5. NEKI REZULTATI KEMIJSKIH ANALIZA UZORAKA
OBORINA I ZRAKA

5.1 UVOD

Neki od sastojaka zraka i atmosferskih oborina od znatnog su interesa za mnoga područja poljoprivrede, meteorologije, tehnologije i higijene. Uloga mikroelemenata u ishrani bilja i aktiviranje umjetnih gnojiva u tlu usko su vezani za onečišćenje, odnosno kemijski sastav oborina.

Meteorologija proučava uvjete u kojima dolazi do kondenzacije vođene pare u atmosferi. Istraživanjem se us-tanovilo da za stvaranje kiše nije, u pravilu, dovoljna zasićenost zraka vođenom parom, već je potrebna i prisutnost čestica koje imaju ulogu kondenzacionih jezgri. Radi se o malim česticama različitog kemijskog sastava, npr. čestice soli, sitni pustinjski pijesak, proizvodi sagorijevanja i dr. Procesi korozije su funkcija atmosfere vla-ge, koncentracije i vrste onečišćenja. Štetnost zagadjenosti zraka po zdravlje čovjeka ovisi o koncentraciji zagadjenosti i njezinoj prirodi, kao i o vremenu ekspozicije čovjeka.

Već ovaj kratki uvodni dio ukazuje na to kolika je važnost poznavanja i čuvanja okoline od zagadjenosti raznih oblika.

Savjet stručnjaka SMO za meteorološke aspekte zagadjenosti zraka razmatrao je ciljeve i zahtjeve za mrežu stanica za mjerenje prirodnog fona zagadjenosti, te podijelio stanice za mjerenje zagadjenosti zraka u dvije grupe: osnovne i regionalne stanice. Osnovne stanice mogu se shvatiti kao istraživački punktovi. Preporuča se da se na tim stanicama prvenstveno proveđe ona mjerenja, koja će davati podatke o dugotrajnim promjenama u sastavu atmosfere, posebno značajnima za vrijeme i klimu. Uvjeti za lokaciju ovih stanica vrlo su rigorozni, npr. treba ih postaviti izvan čak i rijetko naseljenih područja, dalje od glavnih putova i avionskih linija. Prvenstveni cilj regionalnih stanica je da dokumentiraju dugotrajne promjene izvora zagadjenosti u široj regiji, reda veličine nekoliko stotina do tisuću kilometara u promjeru. Osnovni
uvjet za lokaciju takve stanice je nenaseljenost okoline, ka
dob izbjegli lokalni izvori zagadjenosti. Stanice za
mijerenje zagadjenosti zraka na glavnoj meteorološkoj stanici
Lastovo (otok) i na glavnoj meteorološkoj stanici na Punti-
jarki (na planini Medvednici kraj Zagreba, na 1000 m NN),
možemo smatrati regionalnim stanicama za mjerenje zagadje-
nosti zraka. Zagadjenost zraka mjerimo i na Meteorološko-
aerološkom opservatoriju Zagreb-Maksimir na istočnom rubu
grada, te na Meteorološkom opservatoriju Zagreb-Grič u cen-
tru grada.

U mjesečnim uzorcima zraka određuju se kloridi,
sulfati, dušik u obliku amonijaka, natrij, kalij, kalcij i
magnezij, a u mjesečnim uzorcima oborine, osim navedenog,
određuje se još i dušik u obliku nitrata, pH i električna
provodljivost. Analiziraju se i pojedinačni uzorci oborine
sakupljeni na Meteorološko-aerološkom opservatoriju Zagreb-
Maksimir i Meteorološkom opservatoriju Zagreb-Grič.

Metode analize su standardne titrimetrijske, spek-
trofotometrijske i plameno-fotometrijske metode. Kloridi se
određuju titracijom sa Hg(NO₃)₂ uz indikator difenilkarba-
zon. Amonijak se određuje tako da se spektrofotometrijski
mjeri žuto obojenje, nastalo nakon dodatka Nesslerovog reagen-
sa i natrijeve lužine destilatu. U ostatak nakon desti-
lacije doda se Devardova legura, koja reducira nitrat u
amonijak, koji se onda odredi na prije opisani način. Sulf-
fati se određuju titracijom s barijevim perkloratom uz to-
rin kao indikator. Prije titracije iz uzorka treba odstran-
niti kalcij pomoću ionskih izmjjenjivača i uzorak se mora
ispariti do suhog. Kalcij, magnezij, natrij i kalij odre-
djuju se plameno-fotometrijski. Električna provodljivost
mjeri se pomoću konduktometra, a pH pomoću standardnog in-
strumenta, upotrebljavajući staklenu elektrodu.

5.2 REZULTATI ANALIZA NEKIH KATIONA I ANIONA U
UZORCIMA OBORINA I ZRAKA

5.2.1 Odnos izmedju električne provodljivosti i sume kationa i aniona

Električna provodljivost uzoraka oborina je in-
dikator o sadržaju iona, odnosno o koncentraciji otoplje-
nih anorganskih komponenata.

\[X = \frac{1}{R} \left(X_u \frac{\mu S}{cm} \right) \]

\[X = \text{električna provodljivost} \]
\[R = \text{otpor} \]
\[l = \text{udaljenost izmedju elektroda} \]
\[q = \text{površina elektroda} \]
\[\Sigma (\text{NH}_4^+ + \text{Na}^+ + \text{Ca}^{2+}) \]

* METEROLJOŠKO AEROLOŠKI OBSERVATORIJ ZAGREB - MAKSIMIR
* METEROLJOŠKA STANICA LASTOVO
* GLAVNA METEROLJOŠKA STANICA PUNTIJARKA

SL. 5/1. OVISNOST ELEKTRIČNE PROVODLJIVOSTI O SUMI KATIONA
SL.5/2. OVISNOST ELEKTRIČNE PROVODLJIVOSTI O SUMI ANIONA
Električna provodljivost ovisi o koncentraciji iona u otopini, o pokretljivosti iona, o električnom naboju svakog pojedinog iiona i o temperaturi i viskoznosti uzorka. Koncentracija iiona ovisi o otopljenoj količini supstanci, odnosno o disocijacijonom koeficijentu. Oborine s očekivanom koncentracijom iona imaju disocijacioni koeficijent vrlo blizu 1.0.

Na grafikonima 5/1 i 5/2 prikazana je električna provodljivost i suma kationa (NH₄⁺, Na⁺, Ca²⁺) i aniona (SO₄²⁻, Cl⁻, NO₃⁻), za tri stanice (Maksimir, Puntijarka, Lastovo). Grafikoni pokazuju da postoji dosta uska veza izmedju analiziranih koncentracija iona i izmjerene električne provodljivosti uzoraka oborina. Najmanji promjenti, a time i najmanju sumu koncentracija aniona i kationa, imaju uzorci oborina sa stanice na Puntijarki, a najveći provodljivost odnosno sumu aniona i kationa imaju uzorci oborina sa stanice Lastovo. U uzorcima oborina sa Lastova nadjene su velike količine aniona i kationa maritimnog porijekla, a to su kloridi, ioni Na, K i Mg.

<table>
<thead>
<tr>
<th></th>
<th>Σ NH₄⁺ + Na⁺ + Ca²⁺ mg/l</th>
<th>Σ NO₃⁻ + Cl⁻ + SO₄²⁻ mg/l</th>
<th>μS/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met.-aerol. ops. Zagreb-Maksimir</td>
<td>5.65</td>
<td>12.15</td>
<td>50.4</td>
</tr>
<tr>
<td>Glavna met. st.Puntijarka</td>
<td>1.50</td>
<td>8.10</td>
<td>23.8</td>
</tr>
<tr>
<td>Glavna met. st. Lastovo</td>
<td>7.02</td>
<td>23.95</td>
<td>90.3</td>
</tr>
</tbody>
</table>

5.2.2 Rezultati mjerenja pH u dnevnim i mjesečnim uzorcima oborina

SL. 5/3. pH VRIJEDNOSTI IZMJERENE U MJESEČNIM UZORCIMA OBORINA

Na grafikonu 5/4 prikazan je hod srednjih vrijednosti pH, izmjerenih u satnim uzorcima oborina s opservatorija Zagreb-Grič za dane 1., 2., i 3.II 1973. godine. pH izmjeren 1.II. u 07.00 sati bio je 5.7 i njegova vrijednost postepeno opada, tako da je 3.II u 13 sati bio svega 3.3. To je do sada najniži pH u uzorcima oborina s naših stanica. u uzorcima oborina od 1.II do 3.III 1973. nadjena je srednja koncentracija sulfata od 8.4 mg/l i srednja koncentracija nitrata od 5.0 mg/l. Dnevna koncentracija sumpornog dioksida u uzorcima zraka bila je 1.II 321 μg/m^-3, 2.II 356 μg/m^-3, a 3.III 388 μg/m^-3.

Dnevne koncentracije sumpornog dioksida u uzorcima zraka tih su dana bile više od dva puta veće od dozvoljenih, pa u tomu možemo tražiti uzrok visokim koncentracijama sulfata u uzorcima oborina, a time objašnjavamo i male pH vrijednosti izmjerene u uzorcima oborina.
5.2.3 Rezultati analiza nekih aniona i kationa u uzorcima oborina

U mjesečnim uzorcima oborina određuju se: amonijak, nitrati, kloridi, sulfati, ioni natrija, kalija, kalcija i magnezija, te električna provodljivost.

Sagorijevanjem fosilnih goriva nastaje i sumporni dioksid koji se u zraku oksidira u sulfat, pa ga u tom obliku nalazimo u uzorcima oborina.

Kloride i ione natrija, kalija, kalcija i magnezija normalno ne smatramo polutantima. Kloridi i ioni natrija i magnezija imaju maritimno porijeklo. Kalcij i kalij potječu od prašine iz pustinja ili semi-aridnih predjela i iz intenzivno obradjenih agrikulturnih predjela.

<table>
<thead>
<tr>
<th></th>
<th>NH$_4^+$ mg/l</th>
<th>NO$_3^-$ mg/l</th>
<th>Cl$^-$ mg/l</th>
<th>SO$_4^{2-}$ mg/l</th>
<th>Na$^+$ mg/l</th>
<th>K$^+$ mg/l</th>
<th>Ca$^{2+}$ mg/l</th>
<th>Mg$^{2+}$ mg/l</th>
<th>el. provod. µS/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Maks.</td>
<td>0.67</td>
<td>2.65</td>
<td>3.70</td>
<td>6.69</td>
<td>0.50</td>
<td>0.35</td>
<td>8.11</td>
<td>0.61</td>
<td>65.8</td>
</tr>
<tr>
<td>2 Punt.</td>
<td>0.38</td>
<td>1.48</td>
<td>3.62</td>
<td>3.64</td>
<td>0.53</td>
<td>0.29</td>
<td>1.72</td>
<td>0.29</td>
<td>28.1</td>
</tr>
<tr>
<td>2/1</td>
<td>0.57</td>
<td>0.56</td>
<td>0.98</td>
<td>0.54</td>
<td>1.06</td>
<td>0.83</td>
<td>0.21</td>
<td>0.47</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Uspoređivo li električne provodljivosti, koje su indikator za ukupnu koncentraciju iona u uzorcima oborina, vidimo da su uzorci oborina sa stanice na Puntijarki mnogo čišći. Koncentracije u mg/l amonijaka, nitrata, sulfata i kalcija su mnogo veće u uzorcima oborina s opservatorija Zagreb-Maksimir.

U zadnjem redu tabele 5/2, koncentracije iona i električna provodljivost, nadjene u uzorcima oborina s opservatorija Zagreb-Maksimir, svedene su na jedinične vrijednosti i prema njima su izračunate koncentracije tih istih iona za uzorku oborina sa stanice na Puntijarki. Razlika u koncentracijama iona sa te dvije stanice, prikazana na ovaj način još je uočljivija. Na stanici Puntijarka, u istom vremenskom razdoblju, padne veća količina oborina nego na Meteorološko-aerološkom opservatoriju Zagreb-Maksimir. Uzmemo li u obzir da je u ispitivanom periodu srednja mjesečna količina oborina na Puntijarki bila 99.3 mm, a na opservatoriju Zagreb-Maksimir 65.7 mm, vidjet ćemo da postoji još veća razlika izmedju koncentracija iona u uzorcima.
oborina sa te dvije stanice. U uzorcima oborina sa stanice Puntijarka koncentracija amonijaka i nitrata je za oko 37% manja, a koncentracija sulfata za oko 36% manja nego u uzorcima oborina s opservatorija Zagreb-Maksimir. Razlike u koncentraciji iona u uzorcima oborina sa tih stanica nisu iste tokom godine.

Tabela 5-3. Srednje vrijednosti koncentracije iona i električne provodljivosti u mjesečnim uzorcima oborina, zima 1972./73.

<table>
<thead>
<tr>
<th></th>
<th>NH₄⁺ mg/l</th>
<th>NO₃⁻ mg/l</th>
<th>SO₄²⁻ mg/l</th>
<th>Cl⁻ mg/l</th>
<th>Na⁺ mg/l</th>
<th>K⁺ mg/l</th>
<th>Ca²⁺ mg/l</th>
<th>Mg²⁺ mg/l</th>
<th>μS/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maks.</td>
<td>1.36</td>
<td>11.23</td>
<td>13.92</td>
<td>4.61</td>
<td>0.59</td>
<td>0.35</td>
<td>6.90</td>
<td>1.04</td>
<td>61.4</td>
</tr>
<tr>
<td>Punt.</td>
<td>1.03</td>
<td>4.15</td>
<td>2.63</td>
<td>2.91</td>
<td>0.13</td>
<td>0.12</td>
<td>0.41</td>
<td>0.44</td>
<td>27.8</td>
</tr>
</tbody>
</table>

Tabela 5-4. Srednje vrijednosti koncentracije iona i električne provodljivosti u mjesečnim uzorcima oborina, ljeto 1972.

<table>
<thead>
<tr>
<th></th>
<th>NH₄⁺ mg/l</th>
<th>NO₃⁻ mg/l</th>
<th>SO₄²⁻ mg/l</th>
<th>Cl⁻ mg/l</th>
<th>Na⁺ mg/l</th>
<th>K⁺ mg/l</th>
<th>Ca²⁺ mg/l</th>
<th>Mg²⁺ mg/l</th>
<th>μS/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maks.</td>
<td>0.73</td>
<td>1.63</td>
<td>5.17</td>
<td>3.30</td>
<td>0.27</td>
<td>0.50</td>
<td>4.50</td>
<td>0.64</td>
<td>55.1</td>
</tr>
<tr>
<td>Punt.</td>
<td>0.36</td>
<td>1.09</td>
<td>3.42</td>
<td>3.40</td>
<td>0.17</td>
<td>0.29</td>
<td>1.12</td>
<td>0.31</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Uspoređujući koncentracije iona u uzorcima oborina sakupljenih u zimskim i ljetnim mjesecima, vidimo da su veće razlike u koncentracijama iona u zimskim nego u ljetnim mjesecima. Naročito su uočljive razlike u koncentracijama sulfata i nitrata. Tako je u uzorcima oborina u Maksimiru u zimskim mjesecima srednja koncentracija nitrata bila 11.23 mg/l, a u ljetnim mjesecima svega 1.63 mg/l, u uzorcima oborina na Puntijarki u zimskim mjesecima srednja koncentracija nitrata bila je 2.63 mg/l, a u ljetnim mjesecima 1.09 mg/l. Slični rezultati dobiveni su i za koncentracije sulfata, što je i razumljivo ako znamo da oni nastaju u procesu sagorjevanja fosilnih goriva.
Tabela 5-5. Ovisnost koncentracije iona o trajanju sušnog perioda

<table>
<thead>
<tr>
<th></th>
<th>NH$_4^+$ mg/l</th>
<th>NO$_3^-$ mg/l</th>
<th>SO$_4^{2-}$ mg/l</th>
<th>mm oborine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uzorci I</td>
<td>0.64</td>
<td>1.52</td>
<td>5.90</td>
<td>24.8</td>
</tr>
<tr>
<td>Uzorci II</td>
<td>0.15</td>
<td>0.59</td>
<td>1.09</td>
<td>24.8</td>
</tr>
</tbody>
</table>

U tabeli 5-5 dati su rezultati analiza uzoraka I, koji su sakupljeni nakon sušnog perioda od najmanje 4 dana, i uzoraka II, sakupljeni nakon sušnog perioda koji je trajao najduže 10 sati. Uzorci oborina sakupljeni su na opsevatoriju Zagreb-Maksimir, a količine iona svedene su na srednju količinu oborina. Analizirajući rezultate iz tabele 5-5, možemo zaključiti da više koncentracije iona nalazimo u uzorcima oborina koji dolaze iza dužeg sušnog perioda.

U uzorcima oborina s opsevatorija Zagreb-Maksimir ispitivana je ovisnost izmedju koncentracije iona i količine oborina. Rezultati analiza prikazani su u tabeli 5-6.

Tabela 5-6. Ovisnost koncentracije iona o količini oborina, Zagreb-Maksimir

<table>
<thead>
<tr>
<th>količina oborina u mm</th>
<th>1.0</th>
<th>1.1-3</th>
<th>3.1-7</th>
<th>7.1-11</th>
<th>> 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_4^{2-}$ mg/l</td>
<td>28.08</td>
<td>11.79</td>
<td>5.89</td>
<td>3.90</td>
<td>2.50</td>
</tr>
<tr>
<td>NH$_4^+$ mg/l</td>
<td>5.05</td>
<td>2.25</td>
<td>1.24</td>
<td>0.14</td>
<td>0.27</td>
</tr>
<tr>
<td>NO$_3^-$ mg/l</td>
<td>9.81</td>
<td>2.88</td>
<td>1.77</td>
<td>0.71</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Visoke koncentracije iona nalazimo u uzorcima oborina koji su manji od 3 mm. Ako usporedimo koncentracije iona u uzorcima oborina s opsevatorija Zagreb-Maksimir i stanice na Puntjarki, u ovisnosti o količini oborine u mm, vidjet ćemo da postoje velika razlika u koncentraciji iona kod uzoraka s malom količinom oborina, koja se smanjuje s porastom količine oborina. Kod jako velikih količina oborina mogli bismo efekt "ispiranja" ("washout") zanemariti, jer učinak "rainout" dominira.
5.2.4 Rezultati analiza u uzorcima zraka

Na opservatoriju Zagreb-Maksimir, opservatoriju Zagreb-Grič i na Puntiljarka sakupljeni su i mjesečni uzorci zraka. Kao adsorpcijska otopina upotrebljava se otopina koja u 1000 ml redestilirane vode sadrži 10 ml 30%-tnog vodikovog peroksida i 0.13 ml koncentrirane dušične kiseline. U uzorcima zraka određuju se: amonijak, sulfati, kloridi, ioni natrija, kalija, kalcija i magnezija. Metode analize su iste kao i za uzorke oborina.

<table>
<thead>
<tr>
<th></th>
<th>NH\textsubscript{3}-N</th>
<th>Cl-</th>
<th>SO\textsubscript{4}2-</th>
<th>Na+</th>
<th>K+</th>
<th>Ca++</th>
<th>Mg++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zagreb-Maksimir</td>
<td>16</td>
<td>23</td>
<td>275</td>
<td>4</td>
<td>2</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>Puntiljarka</td>
<td>12</td>
<td>18</td>
<td>14</td>
<td>2</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
</tbody>
</table>

Najveće razlike u koncentraciji ioni, u uzorcima zraka sa stanice Puntiljarka i opservatorija Zagreb-Maksimir, nadjene su kod sulfata: tako je srednja koncentracija sulfata na opservatoriju Zagreb-Maksimir 275 μgm-3, a na stanici Puntiljarka svega 14 μgm-3. Razlike u koncentraciji sulfata u uzorcima zraka s opservatorija Zagreb-Maksimir izmedju ljetnih i zimskih mjeseči jako su velike, dok su te razlike na stanici Puntiljarka male.

Tabela 5-8. Srednje vrijednosti koncentracija sulfata u uzorcima zraka

<table>
<thead>
<tr>
<th></th>
<th>(\text{SO}_4^{2-} \mu gm^{-3}) zima</th>
<th>(\text{SO}_4^{2-} \mu gm^{-3}) ljetno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zagreb-Maksimir</td>
<td>216</td>
<td>47</td>
</tr>
<tr>
<td>Puntiljarka</td>
<td>32</td>
<td>17</td>
</tr>
</tbody>
</table>
Konzentracija sulfata na opservatoriju Zagreb-Grič je u-zimskim mjesecima mnogo veća od koncentracija sulfata na opservatoriju Zagreb-Maksimir, i iznosi 396 SO₄²⁻μg/m³. U koncentracijama amonijaka postoje velike razlike izmedju zimskih i ljetnih mjeseci, a najveće koncentracije su nadjene u uzorcima zraka s opservatorija Zagreb-Grič. Najveće koncentracije klorida utvrdjene su u travnju i svibnju. U tim mjesecima su bile i najveće koncentracije natrija.