269 .887 .881

d3 -20 .053 .060 .061 .074 .114 .117 .141 .156
-80 .183 .189 .195 .201 .206 .212 .572 .577

10

d1 -20 .545 .648 .556 .667 .681 .719 .765 .806
-80 .474 .479 .485 .490 .489 .493 .997 .996

d2 -20 .496 .614 .513 .638 .688 .705 .806 .824
-80 .458 .454 .465 .466 .468 .465 .996 .997

d3 -20 .117 .163 .122 .178 .227 .249 .296 .330
-80 .253 .252 .258 .256 .268 .268 .796 .797

16 d3 -20 .232 .323 .238 .334 .395 .424 .516 .541
-80 .239 .335 .334 .340 .341 .349 .924 .924

Non-stationary matrix with arbitrary correlation. Matrices UN (ρ=0)
ε =.56(nj =5) ε =.75(nj =5) ε =.56(nj =10) ε =.75(nj =10)

d q GG LEC HCH JN GG LEC HCH JN GG LEC HCH JN GG LEC HCH JN

d1 4 .174 .188 .259 .251 .274 .298 .363 .351 .329 .335 .442 .420 .540 .552 .628 .607
6 .664 .714 .804 .806 .820 .856 .897 .905 .961 .965 .987 .986 .994 .995 .997 .997

d2 4 .137 .148 .230 .216 .232 .263 .338 .326 .295 .303 .413 .391 .511 .526 .616 .594
6 .643 .693 .795 .792 .821 .862 .906 .906 .953 .960 .981 .978 .994 .995 .998 .998

d3
4 .071 .078 .136 .128 .098 .113 .171 .161 .122 .125 .204 .185 .205 .214 .298 .277
6 .266 .314 .436 .447 .359 .414 .530 .545 .540 .564 .687 .683 .696 .716 .797 .798
8 .495 .560 .709 .702 .617 .682 .804 .802 .837 .853 .926 .917 .920 .929 .966 .963

Note. See Tables 1, 2 and 3 
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When q=8 all the procedures have high empirical power 
except when the distribution underlying the data is d3. The 
empirical power is slightly higher when ε=.75.

4. Unstructured (UN) matrix: Table 5 shows that when 
the distribution underlying the data is d1 and d2 all the proce-
dures have an empirical power greater than that of reference 
when q≥6 for all nj. The test power is much lower in d3. The 
empirical power is slightly higher when ε=.75.

DISCUSSION AND RECOMMENDATIONS

The objective of the present research was to compare the 
behaviour of the univariate procedures GG, LEC, HCH and 
JN with regard to the power rates in the additive model of a 
split-plot factorial design (p × q). Two aspects help to make 
it original. On the one hand, the comparison of procedures 
that differ in the way they deal with absence of sphericity, 
either assuming arbitrary correlation or assuming serial au-
tocorrelation. On the other hand, the underlying conditions 
in the data added to the absence of sphericity under which 
the behaviour was compared, including, in addition to those 
commonly studied, the arbitrary non-stationary autoregres-
sive condition that permits us to observe what affects the 
empirical power most – the absence of sphericity or the di-
rection and amount of autocorrelation. The results highlight 
the following:

Differences found according to the distribution underly-
ing the data:

1. When the data are underlain by a normal distribution 
and serial correlation is positive, the LEC and HCH proce-
dures are those exhibiting the greatest empirical power, and 
the JN procedure is that with the least empirical power when 
the underlying deviation matrix is AR and ARSH. When 
the underlying deviation matrix is ARAH and NE the most 
powerful procedures are HCH and JN if the serial correla-
tion is negative, and the JN procedure is indisputably that 
with the greatest power whatever the underlying deviation 
matrix is.

2. When the data are underlain by a non-normal distribu-
tion, the HCH procedure is that with the greatest empirical 
power when the serial correlation is positive, and the JN 
procedure when the serial correlation is negative whatever 
the underlying deviation matrix is. The GG procedure GG is 
that which has demonstrated the lowest empirical power in 
all the deviation matrix structures studied here.

Coincident behaviour patterns when the data are dis-
tributed normally and non-normally:

1. In all three procedures the empirical power increases 
as q, nj and ε increase, more with q than with nj; and with nj 
more than with ε. 

2. An increase in the magnitude of the correlation always 
affects the estimation of the test power in all procedures; 
however, the following was observed:

a) When the matrix underlying the data is AR, ARSH-I 
and ARSH-D, when the serial correlation is positive, an in-
crease in magnitude leads to a reduction in power in all the 
procedures; however, no significant change is found between 
the estimation for high and low levels of serial correlation. 
The most appreciable changes are found when q=6 and 8 
for nj=5. On the other hand, when the serial correlation is 
negative, an increase in magnitude leads to a significant re-
duction in power in the GG, LEC and HCH procedures, and 
an increase in power (also significant) in JN. Both changes 
are larger when q=8 in all sample sizes.

Previously, in point 1, it was stressed that the empirical 
power, in relation to ε=.50, is slightly higher when ε=.75. 
This point now needs some clarification. A look at Table A 
–which shows the sphericity coefficients in these types of 
matrix structure for all correlation magnitudes studied– re-
veals that when the matrices have positive serial correlation, 
the values of ε decrease very gradually as the magnitude of 
ρ increases; however, when the serial correlation is nega-
tive, the values of ε decrease markedly as the magnitude of 
ρ increases. This is the reason for the behaviour of the test 
power. Thus, it would appear that estimation of the empiri-
cal test power is determined more by the magnitude of the 
deviation from sphericity than by the magnitude of the serial 
correlation when the underlying deviation matrix is AR and 
ARSH.

b) When the matrix underlying the data is ARAH, if the 
serial correlation is positive, an increase in magnitude leads 
to a significant increase in test power in all the procedures. 
When the correlation is negative, the test power decreases 
almost imperceptibly as the magnitude of ρ increases, except 
in the case of the JN procedure, whose estimation improves 
as ρ increases. Thus, it would appear that estimation of the 
empirical test power is determined more by the magnitude 
of the correlation than by the deviation from sphericity when 
the underlying deviation matrix is positive ARAH.

3. According to the structure of deviation underlying the 
data, the magnitude of the empirical power for all the proce-
dures is as follows:
(1-β)ARSH-I > (1-β)AR > (1-β)ARSH-D > ARAH > NE.

That is, if the matrix is severely increasing structured 
non-stationary autoregressive, all three procedures have 
very high empirical power, and much higher then the theo-
retical power for all nj, q, and magnitude and direction of the 
autocorrelation.

4. The greater the deviation from normality, the lower 
the empirical test power, as follows:

When the deviation matrix underlying the data is AR, 
ARSH-D, ARAH and NE: 
(1-β) Normal distribution > (1-β) d1 > (1-β) d2 > (1-β) d3.

When the deviation matrix underlying the data is ARSH-
I: 
(1-β) Normal distribution > (1-β) d2 > (1-β) d1 > (1-β) d3.

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
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The results we have obtained with the GG and LEC 
procedures replicate those found in the numerous previ-
ous studies in similar conditions, that is, AR, ARSH and 
UN matrices (the reader may wish to consult the literature 
covered in the reviews referred to here). Nevertheless, the 
fact of having compared these tests with the HCH and JN 
procedures, and of having the ARAH matrix structure added 
to the study, broadened the scope of behaviour of these pro-
cedures that correct deviation from sphericity based on dif-
ferent criteria.

Despite the fact that the generality of our results is lim-
ited by the range of conditions and parameter sets employed 
in the simulations –other conditions or other parameter sets 
could give different results–, in our opinion, when all sub-
jects have complete response vectors a general recommen-
dation can be made. Applied researchers who in gathering 
their data employ a repeated-measures design with a with-
in-subject and a between-subjects variable, and have ma-
nipulated the levels of the variables in order to select those 
that are optimum for testing the within-subject treatment ef-
fects (they have to obtain at least 10 subjects for each of the 
groups if they have a number of repeated-measures of 4 or 
less; if the within-subject variable has more than 4 levels, 
five subjects in each group would be sufficient), must first of 
all study whether or not the assumptions have been met. If 
after doing so they reach the conclusion that the assumption 
of sphericity is not met, and if they decide to use a univariate 
statistic, here are suggestions for testing the within-subject 
treatment effects:
-	 If there is positive serial correlation and the data are nor-

mally distributed, LEC or HCH Statistics would be the 
best choice; if there is positive serial correlation and the 
data are non-normally distributed, HCH Statistic would 
be the best choice.

-	 If there is negative serial correlation and either normal 
or non-normal distribution of data, JN Statistic would be 
the best choice.
As a final note, we should point out the need to continue 

research on the behaviour of these procedures with respect 
to Type I error and to test power in the situations studied 
here when the sizes of the subsamples of units of study pro-
duce an unbalanced design, and when the covariance matri-
ces of the groups are heterogeneous. 
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