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Abstract Effective quantum-state and entanglement transfer
can be obtained by inducing a coherent dynamics in
quantum wires with homogeneous intrawire interactions.
This goal is accomplished by optimally tuning the coupling
between the wire endpoints and the two qubits there
attached. A general procedure to determine such value is
devised, and scaling laws between the optimal coupling
and the length of the wire are found. The procedure is
implemented in the case of a wire consisting of a spin-1/2
XY chain: results for the time dependence of the quantities
which characterize quantum-state and entanglement transfer
are found of extremely good quality also for very long
wires. The present approach does not require engineered
intrawire interactions nor a specific initial pulse shaping,
and can be applied to a vast class of quantum channels.
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1. Introduction

Quantum communication and computation protocols are

commonly based on the possibility of producing a pair of
distant qubits which are in an entangled state. In the case
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of solid state devices, which are suitable components of a
quantum computer, the requirement is to transfer
quantum information between localized qubits over
relatively short distances within the device [1].

In this paper we consider qubits encoded in S=1/2 spins, and
the distant qubits between which the state transmission
must be realized interact through a channel (or wire)
consisting of a spin-1/2 chain, although the quantum-
transport strategy we are going to depict can be generalized
to different systems, as, e.g., Josephson arrays [2], quantum
dot chains [3,4], or electrons diffusing in one dimension [5].

The general scheme we propose is illustrated in Fig.1: the
aim is to efficiently transfer from the qubit A (Alice) to
the distant qubit B (Bob) the property of being entangled
with an external “ancilla” qubit A’ . To this goal we exploit
the dynamics of the channel, for which we make only
very basic and realistic assumptions about the internal
couplings and the endpoint ones to A and B. Indeed,
although several realizations of a channel have been
proposed [6, 7], many are often subject to important
adjustments of the intrawire interactions that are difficult
(if not impossible) to realize experimentally [8, 9], while
others require Alice and Bob to hold control of several
neighboring qubits within the wire [10,11].
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Figure 1. The endpoints of a quantum channel I" are coupled to
the qubits A and B, via a switchable interaction j; A can be
entangled with an external qubit A".

We are going to show that coherent propagation can also
be obtained by means of experimentally realistic setups,
where (i ) the wire is completely uniform and the only
end-point couplings different, (ii ) the
transmission velocity coincides with the group velocity of
the relevant excitations (yielding minimal transmission
times), and (iii ) very long wires can be used as the
quality of the quantum-state and entanglement transfer is
not substantially affected by the wire length.

may be

2. Ballistic transmission through a uniform channel

As stated above, the channel (Fig.1) is realized by a
uniform (i.e.,
between neighbors) spin chain I of length N, to which an
external magnetic field h can be applied. In particular, in
this paper we choose the XY model, which also allows for
an anisotropy parameter y and can be analytically
approached through a transformation into an interacting
fermion system [12]. We do also consider the isotropic XY
model, defined by a vanishing anisotropy parameter v,
and usually referred to as the XX model.

with identical exchange coupling J=1

The only interactions that can be different are the
endpoint exchange coupling j to A and B, and the local
magnetic field hy on A and B; these parameters are
assumed to be identical for A and B, so that the overall
system is mirror-symmetric.

Using the labels i=1, , N for the chain and i=0 and

i=N+1 for the endpoint spins A and B, the total
Hamiltonian reads
N-1
H==-3[0+y)s:85, +(1-)s:82,]- hZSZ
- 1)
— Y ly)sis, + (1—V)S}Sﬁi.] o S5 +S3).
i=O.N

Furthermore, we also require the quantum-state transfer
between A and B to occur in the shortest possible time, at
with  those approaches perfect
transmission is obtained in the regime of very tiny
endpoint coupling, at the expense of waiting orders of
magnitude larger times than the typical one for ballistic

variance where
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Figure 2. Dispersion relation of the spin-1/2 XY chain for y = 0.5
and h = 0.54. The bell-shaped distribution nopt (w) (circles) is the
optimized density of excitations vs. w, corresponding to ho=0.85
and j=0.48

transmission [13, 14].The first observation is that a crucial
role is played by the dispersion relation wx of the
elementary excitations of the wire: if it were linear,
wik=const+vk, any perturbation would travel from A
through the wire without changing its shape and a
snapshot after the ballistic transmission time tx=N/v

should show the same perturbation sitting at B, as mirror
symmetry suggests. However, our purpose to work with
a uniform wire prevent us from dealing with a linear
dispersion relation: a representative case is reported in
Fig.2. Nevertheless, one can observe that almost coherent
wavepacket propagation can still occur provided that the
k-space components of the packet lie in a region where
the dispersion relation is almost linear, namely around an
where wi~v(k-ko), being
v=0w/dk |\, the group velocity at ko. This fact was

inflection point ko [15],

exploited to yield efficient transmission over a ring in
Ref.[10]: there, in order to properly shape the excitation
wavepacket, the authors proposed that both Alice and
Bob had to initialize and decode a sizeable number of
their neighbors. At variance with this, in Ref. [16] it has
been shown that, initially taking the channel in its ground
state 1Qr> (though, other choices are possible), the
dynamics following the initialization of the endpoint
qubit A effectively creates a propagating wavepacket
whose distribution in k-space, n(k), can be controlled by
modifying the endpoint interactions: if these are chosen
such that n(k) is peaked around the flex ko
coherent propagation is expected. It is obvious that also
the characteristic width A of n(k) plays a relevant role: to
get a real-space packet of small width o (which must
satisfy the relation 20A > 1) one needs a large A, but if it is
too large then n(k) includes modes from the nonlinear

then a

part of wk that would cause dispersive decoherence of the
packet. As shown in Ref. [16], a trade-off between these
regimes leads to an optimal value of A, which can be
tuned by means of the endpoint interactions j and ho . It
appears that varying ho mainly affects the peak position
of n(k), while A is predominantly affected by j. This can
be explained considering that a larger ho produces an
initial overall state with larger energy, so n(k) must
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include larger frequencies, while decreasing j will
increase the time scale of the initial dynamics resulting in
a broader real-space pulse, i.e., with smaller A. Reasoning
in terms of Gaussian-like wavepackets, the optimal value
of A results then [16]

-1/3
Ao ® (@j @)

where a is the coefficient of the cubic term in the
expansion of wk around the flex ko.

3. Optimal transfer in the XY chain

As a first application of the optimization procedure we
consider the isotropic (y =0) version of the XY model (the
so called XX model) with no external magnetic field, h=0.
In this case, wi=cos(k) and several analytical expressions
are available [13]. The inflection point ko=mt/2 corresponds
to wio =0 and we hence set ho=0. The width of n(k) only
depends on the coupling j and reads A= /2 - ).
Therefore, Eq.(2) ensures the existence of an optimal
coupling jopt which, at leading order, is

Jo € N7 ®)

In the XY case the analytical expressions are more
complicated and the optimal parameters are found
numerically.

Let us now give a panoramic view upon the resulting
dynamics of the overall system. Fig.3 shows the time
evolution of the magnetization parallel to the
quantization axis all along the wire, <Si* (t)>, i=0,1, . . .
,N,N +1, where N=50 and initially the qubits A, B are in
the states |T > and I{ >, respectively. The difference
between the upper panel, where all interactions are
homogeneous (j=1), and the lower panel, where j is given
by Eq.(3), is striking: in the latter the induced coherent
propagation makes <Sg” (t')> at the arrival time t'~N , an
almost perfect reproduction of the initial magnetization
<SA*(0)> of the qubit A, while in the upper panel the
dynamics is apparently more dispersive.

As pointed out in [16] this peculiar dynamics induces also
a high-quality quantum-state transmission. Here we
consider the transmission of entanglement, following the
scheme of Fig.l: the state of qubit A, which at t=0 is
maximally entangled with A’, propagates through the
wire when j is switched on; if the information were
transmitted exactly, at some arrival time t' the qubit B
should be maximally entangled with A’. Therefore, the
natural estimator of the quality of entanglement
transmission is the maximum (reached at t') of the
concurrence between A’ and B in its time evolution,
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C(t)=C(oBa(t")) [17]. The state gpa’ (t) essentially depends
on the dynamical non-equilibrium correlation functions
between the components of qubits B and A’, and can be
analytically approached through the mapping into an
interacting fermion system,
information theoretic techniques [16]. Fig.4 shows the
dynamics of the concurrence in the case of an XX chain,
where N=50, as a function of time t and coupling j. For
non-perturbative fixed coupling j, C(t) reaches its
maximum value at t'~N as it can be analytically proven.
Remarkably, C(t") takes its maximum when j=jopt~0.58, i.e.,
the optimal value predicted by Eq.(3), confirming that
such prescription is correct.

along with quantum
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Figure 3. Time evolution of the on-site z-magnetization for N=50
and an initial state 11 > |Qr>|| >; the qubit-wire coupling is j=1
(top) and j=jop=0.58 (bottom).

Let us now consider the entanglement transfer in the
more general XY model. The dispersion relation is
wi=[(cos(k) — h)*+y2sin?(k)]'?2, which is gapped and in
particular wi#0. Hence, at variance with the XX case, we
have to switch on a local magnetic field ho~w in order to
increase the average energy of the initial state and make
n(k) peaked around the linear zone.
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Figure 4. Time evolution of the concurrence at varying values of j
for y=0 (XX model) and h=0. The chain length is N=50.
'0.8

10.7
10.6

10.5

0

Figure 5. Concurrence vs j and ho for v = 0.5 and h = 0.54. The
chain length is N = 50.

In Fig.5 we plot C(t") for different j and ho, in the XY model
with y=0.5 and h=0.54. It is clear that for fixed j the best
transmission is achieved when ho~w 1¢~0.89. With decreasing
j, the distribution n(k) shrinks in width and the range of the
optimal hoextends over the whole linear dispersion zone. On
the other hand, decreasing j causes the packet to become
delocalized along the chain and the result is that there exists
an optimal intermediate value, j=0.49, in agreement with
Eq.(2), for obtaining an almost dispersionless transmission.
The region of linear dispersion shrinks for increasing
anisotropy vy, while in the Ising limit (y=1) with h=0 one has
wi=1, which does not allow for propagation. This explains
the observation [18] that in such limit no entanglement
propagation takes place: indeed, a vanishing group velocity
means that nothing can be transmitted over the chain.
However, applying a finite h on T fixes the problem by
inducing a finite group velocity. Therefore, one can act on
the field so as to fulfil the conditions for optimal dynamics.

In Fig.6 we analyze the entanglement transmission in an
Ising chain for various h, with the optimal value for the
parameters j and ho. Raising h the linear zone gets larger
in energy, and, furthermore, the group velocity increases,
making the transmission faster and better.
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Figure 6. Concurrence (top), dispersion relation and density of
excitations (bottom) for the case of the Ising chain (y=1) for
different fields h=0.1, 0.2, 0.4, 1.2. The corresponding optimized
endpoint interactions are ho=0.94, 0.93, 0.82, 0.82 and j=0.39, 0.43,
0.48, 0.48. The chain length is N = 50.
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Figure 7. (a) Scaling of transmitted concurrence in the XX chain
case vs the wire length N. (b) Time evolution of the concurrence
for different channel lengths; y=0.5, h=0.54, ho=0.85, and j=0.49,
0.39, 0.34 for N=50, 250, 500, respectively.

In the XX case, the analytical expression (3) for the
optimal coupling allows us to explore the transmission
for longer chains. Remarkably, in our scheme the
entanglement after transmission is very high also for N as
large as 1000, as shown in Fig.7(a). Despite the XY case
being complicated by the need of simultaneously tuning
two parameters, very good transmission is obtained also
for considerably large N, as shown in Fig.7(b).

4. Conclusions

We have devised a procedure for achieving high quality
entanglement transmission between distant qubits. The
procedure relies on tuning the qubit interaction and the
coupling with a homogeneous quantum wire in order to
induce a coherent ballistic dynamics. There is no need for
a specific design neither of the wire, nor of its initial state.
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Our approach is then tested with the spin-1/2 XY model
and extremely good entanglement transfer is obtained.
Due to the induced ballistic dynamics, the transfer time
scale is considerably shorter than in previous works [6,
13, 19-21] and essentially depends only on the group
velocity of the elementary excitations, which can be
increased by varying the parameters of the wire.
Moreover, the quality of the state and entanglement
transfer that we obtain only weakly deteriorates as the
length of the wire increases. Indeed, it is worth noticing
that o(t)~3/20, i.e., the final optimal packet is just about
22% wider than at start [16], irrespectively of the chain
length.
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