The Possibility of Respiratory Distress Syndrome Prevention of Premature Born Children

Zdenko Kraljević1, Ivan Grbavac1, Hrvojka Soljačić-Vranesić1, Marijana Bilandžija1, Krunoslav Kuna1, Ivan Bolanča1 and Ivan Kuvačić2

1 University of Zagreb, »Sestre Milosrdnice« University Hospital Center, Department of Gynecology and Obstetrics, Zagreb, Croatia
2 University of Zagreb, Zagreb University Hospital Center, Department of Gynecology and Obstetrics, Zagreb, Croatia

ABSTRACT

Pregnant women and premature born children were classified into four groups. In each group there were thirty of them. The first group included the pregnant women with premature rupture of membranes and amniotic fluid effused for 72 hours before the delivery. The second group included the pregnant women with amniotic fluid effluxing less than 72 hours before the delivery. The third group included the pregnant women who were given corticosteroids. The forth group was a control group formed by those pregnant women (and their premature born children) whose amniotic fluid did not efflux long and those who weren’t given corticosteroids during pregnancy. In all groups of pregnant women we observed: median age of pregnant women, the duration of pregnancy and mode of delivery (vaginal or cesarean section). In groups of premature born children we also observed: newborn birth weight, Apgar score in the first minute after delivery, Apgar score in the fifth minute after delivery, pH of the blood of umbilical cord, L/S ratio of amniotic fluid (lecithin-sphingomyelin ratio), RDS (neonatologist valuation in any degree of RDS developed et newborn child). Symptoms of RDS include tachypnoea, chest wall retraction and cyanosis and a ‘ground glass’ appearance of the chest on X-ray. Histopatological examinations of placentas compared the frequency of inflammatory or noninflammatory changes, also in all groups. No significant difference was found among groups of pregnant women for the following factors: the age of pregnant women, the duration of pregnancy and mode of delivery. No significant difference was found among the groups of children for the following factors: newborn birth weight, Apgar score in the fifth minute after delivery, blood pH of umbilical cord, L/S ratio of amniotic fluid. Significant difference was found among groups for the following factors: Apgar score in the first minute after delivery, the frequency of RDS and histology of placentas. The prevention of premature delivery is the most important. All the pregnant women with symptoms of the premature delivery must be transported to the centers with the well developed unites of intensive neonatal care («transport in utero»).

Key words: premature born children, respiratory distress syndrome

Introduction

Respiratory distress syndrome (RDS) is a condition of pulmonary insufficiency that in its natural course commences at or shortly after birth and increases in severity over the first 2 days of life. If left untreated death can occur from progressive hypoxia and respiratory failure. In survivors resolution begins between 2 and 4 days. RDS is due to a lack of alveolar surfactant along with structural immaturity of the lung and it is mainly confined to preterm babies. Clinically RDS presents with early respiratory distress comprising cyanosis, grunting, retraction, and tachypnoea. Respiratory failure may develop and is indicated by blood gas analysis. Between 5 to 10 % of annual births occurs preterm (before 37 weeks completed gestation). Preterm infants represent 75% of all neonatal deaths. In conclusion, the prevention of the preterm birth is important but we must also focus on its treatment.

Patients and Methods

The aim of the study was to evaluate in which of the four groups of pregnant women preterm babies have greatest chances for survival.

Received for publication July 15, 2009
The study was conducted from January 2000 through December 2002. The institutional review board approved this study.

Pregnant women and premature born children were classified into four groups. In each group there were thirty of them.

The first group included the pregnant women with premature rupture of membranes and amniotic fluid effluxed for 72 hours before the delivery. The second group included the pregnant women with amniotic fluid effluxing less than 72 hours before the delivery. The third group included the pregnant women who were given corticosteroids. All the mothers in the 3rd group received a complete course of dexamethasone steroids 48 hours after the first dose. The forth group was a control group formed by those pregnant women (and their premature born children) whose amniotic fluid did not efflux long and those who weren’t given corticosteroids during pregnancy. In all groups of pregnant women we observed:

- median age of pregnant women
- the duration of pregnancy
- mode of delivery (vaginal or cesarean section)

In groups of premature born children we also observed:

- newborn birth weight
- Apgar score in the first minute after delivery
- Apgar score in the fifth minute after delivery
- pH of the blood of umbilical cord
- L/S ratio of amniotic fluid (lecithin-sphingomyelin ratio)
- RDS (neonatologist valuation in any degree of RDS developed at newborn child). Symptoms of RDS include tachypnoea, chest wall retraction and cyanosis and a ‘ground glass’ appearance of the chest on X-ray.

Histopathological examinations of placentas compared the frequency of inflammatory or noninflammatory changes, also in all groups. Kruskal-Wallis one-way analyses of variance, Kolomogrov-Smirnov test, Analysis of Variance (ANOVA) method and χ²-tests were used in this study.

Results

In our study no significant difference was found among groups of pregnant women for the following factors: the age of pregnant women, the duration of pregnancy and mode of delivery (Table 1). Average time of gestation was 33 weeks in all four groups. The highest percentage of cesarean section was in the first group (26, 7%), while in the second and forth group percentage was slightly lower (20%).

Average birth weight was between 2064 gr. (first group) and 2217 gr. (second group). There were no statistically significant differences in birth weight among four groups (p<0.05).

Apgar score in first minute after delivery indicates that most endangered preterm babies (Apgar score 7 or lower) were in the first and third group and that there was statistically significant difference in comparison with second and fourth group (p<0.05). However, there were no statistically significant differences in observed parameters among four groups (p<0.05)

TABLE 1

<table>
<thead>
<tr>
<th>MEDIAN AGE</th>
<th>DURATION OF PREGNANCY</th>
<th>VAGINAL DELIVERY</th>
<th>CESAREAN SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>26.9</td>
<td>33.4</td>
<td>22</td>
</tr>
<tr>
<td>II</td>
<td>26.6</td>
<td>34</td>
<td>24</td>
</tr>
<tr>
<td>III</td>
<td>28.9</td>
<td>33.9</td>
<td>23</td>
</tr>
<tr>
<td>IV</td>
<td>27.1</td>
<td>33.8</td>
<td>24</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>OBSERVED PARAMETERS IN ALL GROUPS OF PREMATURE BORN CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Child mass</td>
</tr>
<tr>
<td>Apgar score in the first minute after delivery ≤ 7</td>
</tr>
<tr>
<td>Apgar score in the first minute after delivery ≥ 7</td>
</tr>
<tr>
<td>Apgar score in the fifth minute after delivery ≤ 7</td>
</tr>
<tr>
<td>Apgar score in the fifth minute after delivery ≥ 7</td>
</tr>
<tr>
<td>pH of the blood of umbilical cord</td>
</tr>
<tr>
<td>L/S ratio of amniotic fluid (lecithin-sphingomyelin ratio) ≤ 3</td>
</tr>
<tr>
<td>L/S ratio of amniotic fluid (lecithin-sphingomyelin ratio) ≥ 3</td>
</tr>
<tr>
<td>RDS</td>
</tr>
<tr>
<td>Inflammatory changes on placentas</td>
</tr>
</tbody>
</table>

Significant difference was found among groups for the following factors: Apgar score in the first minute after delivery, the frequency of RDS and histology of placentas (p<0.05)
no statistically significant differences in Apgar score 5 minutes after delivery among four groups (p<0.05).

Lowest PH of the umbilical cord blood was in the second group (7.23±0.040) and the highest was in the fourth group (7.25±0.031). There were no statistically significant differences in PH of umbilical cord blood among four groups (p<0.05).

There were no statistically significant differences in L/S ratio of amniotic fluid, although the highest percentage of the preterm babies with L/S ratio higher than 3 was in the first group (46.7%).

RDS was most frequent, according to our results, in second group, 70% of preterm babies in second group had difficulties with breathing. The lowest frequency of RDS was in the third group (40.0%). There were statistically significant differences in development of RDS among four groups (p<0.05).

Histopatological examinations of placentas have shown the highest percentage of inflammatory changes in the first group (85.7%). In the second group percentage of inflammatory changes was 58.8% and in the third group 35.7%. The lowest percentage of inflammatory changes was in the fourth group (30%). There were statistically significant differences in the frequency of inflammatory or noninflammatory changes on the histopatological examinations of placentas (p<0.05) (Table 2).

Discussion

Preterm babies at risk of RDS should be born in centers where appropriate skills are available for stabilization and ongoing respiratory support, including intubation and mechanical ventilation. There is often prior warning of impending preterm delivery, allowing time for interventions to be considered including in utero (maternal) transfer where appropriate. Preterm delivery can be delayed by using antibiotics in the case of preterm, pre-labor rupture of the membranes9, and tocolytic drugs can be used in the short-term to delay birth3–5 to allow safe transfer to a perinatal center and to enable prenatal corticosteroids to take effect.

Prenatal corticosteroid therapy is recommended in all pregnancies with threatened preterm labor below 35 weeks’ gestation. Improved neurological outcome has been demonstrated for even the tiniest babies6,7. The optimal treatment to delivery interval is more than 24 h and –7 days after the start of steroid treatment7.

There is continuing controversy over the use of repeated courses of prenatal corticosteroids. Although there may be clinical benefits of giving a second course in cases where delivery has not occurred in terms of further reducing RDS8, long-term follow-up data are not yet available. In animal studies there are changes in brain myelination following repeated exposure to prenatal steroids9,10 and in a large cohort study a decrease in newborn head circumference has also been observed with increasing prenatal steroid exposure11. The recent Cochrane systematic review does not recommend routine repeat courses of prenatal steroids12.

Evidence from experimental studies in animals indicates that corticosteroid-induced functional ‘maturation’ of the preterm lungs is caused primarily by structural changes and that increases in surfactant are relatively slower to occur and exist only transiently after corticosteroid treatment13. Thus, surfactant deficiency (the principal contributor to RDS) may not be adequately treated by antenatal corticosteroids; this is reflected by the fact that RDS is prevented by antenatal corticosteroids in only 50% of cases.

The structural changes induced by antenatal corticosteroid treatment result in thinner alveolar walls and fewer, larger alveoli than normal14. Although beneficial in the immediate neonatal period, these structural effects may have longer-term adverse consequences because this phenotype is characteristic of the chronic neonatal lung disease bronchopulmonary dysplasia (BPD).

The recent realization are that many preterm births are associated with intrauterine inflammation and that intrauterine infection/inflammation is associated with a reduced risk of RDS in some cohorts of infants15,16.

Exploitation of inflammatory pathways for inducing preterm lung ‘maturation’ in humans appears as a possibility. The reduced risk of RDS associated with inflammation is accompanied by an increased risk of BPD in humans16. BPD-like changes in lung structure and the surfactant system in preterm lambs after exposure to intrauterine inflammation have been observed17.

Conclusion

We can conclude that, in the pregnant women with premature rupture of membranes and amniotic fluid efflux, there is increased risk of infection as time goes by until delivery, but there is significantly lower incidence of RDS in preterm babies. Corticosteroids can be administered if there is risk of preterm delivery, but only if there is no sign of infection.

The prevention of premature delivery is the most important. All the pregnant women with symptoms of the premature delivery must be transported to the centers with the well developed unites of intensive neonatal care (»transport in utero»).

REFERENCES

Z. Kraljević

University of Zagreb, »Sestre milosrdnice« University Hospital Center, Department of Gynecology and Obstetrics, Vinogradarska 29, Zagreb, Croatia
e-mail: zdenko.kraljevic1@zg.t-com.hr

MOGUĆNOST PREVENCIJE RESPIRATORNOG DISTRES SINDROMA U PRIJEVREMENO RODENE DJECE

SAŽETAK