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Comparison of the power of four statistics in repeated measures design in the absence of

sphericity with and without serial autocorrelation

PAULA FERNANDEZ, GUILLERMO VALLEJO, PABLO LIVACIC-ROJAS,
JAVIER HERRERO and MARCELINO CUESTA

The present article examines the behaviour of four univariate statistics for analyzing data in a mixed repeated
measures design, the procedures of Greenhouse and Geisser (1959), of Lecoutre (1991), of Hearne, Clark and Hatch
(1983) and of Jones (1985), which differ in how they approach the absence of sphericity, assuming either arbitrary
correlation or serial autocorrelation. These four approaches were compared with respect to empirical power in
conditions of multivariate normality and absence of normality, and of different underlying structures of covariance.
Overall, when the distribution is normal, Monte Carlo comparisons indicate that when the matrix is stationary au-
toregressive or structured non-stationary autoregressive, the Lecoutre and Hearne et al. statistics are more powerful,
the former enjoying slightly higher empirical power, with no large differences between the two in either direction of
the autocorrelation (positive and negative first-order serial correlation). For an arbitrary non-stationary matrix, the
Hearne et al. procedure is considerably more powerful than the Lecoutre statistic when the deviation of the spheric-
ity is slight and severe, both in the two directions of the autocorrelation (positive and negative first-order serial cor-
relation) and when it is arbitrary (correlation=0). When the data are underlain by a non-normal distribution, the HCH
procedure is that with the greatest empirical power when the serial correlation is positive, and the JN procedure
when the serial correlation is negative whatever the underlying deviation matrix.

Key words: Power of the test, stationary autoregressive matrix, structured non-stationary autoregressive matrix,

arbitrary non-stationary autoregressive matrix, non-stationary matrix with arbitrary correlation.

The repeated measures designs provide an efficient
strategy for examining the effect of treatments administered
consecutively or examining the evolution of behaviour over
time, given that they permit the extraction of individual dif-
ferences from the experimental error. It is for this reason that
they have become the most widely used tool for diagnos-
ing, explaining and predicting biological, psychological and
social processes (Keselman, Algina, & Kowalchuk, 2001).
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The most common type of design involves two factors, be-
tween-subjects (A) and within-subject (B). Subjects (i=1,...,
n,x n=N), classiﬁ.ed according to, or assigned at random
to the Between—subjects levels (7=1,..., p), are observed and
measured at all levels of the within-subject factor (k=1,...,
q), be they different treatments or a small number of meas-
urement occasions that result from the systematic choice of
fixed and equidistant time intervals.

Given that the present work and the recommendations
made at the end of it are addressed to psychologists carrying
out applied research, with a view to achieving greater con-
textualization of the application of the statistics tested here,
we begin by describing two real studies:

Study 1 (S.1): Palmero, Breva, Diago, Diez and Garcia
(2002) carry out an experiment for exploring the role of
Type A and Type B emotional patterns (between-subjects
classification variable: n,=28 and n =28) in activation, vari-
ability and cardiac recovery (dependent variables), in three
situations represented by the within-subject independent
variable (habituation, task —presentation of stressful stim-
uli— and recovery).
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Study 2 (S.2): Méndez, Orgiles and Espada (2004) carry
out another experiment to test the effectiveness of the staged
emotional situations program for the treatment of nyctopho-
bia (fear of the dark). Forty-five children were assigned at
random to two experimental conditions: treatment group
(staged emotional situations) or control group (waiting list).
This was the between-subjects independent variable. The
two groups were observed at four time points —pretest, post-
est, 3-month follow-up and 6-month follow-up (assigned
within-subject independent variable).

The nature of the ¢ levels of the within-subject variable
(S.1=3 levels; S.2=4 levels) will determine not only the na-
ture of the dependent variable, but also certain character-
istics that may accompany it. The dependent variable may
be the same in each measurement made for each one of the
treatments administered randomly for each subject, there-
by avoiding order effects; moreover, if a prudent distance
is kept between applications, residual effects will also be
avoided. In this case, the variance-covariance matrix under-
lying the data may be spherical (this is the expectation in
S.1). Sphericity is present when the variances correspond-
ing to the differences between the different measurement
occasions are equal, or when there are equal variances and
equal covariances. The matrices represented by the first
condition are called Type H or Huynh-Feldt (1970). Those
represented by the second condition are called Type S or
Combined Symmetry, and are a particular case of Type H
matrices. In both matrices there is a correlation between
subjects’ responses, but this correlation is constant.

It may be essential for the dependent variable to be re-
corded on different measurement scales for each treatment.
Another possibility is for it to be the same in each appli-
cation, but with the measurement done in accordance with
age or time, rather than with the different treatments. In the
latter two situations the variance-covariance matrix most
probably deviates from sphericity, though for quite differ-
ent reasons. In the first case, the variances of the treatments
might simply be arbitrarily heterogeneous (leading at the
same time to a heterogeneity of covariances, also without a
defined structure), so that the correlation matrix is arbitrary.
In the second case, it is very probable that we will observe
certain trends related to maturation or learning processes
producing residual and/or autocorrelation effects and, even-
tually, giving rise to a certain heterogeneity in the variances
of the treatments (this is the expectation in S.2).

The importance of the above is crucial for deciding on
the statistical technique to use for testing the different null
hypotheses of the design (see Fernandez, Livacic-Rojas, &
Vallejo, 2007 for a full review of them, both univariate and
multivariate). It is well known that the power of multivariate
techniques is low when samples sizes are relatively small;
moreover, if the number of subjects in each group is smaller
than the number of repeated measures minus one (it should
hold that N-p > ¢-1), no multivariate statistic can be calcu-
lated because the covariance matrix will be singular. In this
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case the researcher will only be able to use univariate sta-
tistics. Univariate Analysis of Variance (AVAR) is undoubt-
edly the most powerful technique when the assumptions of
the model are satisfied (Keselman, Lix, & Keselman, 1996),
that is, multivariate normality, independence between the
vectors of observations of the different experimental units,
homogeneity of the dispersion matrices (X), and their
sphericity. The immediate consequence of violating the as-
sumption of sphericity is that the null hypotheses of the ef-
fects of the design are falsely rejected more often than they
should be, and more so the greater the deviation (Collier,
Baker, Mandeville, & Hayes, 1967). In order to solve this
problem, and depending on whether or not the remaining
assumptions of the AVAR are met, different authors have
developed different univariate alternatives, examples being
the Greenhouse and Geisser (1959) (€), Huynh and Feldt
(1976) (€) and Lecoutre (1991) ()) tests, (Quintana & Max-
well, 1994; Fernandez et al., 2007 have carried out thorough
reviews). All of these aim to correct the critical values of the
univariate F by multiplying the degrees of freedom (df) by
a value of ¢ that indicates the deviation from the covariance
matrix of the required sphericity pattern and which is calcu-
lated from X (covariance matrix averaged from the design
data). However, all assume arbitrary correlation between
scores, that is, that the correlation between observations at
different time points is not a function of the time distance
between them. But, as there may be serial dependence un-
derlying the data, some authors (Hearne, Clark, & Hatch,
1983; Jones, 1985, among others) have proposed univariate
models of variance that take it into account. Thus, for ex-
ample, Hearne et al. (1983) and Jones (1985) give priority
to first-order serial autocorrelation. The former calculates
the value of € over Zp (estimated covariance matrix assum-
ing that the data show first-order serial autocorrelation), and
the latter proposes modifying the calculation of the summed
squares of the AVAR incorporating the serial correlation in
them and subtracting one df in the within-subject error (see
also, Fernandez, 1995).

Another, more flexible approach to the analysis of re-
peated measurements, and particularly useful when sample
size is sufficiently large to support asymptotic inference, is
the mixed linear model (MLM). Under this approach, im-
plemented in commercial software packages, including the
widely used SAS® and SPSS programs, researchers, rather
than presuming a certain type of covariance structure, may
model the structure before testing for treatment effects. For
example, the best covariance structure can be selected based
on Akaike’s Information Criterion (AIC) and/or Schwarz’s
Bayesian Information Criterion (BIC) values for various
potential covariance structures. According to advocates of
the mixed-model approach, selecting the most parsimoni-
ous covariance structure possible is very important, as it
may result in more accurate and efficient inferences of the
fixed-effects parameters of the model, and consequently
more powerful tests of the treatment effects. However, it
has weak points as well, and two in particular: on the one
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hand, potential problems with identifying the structure of
the underlying X matrix, given that the AIC and BIC criteria
do not always select it correctly (Keselman, Algina, Kowal-
chuck, & Wolfinger, 1999a, 1999b; Livacic, 2005; Vallejo,
Fernandez, & Ato, 2003); and on the other, the estimators
of accuracy and inference are based on its/their asymptotic
distribution —with very large samples it fits well— so that se-
rious problems can occur when working with small samples
(Vallejo et al., 2002).

There is an abundance of research testing the behaviour
of univariate procedures that correct the absence of spheric-
ity without assuming the existence of serial autocorrelation,
in addition to those testing the MLM (excellent reviews can
be found in Keselman et al., 1996; Keselman et al., 2001;
Blanca Mena, 2004; Fernandez et al., 2007). However, there
are very few studies on univariate procedures that correct
the absence of sphericity assuming the existence of serial
correlation, so that we shall consider just two.

Recently, Fernandez, Vallejo, Livacic-Rojas, Herrero
and Cuesta (2008) examined the behaviour of six univari-
ate estimators with respect to Type I error, namely, AVAR,
the Greenhouse-Geisser Test (1959) (GG), the Huynh-Feldt
Test (1976) (HF), the Lecoutre Test (1991) (LEC), the
Hearne et al. test, (1983) (HCH), and the Jones Procedure
(1985) (JN), in a split-plot factorial design (p * g). Their
results showed that no statistic was robust in all the condi-
tions studied. The AVAR, HF and JN procedures displayed
the poorest behaviour, since they were the most dependent
of all the variables manipulated, and GG, LEC and HCH
more often maintained the Type I error within the limits of
robustness. The differences between them depended on the
structure of the underlying covariance matrix. When the un-
derlying matrix was stationary autoregressive and decreas-
ing structured non-stationary autoregressive, the HCH pro-
cedure was the most robust of them all, its estimation did
not depend on p at all (either its magnitude or its direction)
or on n, or on ¢; however, when the matrix was increasing
structured non-stationary autoregressive and arbitrary non-
stationary autoregressive the most robust procedures were
GG and LEC. When the matrix was non-structured (absence
of serial correlation and of sphericity), GG displayed the
best behaviour.

Subsequently, Fernandez, Vallejo and Livacic-Rojas
(2008) compared, by means of simulation, the GG, LEC and
HCH procedures, together with the MLM (with the matrix
correctly identified) under the same matricial conditions as
in the previous research. The results obtained with the GG,
LEC HCH procedures replicated those of the previous work.
The MLM showed less robustness than the previous proce-
dures when the underlying matrix was decreasing structured
non-stationary autoregressive and when the matrix was un-
structured.

In the two previous studies it was shown that the four
procedures (GG, LEC, HCH and MLM) made better esti-
mation under serial autocorrelation (better when it is posi-

tive than when it negative) than under arbitrary correlation.
However, only HCH and MLM depended significantly on
its magnitude, HCH making better estimation the greater the
autocorrelation, and MLM doing so the smaller the correla-
tion. GG, LEC and HCH showed better estimation the clos-
er the matrix to sphericity, but MLM was not affected by
the value of €. For the same sample size, the GG, LEC and
MLM procedures were more robust the greater the g. The
HCH procedure was the least dependent on ¢, except when
the underlying matrix was arbitrary autoregressive, in which
case, for the same sample size, its estimation improved the
greater the g. All the procedures improved their estimation
the greater the sample size, GG and MLM being the most
dependent on this variable.

This being the case, and assuming that the choice of con-
trast statistic for analyzing a repeated-measures design data
is a univariate one, the general purpose of the present study
is to evaluate the performance of the procedures which in
the two previous studies were the most robust (GG, LEC,
HCH) and also the procedure JN. Up to now, no research
has examined the sensitivity for detecting the treatment ef-
fect of the HCH and JN procedures. The research was car-
ried out in the same conditions as in our previous work, that
is, when there is absence of sphericity in both situations,
under serial correlation and under arbitrary correlation, and
for data collected in the format of a split-plot factorial de-
sign (p x g). As it is known that educational and behavioural
research data rarely follow a normal distribution (Micceri,
1989), the procedures will be examined both under normal
distribution and in the absence of normality.

METHOD

To evaluate the sensitivity of the GG, LEC, HCH and JN
approaches, we carried out simulation studies for a balanced
split-plot factorial design (3 x ¢) underlain by an additive
model. Bearing in mind that we have just briefly defined the
three procedures, we shall not describe their formulation for
two reasons: first, because the GG and LEC procedures are
described in numerous publications (see, e.g., Vallejo, 1991;
Fernandez et al., 2007) and the HCH and JN procedures are
clearly explained in Hearne et al. (1983) and Jones (1985),
respectively, and secondly, because their calculation is ex-
tremely simple.

In the first study, we compared the power of the ap-
proaches proposed with data generated from multivariate
normal distributions when the assumption of multisample
sphericity was unfulfilled. For this purpose, three variables
were manipulated: (a) sample sizes (nj); (b) measurement
occasions (g) and (c) structure of the population covariance
matrix (X). The behaviour of the test statistics was investi-
gated with three total sample size conditions: N=15 (n =5).,
N=30 (n 10) and N= 46 (n 16). These sample sizes ‘were
selected because the last two (N=30 and N=46) are typical
of what is encountered in practice, particularly in areas such
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as animal psychology and applied behaviour analysis, while
in applied clinical psychology the sample size is frequently
very small, which is why we chose N=15. There were four
levels of the within-subject factor: 4, 6, 8 and 12. It is com-
mon in simulation research to study within-subject factors
with 4 levels, and to a lesser extent with 8 levels. With the
aim of observing the trend of the power of the test statistics
depending on the number of levels, we decided to use the
numbers mentioned.

Simulated data were generated using four covariance
structures: stationary autoregressive (AR), decreasing and
increasing structured non-stationary autoregressive (ARSH-
D and ARSH-I, respectively), arbitrary non-stationary au-
toregressive (ARAH) and unstructured (UN). The AR ma-
trix displays stationarity in the variances (¢* = 10 in our
case) and the correlation between the kth and & th observa-
tion is p ! (p= [-0.8:0.8: (0.2)] in our case). The ARSH

matrices express covariance matrices with the same posi-
tive and negative serial correlation design as the AR matri-
ces, but exhibit structured within-subject heterogeneity, so
that the variances vary through ¢ in increasing (ARSH-I) or
decreasing (ARSH-D) arithmetic progression. All of these
matrices have a deviation from sphericity that can be cal-
culated by means of € or by means of €, and whose size
depends on each of the elements used in their construction
(Edwards, 1991). Of paramount interest for us was to ob-
serve the behaviour with respect to the power of the test of
the procedures referred to above when for the same degree
and intensity of autocorrelation there is a different deviation
from sphericity. This aspect has not been studied up to now.
In this way we could observe whether the power of a statis-
tic was more strongly affected by one aspect or by another.
For this purpose we used matrices that we called ARAH,
which express covariance matrices with the same positive

Table 1
Theoretical power for the within-subjects main effect (0=.05). AR and ARSH-I (¢=4 and 6); ARAH (e=.50 y e=.75) and
NE (e=.56 y €=.75), both (¢=4). Mean value of ¢ depending on X for GG, LEC and HCH tests

P AR ARSH-I ARHA &=.50 ARHA &=.75
P n, GG LEC GG LEC GG LEC GG LEC
.20 5 78(-) 79(-) T77(-) .79(-) 73 74 .76 77
10 .82(-) .85(-) -(-) -(-) .89 .89 - -
40 5 78(-) 79(-) T7(-) .79(-) 74 75 77 .79
10 -() -() -() -() -89 -89 - -
.60 5 77(-) .79(-) T77(-) .79(-) .76 77 .80 .80
.80 5 T77(-) 78(-) .76(-) 77(-) .78 .78 - (-)
Pw.R 77 77 75 77
-.20 5 .76(-) 78(-) .76(-) 78(-) 72 73 75 77
-40 5 74(-) T7(-) 73(-) 76(-) .70 72 74 .76
10 .89(-) .89(-) 79(-) 79(-) .89 .89 .88 .89
5 .67(.79) .69(.79) .66(.79) .69(.79) .68 .70 73 75
-.60 10 78(.) 78(-) 78(-) 78(-) .87 .88 .88 .88
16 -(-) -(-) .79(-) .79(-) .65 .69 .74 .73
5 .55(.69) .56(.71) .54(.69) .56(.71) .87 .88 .88 .89
-.80 10 71(.78) 71(.79) .70(.78) T1(.79) 95 97 -) (-)
16 .76(-) 75(-) 75(-) .76(-)
Pw.R 77 7 .74 7
n, NE &=.56 n, NE &=.75
j GG LEC ) GG LEC
5 .64 .66 5 73 74
10 .87 .87 10 .84 .86
16 .96 .93 16 - -
Pw.R .64 .73
Mean value of € depending on £
AR ARSH-I ARSH-D
p GG LEC HCH GG LEC HCH GG LEC HCH
.20 78 .99 .95 73 91 95 78 .99 95
40 75 94 .90 1 .88 .90 15 .94 .90
.60 1 .87 .82 .67 81 .82 1 .87 .82
.80 .65 .79 73 .61 72 .74 .65 78 .73
-.20 718 .99 94 72 .89 94 718 98 94
-40 12 .90 .84 .67 .81 .84 12 .89 .84
-.60 .62 74 .68 .58 .68 .70 .62 74 .68
-.80 48 .54 .50 .46 51 .52 48 .53 .50

Note. 2= Population covariance structure; AR= Stationary autoregressive; ARSH-I Increasing structured non-stationary autoregressive; ARSH-D Decreas-
ing structured non-stationary autoregressive; ARAH= Arbitrary non-stationary autoregressive; GG= Greenhouse-Geisser Test (1959); LEC= Lecoutre Test
(1991); HCH= Hearne et al. Test (1983; n= subjects in each one of the groups of the between-subjects variable; p= autocorrelation; e= deviation from
sphericity. Under the structures of Matrix AR and Matrix ARSH-I, figures outside the brackets indicate theoretical power for g=4, and those inside the
brackets indicate it for g=6, ¢ being the number of levels of the within-subjects variable. The dash (-) indicates theoretical power over .90. The rows for
n=10 and 16 do not appear because in all the columns of the table the theoretical power was greater than .90; Pw.R=Power Reference of the test.
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and negative serial correlation design as the AR matrices,
but displaying arbitrary within-subject heterogeneity, so
that the variances vary through ¢ without any defined struc-
ture, and which were constructed with two deviations from
sphericity (¢=.50 and €=.75). The UN matrices are also arbi-
trary non-stationary symmetrical, so that both the variances
and covariances vary without any defined structure. They
lack serial correlation but display absence of sphericity. We
constructed matrices with moderate (¢=0.75) and severe
(e=0.56) deviation from sphericity by means of the algo-
rithm developed by Cornell, Young and Bratcher (1991).

While the procedures examined are based on the nor-
mality assumption, when we work with real data it is com-
mon to find that the skewness (y,) and kurtosis (y,) indices
divert from zero (Micceri, 1989), which could lead us to an
incorrect interpretation of the results obtained. Therefore, in
order to explore the possible effects of distribution shape on
the power of the tests, we carried out a second study in which
the assumption of normality underlying the data was vio-
lated. Specifically, we chose to investigate the distributions
Laplace or double exponential distribution (y,=0 and y,=3);
exponential distribution (y,=2 and y,=6); and lognormal dis-
tribution (y,=6.18 and y,=110.94). In this second study we
manipulated the same variables as in the first study.

In each of the two studies we made comparisons with
regard to the accuracy of the estimations and with regard to
the empirical power of the three procedures for detecting the
within-subject main effect. In order to estimate the degree of
bias of the parameters p, ¢, y, and v, , we compared the mean
value of the parameters used, assuming that the estimator is
unbiased, so that the mean value will closely approximate
the true value of the population parameter. The empirical
power rate was calculated by dividing the number of times
the null hypothesis is correctly rejected at the specified a
level by the number of executions. For the calculation of the
theoretical power in those situations where there is absence
of sphericity we followed the recommendations of Muller
and Barton (1989). Table 1 shows the values of theoretical
power of the test.

Generation of data. In order to explore the possible ef-
fects of distribution shape on the robustness of the tests, we
generated data, both normal and non-normal in form, sam-
pling from the g-and-h distributions introduced by Tukey
(1977). Specifically, apart from the standard normal distri-
bution (g = 4 = 0; y, = v,= 0), we chose to investigate dis-
tributions where (a) g = 0 and h = .109, a distribution with
skew and kurtosis equal to that for a Laplace or double ex-
ponential distribution d,= (y,= 0 and y,= 3); (b) g= .76 and
h =-.098, a distribution with skew and kurtosis equal to that
for an exponential distribution d,= (y,= 2 and y, = 6); and (c)
g=1and h =0, a distribution with skew and kurtosis equal
to that for a lognormal distribution d,= (y, = 6.18 and v, =
110.94); The g-and-h distributions were obtained by trans-
forming the standard normal variable Z, generated using
the algorithm proposed by Kinderman and Ramage (1976)

by means of the GAUSS program (V. 3.2.32), to Z*l./.k= g
[exp(g Z, )-1lexp(h Zzi/‘k /2) where g and h are real num-
bers controlling the skewness and kurtosis, respectively. It
should be noted that when g = 0, the g-and-h distribution
reduces to Z*ijk: Z, exp(h Zzijk/Z) which is also known as the
h-distribution. Similarly, when h = 0, the g-and-h distribu-
tion reduces to Z°, = [exp(g Zijk)-l] /g, which is also known
as the g-distribution. Finally, The pseudorandom observa-
tion vectors y’ijl,...,y’i.q with variance-covariance matrix X
were obtained througfl triangular decomposition of X, Y.,
= IX(Z",~u,,) where T is the lower triangular matrix that
satisfies the equation Z=TT’, and the population mean of
the g-and-h distribution is ﬂgh:{exp[gz/(z-Zh)-l]}/ [g(1-
h)'?] (see Headrick, Kowalchuk, & Sheng, 2008; Wilcox,
1994, for details). Subsequently, using a program written
in GAUSS (1992), we carried out as many simulations as
experimental conditions described. Each one of these in-
cluded sampling 5000 independent observations for each of
the three procedures.

RESULTS

The tables that follow show the results for a selected
subset of studied conditions that adequately show the dif-
ferences between the different procedures. Table 1, as men-
tioned earlier, shows the values of theoretical test power for
the GG and LEC procedures according to the variables in
this study. To highlight the results in the tables (empirical
power’s smaller than theoretical power’s), we took as a ref-
erence (Reference Test Power, Pw.R) the mean value of the
theoretical test power of the GG procedure GG for n=5 and
g=4 for all the correlation magnitudes (see Table 1).

Accuracy of the estimations: In each of the situations
studied, the values of ¢, p (positive, negative or zero), v,
and y, were systematically adjusted to the parameters of the
known populations from those that were simulated.

Estimated Power Rates for the within-subjects main ef-
fect:

Normally Distributed Data. Table 2 contains the empiri-
cal power for the main effect when data were obtained from
a multivariate normal distribution.

1. Stationary autoregressive (AR) and structured non-
stationary autoregressive (ARSH-D and ARSH-I) matrices:
while it is true that there are differences between the three
procedures, these differences are maintained in these three
matrix structures. In Table 2 it can be seen that when the
serial correlation is positive, the GG, LEC and HCH proce-
dures have an empirical power greater than the theoretical
power for all n,q and magnitude of p when the underlying
matrix structure is ARSH-I (results such as those indicated
previously are not presented for this reason) and, except
when n=5 and g=4, also when the underlying deviation ma-
trix is AR and ARSH-D. JN is the procedure with the lowest
empirical power.
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Table 2

Empirical power for the within-subjects main effect (0=.05). Normal distribution.

Stationary autoregressive matrix. Matrices AR

Positive first-order correlation

Negative first-order correlation

GG LEC HCH IN GG LEC HCH IN
noop = =6 g=4 ¢=6 g¢=4 g¢=6 ¢=4 g¢=6 | ¢=4 ¢=6 g¢=4 ¢=6 g=4 g¢=6  ¢= q=6
20 529 954 574 971 567 972 512 949 | 469 960 535 981 523 980  .633 .993
5 40 518 910 .566 935 559 937 491 .878 347 909 401 942 391 938 671 998
.60 510 862 555 891 553 892 435 728 | 211 698 244 777 229 757 706 1
.80 505 781 540 813 531 818 410 644 | 097 242 .111 287 103 263 756 1
20 .889 1 .899 1 .898 1 871 999 | .876 1 .888 1 .886 1 938 1
10 40 859 995 .893 995 886 996 839 998 | .788 990 807 997  .802 1 954 1
.60 837 992 869 974 869  .994 783 985 | 534 996 559 997 549 996 972 1
.80  .834 980  .844 982 844 993 740 945 | 205 727 213 747 209 736 979 1
20 .990 1 991 1 991 1 986 1 987 1 .989 1 988 1 .995 1
16 40 980 1 981 1 981 1 967 1 969 1 972 1 971 1 996 1
60 976 999 978 1 978 998 950 998 | .849 1 .858 1 .855 1 999 1
.80 965 .999 966 999 966 990  .928 997 | 340 989 347 1 342 990 999 1
Decreasing structured non-stationary autoregressive matrix. Matrices ARSH-D
20 511 962 560 977 556 977 510 962 | 423 964 488 983 472 983 594 999
5 40 499 925 548 949 542 950 460 895 | 325 930 .383 958  .368 958  .650 999
.60 495 875 535 899 534 900 418 798 | 186 735 233 803 220  .791 .693 1
.80 483 792 518 825 510 825 386 .667 | .104 254 115 296 109 276 .727 1
20 .878 999 893 999 892 999 859 999 | .842 1 .858 1 .856 1 918 999
10 40 876 .995 .885 999 885 999 824 998 | .757 1 776 1 773 1 944 1
.60 .844 985 .855 995 854 995 767 987 | 519 906 542 920  .532 916 961 1
.80 811 978 822 986  .823 987 707 956 | 170 761 177 781 172 779 974 1
20 948 1 986 1 .986 1 977 1 983 1 .984 1 985 1 992 999
16 40 979 1 .980 1 979 1 963 1 958 1 963 1 961 1 996 1
.60 971 999 973 999 973 999 943 999 | .823 1 .834 1 .831 1 997 1
80 959 999 962 999 962 999 913 996 | 327 994 332 996 330 996 999 1
Increasing structured non-stationary autoregressive matrix. Matrices ARSH-I
20 992 1 993 1 .995 1 993 1 990 1 .996 1 994 1 998 1
5 40 998 1 993 1 995 1 985 1 972 1 984 1 979 1 999 1
60 1 1 1 1 1 1 1 1 504 1 510 1 508 1 940 1
80 1 1 1 1 1 1 1 1 423 1 462 1 454 1 1 1
Arbitrary non-stationary autoregressive matrix. Matrices ARAH
GG LEC HCH IN GG LEC HCH IN
q € .50 .75 .50 75 .50 75 .50 75 .50 .75 .50 75 .50 15 .50 75
20 390 494 416 534 530 573 500 539 | 355 417 378 465 490 515 583 631
5 40 422 561 444 605 555  .631 490 553 | 336 406 361 458 450 487 670 752
60 523 690 543 719 635 731 546 .643 | 296 363 324 397 377 409 840  .876
.80  .672 .896 .688 910 749 913 .695 .836 289 292 313 317 309 397 976 980
20 762 852 770 860  .859  .885 .832 852 | 734 846 742 859 852 .893 912 942
4 10 40 .808 902 814 910 .887 992 836 876 | .727 876 .738 890 834 912 963 989
.60 874 959 .879 961 922 964 874 934 | .740 807 751 .823 .802 .855 998 .996
.80 945 997 947 997 963 998 947 996 | .699 .690 .708 .711 704 712 1 1
20 954 975 955 976 986  .983 979 960 | .955 986 958 988 985 992 993 998
16 40 969 989 970 989 989 990 979 985 957 994 959 995 986 997 999 1
.60 985 .995 986 .995 .993 997 987 .995 980 979 971 981 978 .994 1 1
.80 .996 1 996 1 .998 1 .996 1 966 963 968 968 966 969 1 1
Non-stationary matrix with arbitrary correlation. Matrices UN (p=0)
€ .56 75 .56 75 .56 75 .56 75
5 236 383 252 414 334 482 324 468
4 10 442 713 452 724 562 793 544 772
16 .661 911 .665 914 772 947 750 939
6 5 837 953 .869 968 934 982 932 981
10 996 992 997 1 .996 1 999 1

Note. IN= Jones test (1985); p= Correlation in absolute value. For each row, figures in bold indicate empirical power lower than the empirical power of
reference. For the rest, see Table 1.

It can also be seen that when the serial correlation is neg-
ative, the empirical power of the GG, LEC and HCH proce-
dures is much lower, to a greater degree the greater the serial
correlation. In this situation the three previous procedures
attain an empirical power greater than the theoretical one
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when ¢=8 (if p<.60) for n=5. The JN procedure is in this
situation the most powerful, the more so the greater the p.
2. Arbitrary non-stationary autoregressive (ARAH) and
unstructured (UN) matrices: In Table 2 it can be seen that
when the underlying matrix in the data is ARAH and the
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serial correlation is positive, all the procedures have an em-
pirical power greater than the theoretical one when the with-
in-subject variable has 4 levels only where n>10. When the
serial correlation is negative, the empirical power is greatly
inferior for GG, LEC and HCH, but not for the JN proce-
dure, which increases its power as p increases.

When the underlying matrix is NE, the empirical power
of the four procedures is greater than the theoretical power

of reference for g=4, only where £=.56 and n=16 and where
€=.75 and n >10. The greatest test power is observed in the
JN procedure.

Under both matrix structures, ARAH and NE, the em-
pirical power is greater the greater the €.

Non-normally Distributed Data. Tables 3, 4 and 5 show
the empirical power for the main effect with the data ob-
tained from a non-normal distribution.

-60 234 596 903 995 241 .611 .909

995 253 640 934 998  .651 981 999

Table 3
Empirical power for the within-subjects main effect. Covariance structure: AR (0=.05). No normal distribution.
GG LEC HCH IN

n, d p =4 q=6 =8 gq=12 g=4 q=6 =8 q=12 g=4 q=6 =8 q=12 g=4 q=6 =8 q=12

dl 20 385 815 988 1 436 864 993 1 439 872 995 1 398 819 987 1
.80 .376 .607 .816 979 407  .651 .849 .986 405  .651 .853 987 299 479 .672 931

5 B 20 .361 775 971 1 404 825 987 1 421 .843 991 1 380 791 977 1
.80 313 580 779 .968 349 .623 817 976 353 .630 .825 .980 241 445 .629 901
B 20 .150 348 598 903 176 .409 .664 924 211 482 676 972 188 419  .681 952
.80 .095 219 361 .642 112 258 414 .689 129 287 453 .730 088 174 264  .484

dl 20 750 .993 1 1 765 994 1 1 769 995 1 1 723 991 1 1
.80 .681 918 .988 1 .692 925 .989 1 .693 927 991 1 579 .822 951 999

10 & 20 716 .990 1 1 732 992 1 1 741 994 1 1 .693 986 1 1
.80 .661 .907 .980 999 .673 915 982 .999 679 918 985 999 533 .804 936 997
B 20 318 660 .896 991 334 .683 905 992 369 738 945 998 332 677 911 996
.80 .240 485 .693 .907 253 502 710 913 277 537 .739 .929 .189 .346 516 .786
16 &3 20 485 .856 976 998 497 .863 971 998 528 .893 989 999 .480 851 981 999
.80 417 700 .870 974 424 709 875 975 447 732 .888 980 320 542 743 930

-20 319 .819 993 1 369 874 997 1 368 .882 998 1 476 948 1 1

dl -40 235 J11 985 1 282 787 .993 1 276 192 994 1 512 975 1 1

-60  .151 472 .895 999 180 552 935 999 173 547 936 1 555 989 1 1

-80  .082 159 397 956 090 192 468 973 085 177 444 974 589 996 1 1

-20 .303 763 982 1 350 827 991 1 365 .845 995 1 459 930 999 1

5 D -40 241 .660 .964 1 281 733 981 1 283 151 985 1 496 .960 999 1

-60  .168 434 .826 999 195 502 .878 1 193 505 .886 1 544 979 1 1

-80  .126 189 383 988 139 217 442 .939 137 212 430 .940 .601 992 1 1
-20  .130 309 573 999 159 373 .646 930  .191 454 748 979 242 582 858 992
B -40 114 241 481 877 137 .303 566 911 160 364 .653 964 271 .660 906 995
-60  .105 162 315 756 119 201 387 .808 132 227 437 876 310 .708 .840 998
-80  .113 .109 144 372 120 125 176 443 130 134 190 477 355 75 959 991

-20 .693 997 1 1 J11 997 1 1 716 998 1 1 .808 999 1 1

dl -40 571 991 1 1 595 994 1 1 595 993 1 1 .842 999 1 1

-60  .355 942 999 1 376 952 999 1 368 952 999 1 .880 1 1 1

-80 132 449 .930 1 138 472 941 1 134 464 941 1 .899 1 1 1

<20 .643 991 1 1 .664 993 1 1 672 995 1 1 768 999 1 1

0 & -40 532 979 1 1 555 983 1 1 559 986 1 1 .819 999 1 1

-60  .347 .889 999 1 364 905 999 1 363 907 999 1 .847 999 1 1

-80  .165 424 .866 1 170 445 .880 1 170 438 .883 1 .882 1 1 1
-20 277 .639 .890 991 292 666 .903 992 325 728 946 998 402 .828 978 999
B -40  .230 548 .847 988 245 578 .865 .989 269 .634 913 997 449 .888 989 999
-60  .165 367  .693 971 174 391 718 974 187 430  .766 988 492 920 993 999

-80  .128 173 315 187 134 183 337 .808 138 192 359 .834 541 .945 997 1

-20 910 1 1 1 916 1 1 1 917 1 1 1 955 1 1 1

dl -40 847 1 1 1 857 1 1 1 958 1 1 1 971 1 1 1

-60  .643 .999 1 1 .653 999 1 1 .653 999 1 1 981 1 1 1

-80 218 .837 .999 1 223 .845 999 1 221 .843 999 1 .988 1 1 1

-20 875 .999 1 1 882 999 1 1 .885 999 1 1 938 1 1 1

16 & -40 796 .999 1 1 .807 999 1 1 811 1 1 1 .956 1 1 1

-60  .580 .995 1 1 591 995 1 1 591 996 1 1 971 1 1 1

-80  .246 733 995 1 .249 .745 .996 1 .249 743 .996 1 981 1 1 1

-20 421 .843 979 998 433 852 .980 999 466 .889 992 999 560 944 997 1

B -40  .339 171 .964 998 351 784 967 .998 374 823 983 999 .603 969 998 }

1

-80 142 .248 .539 952 144 256 554

955 150 264 572 966 701 986 999

Note. d: d1= (y=0, y,=3); d2= (y,=2, 7,6); d3= (y,=6.18, v,=110.94). For the rest, see Tables 1 and 2.
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Table 4
Empirical power for the within-subjects main effect. Covariance structure: ARSH-I. (¢=.05). No normal distribution.

-60 519 843 951 991 533 853 .956

991 576 901 980 998 950 998  .999

GG LEC HCH IN
n, p q=4 q=6 q=8 g=12 g=4 q=6 q=8 qg¢=12 g=4 q=6 =8 q¢=12 g=4 q=6 q=8 q=12
dl 20 934 997 999 1 947 948 .999 1 955 999 1 1 944 998 999 1
.80 .854 .845 980 997 .867 953 .984 .998 .882 962 988 .999 .820 911 957 991
5 b 20 958 .999 1 1 970 1 1 1 977 1 1 1 962 1 1 1
.80 .899 .980 .993 999 913 984 996 .999 935 991 998 999 .862 956 978 .998
B 20 527 795 915 979 572 828 933 983 648 909 980 998 590 .86l 962 997
.80 357 531 .661 .833 394 575 710 867 458  .657 782 918 321 428 511 .661
dl 20 999 1 1 1 999 1 1 1 999 1 1 1 999 1 1 1
.80 991 .999 1 1 991 .999 1 1 993 .999 1 1 986 .998 1 1
0 @& 20 999 1 1 1 999 1 1 1 999 1 1 1 .999 1 1 1
.80 999 1 1 1 999 1 1 1 1 998 998 1 .998 1 1 1
B 20 .880 976 993 998 889 978 994 998 918 992 999 1 .889 986  .998 999
.80 .821 931 976 994 831 937 978 994 874 966 989 .998 747 854 921 976
200 912 .998 999 1 930  .998 1 1 943 999 1 1 970 1 1 1
dl -40 852 .995 999 1 878 997 999 1 894 998 1 1 981 1 1 1
-60  .656 962 998 1 .691 972 998 1 712 982 999 1 982 1 1 1
-80 .288  .600 .865 .995 312 .640 .893 997 321 666 910 .998 .989 1 1 1
-20 917 999 1 1 938 999 1 1 951 999 1 1 982 1 1 1
5 b -40 820 .996 1 1 849 998 1 1 876 999 1 1 986 1 1 1
-60  .607 942 997 1 643 957 .998 1 666 972 999 1 .990 1 1 1
-80  .296  .549 .808 990 314 587 .841 .993 330 .612 .866 .997 .992 1 1 1
20 460 752 .896 971 501 7196 918 976 570 887 976  .998 680  .646 991 999
B -40 399 .652 .838 957 407  .704 .872 965 469 798 945 994 726 965 995 999
-60 .269 467  .663 897 295 517 712 918 332 593 .805 972 769 973 996 999
-80 177 220 307 551 188 246 346 .606 203 277 .396  .680 786 979 996 999
-200 999 1 1 1 999 1 1 1 999 1 1 1 999 1 1 1
dl -40 998 1 1 1 999 1 1 1 999 1 1 1 999 1 1 1
-60 982 1 1 1 984 1 1 1 .988 1 1 1 .999 1 1 1
-80 715 .990 .999 1 726 991 .999 1 747 993 1 1 .999 1 1 1
=20 999 1 1 1 999 1 1 1 1 1 1 1 1 1 1 1
10 @& -40 998 1 1 1 998 1 1 1 998 1 1 1 1 1 1 1
-60 968 1 1 1 971 1 1 1 976 1 1 1 1 1 1
-80  .640 971 .999 1 .651 974 999 1 671 979 999 1 1 1 1 1
-20 813 969 991 997 826 971 991 997 871 991 998 .999 928 .995 999 1
B -40 715 943 984 997 728 950 985 997 175 976 .996 999 937 996 999 }
1

-80 .268 443 .685 931 273 459 701

938 295 505 756 965 949 998 999

20 948 944 998 999 951 995 .998
40 902 990 997 999 906 991  .997
16 d3 o 757 968 992 999 763 969 992
80 411 726 914 999 416 .734 917

999 967 999 999 999 985 1 999 999
999 929 996 999 999 989 999 999 999
999 796 982 997 999 989  .999 1 1
999 442 770 940 999 988  .999 1 1

Note. See Tables 1, 2 and 3

1. Stationary autoregressive (AR) and decreasing struc-
tured non-stationary autoregressive (ARSH-D) matrices:
Behaviour of the four procedures is highly similar when the
data are underlain by two matrix structures, the only dif-
ference being that the empirical power is slightly less in
ARSH-D.

In Table 3 it can be seen that when the serial correla-
tion is positive, none of the four procedures has an empirical
power greater than the theoretical power of reference when
g=4, n<10 in any of the non-normal distributions studied.
For the test power to be greater than that of reference it is
necessary, in addition to the data distribution not diverging
too much from normality, that when n=5 the number of lev-
els of the within-subject variable to be 8 or more, and if
n =10, g must be 6 or more.
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When the serial correlation is negative the power is low-
er for all procedures, except JN, which when n],=10 attains
a test power greater than that of reference in all ¢ under the
distributions d, and d,.

2. Increasing structured non-stationary autoregressive
(ARSH-I) matrix: In Table 4 it can be seen that when the
serial correlation is positive the four procedures exhibit very
high empirical power for all p, g and n, when the distribution
underlying the data is d, and d,. When the serial correlation
is negative, the JN procedure shows excellent behaviour,
and the GG, LEC and HCH procedures, except when the
correlation magnitude is high and n=>5, also show power
greater than that of reference.

3. Arbitrary non-stationary autoregressive (ARAH) ma-
trix: Table 5 shows that when the serial correlation is posi-



FERNANDEZ, VALLEJO, LIVACIC-ROJAS, HERRERO and CUESTA, The power of four statistics in repeated measures design, Review of Psychology, 2009, Vol. 16, No. 2, 65-76

Table 5
Empirical power for the within-subjects main effect. Covariance structure: ARAH and NE (¢=.05). No normal distribution.

Arbitrary non-stationary autoregressive matrix. Matrices ARAH

GG LEC HCH IN
q 4 8 4 8 4 8 4 8
€ .50 75 .50 .75 .50 75 .50 75 .50 .75 .50 75 .50 75 S50 75
n. d p
.20 316 364 336 398 428 437 406 398
dl .40 338 423 961 999 356  .463 972 994 448 489 987 996 390 413 951 989
.60 404 542 978 425 577 984 503 589 990 425 499 958
.80 519 .760 538 785 .601 786 542 677
20 202 283 228 321 346 385 315 346
5 D .40 233 354 986 999 259 397 991 999 366 442 998 1 307 353 981 999
.60 313 493 995 337 530 .996 439 552 999 357 455 984
.80 446 727 472 752 562 .761 495 657
20 059  .074 071 093 21 136 Jd20 125
B 40 065 .092 538 615 .077 .116 614 680 .126 .150 .789 790 124 123 581 642
.60 074  .187  .603 .088 217 .668 134 250 803 Jd26 199 539
.80 114 410 A28 435 186 458 162 358
20 591 .692 598  .706 701 748 667  .705
dl 40 642 756 999 999  .650 .768  .999 1 748 794 999 1 679 725 1 1
.60 728 868 1 135 .874 1 800  .884 1 730 820 1
.80 .835 973 .838 976 877 976 .835 948
20 581 677 595 .695 736 739 .681 .687
0 @ 40 633 .756 1 1 645 769 1 1 768 7199 1 1 .681 714 1 1
.60 730 852 1 739 .862 1 827 874 1 734 743 1
.80 .859 947 .863 .950 .905 .954 866 921
.20 150 218 159 235 260 .306 225 263
B 40 165 268 938 932 174 281 945 940 275 345 987 972 225 266 930  .941
.60 216 421 996 225 437 970 324 480 991 257 386 933
.80 332 .661 341 672 435 .691 369 590
.20 298 408 306 418 455 490 389 436
6 B .40 340 481 993 989 348 494 993 989 489 553 993 1 397 450 994 1
.60 443 634 995 450 641 995 568  .674 999 451 568 994
.80 585 800 590 .804 .683 .819 608 742
dl -20 263 297 285 338 376 380 457 479
-80 204 209 224 228 218 223 .898 .903
5 D -20 162 216 181 253 298 322 397 428
-80 256 252 272 268 271 269 .887 .881
B -20 053  .060 .061 074 114 117 141 156
-80 183 .189 195 201 206 212 S72 577
dl -20 545 648 .556 .667 .681 719 765 .806
-80 474 479 485 490 489 493 997 .996
10 @& -20 496  .614 S13 638 .688  .705 806  .824
-80 458 454 465 466 468 465 996 997
B -20 117 .163 122 178 227 249 296 330
-80 253 252 258 256 268 268 796 797
6 B -20 232 323 238 334 395 424 516 541
-80 239 335 334 340 341 .349 924 924
Non-stationary matrix with arbitrary correlation. Matrices UN (p=0)
&=56(1,=5) &=75(n,=5) &=.56(1,~10) &=75(n,=10)
d ¢ GG LEC HCH IN GG LEC HCH IN GG LEC HCH IN GG LEC HCH IN
dl 4 174 188 259 251 274 298 363 351 329 335 442 420 540 552 628  .607
6 .664 714 804 806  .820  .856 .897 .905 961 965 .987 986 994 995 997 997
a2 4 137 148 230 216 .232 263 338 .326 295 303 413 391 S11 526 616  .594
6 .643 693 795 792 .821 .862 .906 .906 .953 960 981 978 994 995 998 998
4 071 .078 136  .128 .098  .113 171 161 Jd22 125 204 185 205 214 298 277
d3 6 266 314 436 447 359 414 530 545 540 564 .687 .683 696 716 797  .798
8 495 560 709 702 .617  .682 .804  .802 837 853 926 917 920 929 966  .963
Note. See Tables 1, 2 and 3
tive and g=4, all four procedures attain a test power greater negative, only the JN procedure attains high test powers. If
than that of reference when p=.80, n=10, and the distribu- n=16, the test power is always high, whether the serial cor-
tion underlying the data is d, and d,. When the correlation is relation is positive or negative.
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When ¢=8 all the procedures have high empirical power
except when the distribution underlying the data is d.. The
empirical power is slightly higher when €=.75.

4. Unstructured (UN) matrix: Table 5 shows that when
the distribution underlying the data is d, and d, all the proce-
dures have an empirical power greater than that of reference
when ¢>6 for all n. The test power is much lower in d,. The
empirical power is slightly higher when &=.75.

DISCUSSION AND RECOMMENDATIONS

The objective of the present research was to compare the
behaviour of the univariate procedures GG, LEC, HCH and
JN with regard to the power rates in the additive model of a
split-plot factorial design (p % ¢). Two aspects help to make
it original. On the one hand, the comparison of procedures
that differ in the way they deal with absence of sphericity,
either assuming arbitrary correlation or assuming serial au-
tocorrelation. On the other hand, the underlying conditions
in the data added to the absence of sphericity under which
the behaviour was compared, including, in addition to those
commonly studied, the arbitrary non-stationary autoregres-
sive condition that permits us to observe what affects the
empirical power most — the absence of sphericity or the di-
rection and amount of autocorrelation. The results highlight
the following:

Differences found according to the distribution underly-
ing the data:

1. When the data are underlain by a normal distribution
and serial correlation is positive, the LEC and HCH proce-
dures are those exhibiting the greatest empirical power, and
the JN procedure is that with the least empirical power when
the underlying deviation matrix is AR and ARSH. When
the underlying deviation matrix is ARAH and NE the most
powerful procedures are HCH and JN if the serial correla-
tion is negative, and the JN procedure is indisputably that
with the greatest power whatever the underlying deviation
matrix is.

2. When the data are underlain by a non-normal distribu-
tion, the HCH procedure is that with the greatest empirical
power when the serial correlation is positive, and the JN
procedure when the serial correlation is negative whatever
the underlying deviation matrix is. The GG procedure GG is
that which has demonstrated the lowest empirical power in
all the deviation matrix structures studied here.

Coincident behaviour patterns when the data are dis-
tributed normally and non-normally:

1. In all three procedures the empirical power increases
asq,n and ¢ increase, more with ¢ than with n; and with n,
more than with €.

2. An increase in the magnitude of the correlation always
affects the estimation of the test power in all procedures;
however, the following was observed:
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a) When the matrix underlying the data is AR, ARSH-I
and ARSH-D, when the serial correlation is positive, an in-
crease in magnitude leads to a reduction in power in all the
procedures; however, no significant change is found between
the estimation for high and low levels of serial correlation.
The most appreciable changes are found when ¢=6 and 8
for nj=5. On the other hand, when the serial correlation is
negative, an increase in magnitude leads to a significant re-
duction in power in the GG, LEC and HCH procedures, and
an increase in power (also significant) in JN. Both changes
are larger when ¢==8 in all sample sizes.

Previously, in point 1, it was stressed that the empirical
power, in relation to €=.50, is slightly higher when &=.75.
This point now needs some clarification. A look at Table A
—which shows the sphericity coefficients in these types of
matrix structure for all correlation magnitudes studied— re-
veals that when the matrices have positive serial correlation,
the values of € decrease very gradually as the magnitude of
p increases; however, when the serial correlation is nega-
tive, the values of € decrease markedly as the magnitude of
p increases. This is the reason for the behaviour of the test
power. Thus, it would appear that estimation of the empiri-
cal test power is determined more by the magnitude of the
deviation from sphericity than by the magnitude of the serial
correlation when the underlying deviation matrix is AR and
ARSH.

b) When the matrix underlying the data is ARAH, if the
serial correlation is positive, an increase in magnitude leads
to a significant increase in test power in all the procedures.
When the correlation is negative, the test power decreases
almost imperceptibly as the magnitude of p increases, except
in the case of the JN procedure, whose estimation improves
as p increases. Thus, it would appear that estimation of the
empirical test power is determined more by the magnitude
of the correlation than by the deviation from sphericity when
the underlying deviation matrix is positive ARAH.

3. According to the structure of deviation underlying the
data, the magnitude of the empirical power for all the proce-
dures is as follows:

(1-H)ARSH-1 > (1-))AR > (1-3)ARSH-D > ARAH > NE.
That is, if the matrix is severely increasing structured

non-stationary autoregressive, all three procedures have

very high empirical power, and much higher then the theo-

retical power for all n,dq, and magnitude and direction of the
autocorrelation.

4. The greater the deviation from normality, the lower
the empirical test power, as follows:

When the deviation matrix underlying the data is AR,
ARSH-D, ARAH and NE:

(1-B) Normal distribution > (1-8) d, > (1-B) d,> (1-B) .,

When the deviation matrix underlying the data is ARSH-
I:

(1-B) Normal distribution > (1-f) d, > (1-B) d, > (1-f) d.,.
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The results we have obtained with the GG and LEC
procedures replicate those found in the numerous previ-
ous studies in similar conditions, that is, AR, ARSH and
UN matrices (the reader may wish to consult the literature
covered in the reviews referred to here). Nevertheless, the
fact of having compared these tests with the HCH and JN
procedures, and of having the ARAH matrix structure added
to the study, broadened the scope of behaviour of these pro-
cedures that correct deviation from sphericity based on dif-
ferent criteria.

Despite the fact that the generality of our results is lim-
ited by the range of conditions and parameter sets employed
in the simulations —other conditions or other parameter sets
could give different results—, in our opinion, when all sub-
jects have complete response vectors a general recommen-
dation can be made. Applied researchers who in gathering
their data employ a repeated-measures design with a with-
in-subject and a between-subjects variable, and have ma-
nipulated the levels of the variables in order to select those
that are optimum for testing the within-subject treatment ef-
fects (they have to obtain at least 10 subjects for each of the
groups if they have a number of repeated-measures of 4 or
less; if the within-subject variable has more than 4 levels,
five subjects in each group would be sufficient), must first of
all study whether or not the assumptions have been met. If
after doing so they reach the conclusion that the assumption
of sphericity is not met, and if they decide to use a univariate
statistic, here are suggestions for testing the within-subject
treatment effects:

- If'there is positive serial correlation and the data are nor-
mally distributed, LEC or HCH Statistics would be the
best choice; if there is positive serial correlation and the
data are non-normally distributed, HCH Statistic would
be the best choice.

- If there is negative serial correlation and either normal
or non-normal distribution of data, JN Statistic would be
the best choice.

As a final note, we should point out the need to continue
research on the behaviour of these procedures with respect
to Type I error and to test power in the situations studied
here when the sizes of the subsamples of units of study pro-
duce an unbalanced design, and when the covariance matri-
ces of the groups are heterogeneous.
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