An Improved Stiffness Model for Polyester Mooring Lines

The stiffness model of highly extensible polyester mooring lines is studied. Mooring lines are considered within coupled dynamic model of a moored floating object. In more detail, deepwater mooring with taut polyester mooring lines is observed. In this case mooring line is modelled as an extensible cable without bending and torsional stiffness. Movements are assumed to be three-dimensional, so it is necessary to examine large displacement model. In longitudinal strain calculation the material of the mooring line is considered as nonlinear. A large elongation value is examined within the stiffness model. Inertial forces of the mooring line are also considered. Hydrodynamic loads due to surrounding fluid are taken into account with the Morison equation. Due to nonlinear properties of mooring lines calculations have to be done in time domain. On these assumptions, derivation of a mooring line finite element is presented for static and dynamic analysis. A floating object is modelled as a rigid body with six degrees of freedom and with small displacements assumption. Hydrodynamic coefficients are calculated in a specified frequency domain; therefore, mapping from the frequency to the time domain is necessary. Comparison between the improved model developed in this paper and current equivalent model is done. A simple mooring line that can be analytically described was the base for comparison. The improved model achieved better agreement with the analytical result.

Keywords: coupled model, dynamic response, finite element method, large elongation value, mooring, time domain, polyester rope

1 Introduction

Polyester mooring lines endure high elongation during exploitation. Breaking point can be usually found at 15% elongation. Taut polyester lines can form a part of deep-water mooring solution. The characteristics of such mooring system are significantly influenced by extensibility of polyester rope. The stiffness of mooring system is especially sensitive to elongation of mooring lines. A part of this problem is nonlinear stress-strain relation of polyester fibres.

A coupled dynamic model is recommended way to solve a deep-water mooring problem. This model is composed of dynamics of mooring lines and a floating body dynamics. Inertial and restoring forces of the mooring line as well as hydrodynamic loads are examined. Dynamics of the floating body incorporates environmental loads such as: wave loads of the first and the second order, wind loads and sea current loads. Added mass, damping due to wave radiation and due drag resistance as well as hydrostatic forces are also considered. It should be noted that
the coupled model is solved in the time domain because of the nonlinear properties of mooring system.

Elastic rod theory is a cornerstone for the mooring line dynamics in this study. This theory was derived by Nordgen [1] and Garrett [2]. Nordgen described equation of large motions of elastic rod in terms of centreline position. Garrett incorporated large strain assumptions and suggested finite element method (FEM) for numerical calculation. Three papers concerning coupled dynamics of moored vessel attracted special attention of ISSC 2006 Technical Committee 1.2. [3]. Tahar & Kim [4] developed a computer program for hull/mooring/riser coupled dynamic analysis of a tanker based turret-moored FPSO. Garrett [5] performed a fully coupled global analysis of floating production system, including the vessel, the mooring and the riser system. Kim et al. [6] solved simultaneously the vessel and mooring line dynamics. The vessel global motions and mooring tension were tested at the wave basin of Offshore Technology Research Center (Texas, USA) for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. Stiffness nonlinearity of polyester mooring cables was studied by Fernandes et al. [7]. They examined acceptance tests performed with actual full scale cables. As a result they suggested a formula for specific modulus of polyester ropes in terms of dynamic analysis. Tjavaras et al. [8] studied numerically the mechanics of highly extensible cables. In this model a nonlinear stress-strain relation is employed. Numerical solution was based on finite difference scheme. Tahar & Kim [9] examined coupled dynamics analysis of floating structures with polyester mooring lines. Their mathematical model allowed relatively large elongation of polyester rope and nonlinear stress-strain relationship. The mooring line dynamics was based on elastic rod theory. Numerical calculations are done utilizing nonlinear FEM.

A novel procedure for the polyester mooring lines is presented in the paper. This procedure has an improved approximation of the mooring line stiffness, taking into account nonlinear tension-elongation relationship. Development of the procedure is done within the coupled dynamic analysis of the moored vessel. Therefore, a new kind of the coupled dynamic model is formed and it can be used for better evaluation of highly extensible polyester mooring lines.

2 Mathematical model

2.1 Dynamics of the mooring line

Elastic rod theory [1],[2] is a cornerstone for the mathematical model. The behaviour of a slender rod is expressed in terms of the centreline position. Movements are three-dimensional, so it is necessary to examine large displacement model. High elongation value of the mooring line is considered for the modelling of the stiffness. Nonlinearity of tension-elongation relationship is taken into account. The cross-section is assumed to be homogeneous and circular. Bending and torsional stiffness are neglected as well as shear deformation and rotary inertia terms. Governing equations are treated in global coordinate system, so there is no need for any kind of coordinate system transformation.

2.1.1 Motion equation

The centreline of a deformed rod is described by a space curve [10]. In governing equations the space curve is defined by a position vector \(\mathbf{r} \). Any point on the curve is defined by an arc-length of the extended rod \(s \).

\[
\mathbf{u} = \frac{d\mathbf{r}}{ds},
\]

with

\[
|\mathbf{u}| = 1.
\]

Within dynamic analysis the position vector \(\mathbf{r} \) is also function of the time \(t \). A segment of the mooring line is shown in Figure 1 where:

- \(\tilde{s} \) – arc-length of the extended mooring line
- \(\mathbf{F} \) – cross-section internal force
- \(\mathbf{q} \) – distributed load
- \(\rho \) – hydrostatic pressure of the sea water
- \(\tilde{m} \) – distributed mass of the extended mooring line
- \(\mathbf{r} \) – acceleration of the segment.

Archimedes’ principle states that the buoyancy force exerted on an object completely enclosed by a fluid is equal to the weight
of the fluid displaced by the object. The segment of the mooring line is not completely enclosed by the sea water, since its ends are attached to rests of the mooring line, see Figure 1. In order to apply Archimedes' force it is necessary to follow a derivation of Sparks [11], illustrated in Figure 2.

The real distribution of the hydrostatic pressure acting on the segment (a) is replaced by a sum of the hydrostatic pressure of the completely immersed segment or distributed buoyancy (b) and outward-pointing forces at the segment's ends (c). Absolute value of the first outward-pointing force is given as

$$|P| = pA,$$

where A is cross-section area of the mooring line. In the next step it is necessary to define equivalent loads and forces acting on the segment. Distributed buoyancy q_B is added to distributed load of the segment, see Figure 2 part (b)

$$q_e = q_B + q,$$

where q_e is effective distributed load. Force P must be added to the internal force F

$$F_e = F + P,$$

where F_e represents cross-section effective force. According to (4) and (5) it is possible to define an equivalent segment of the mooring line, presented in Figure 3.

Force equilibrium on the equivalent segment of the mooring line leads to the motion equation

$$\frac{dF_e}{d\tilde{s}} + q_e = \tilde{m}\tilde{r}$$

where superposed dot denotes differentiation with respect to time. Moment equilibrium on the equivalent segment can be expressed as

$$\frac{d\tilde{r}}{d\tilde{s}} \times F_e = 0,$$

where \times denotes vector product. The vector product from the right hand side of (6) with $d\tilde{r}/d\tilde{s}$ yields, after some manipulations of triple vector product [10]

\[\mathbf{F}_e = T_e \frac{d\mathbf{r}}{ds}. \]

Next, combining (6) and (11) leads to

\[\frac{d}{ds} \left(T_e \frac{d\mathbf{r}}{ds} \right) + q_e = \ddot{m} \mathbf{r}. \]

\[\text{Figure 4 Effective tension force} \]
\[\text{Slika 4 Efektivna vlačna sila} \]

Under applied internal and external forces the segment of the mooring line is extended to the length \(ds \). The elongation \(\varepsilon \) is defined, using a standard engineering definition

\[\varepsilon = \frac{d\tilde{s}}{ds} - \frac{ds}{ds}, \]

where \(ds \) is length of the non-extended segment. Relation between \(d\tilde{s} \) and \(ds \) now can be given as

\[d\tilde{s} = (1 + \varepsilon) ds. \]

Upon substitution of (14) into (12), the final form of motion equation is obtained

\[\frac{d}{ds} \left(T_e \frac{d\mathbf{r}}{ds} \right) + (1 + \varepsilon) q_e = (1 + \varepsilon) \ddot{m} \mathbf{r}. \]

In (15) there are three unknown variables: \(\mathbf{r} \), \(T_e \) and \(\varepsilon \); therefore it is necessary to define additional two equations.

\[\text{2.1.2 Axial elongation condition} \]

The centreline of the deformed mooring line is described by the space curve. Eqs. (1) and (2) define the unit tangent vector \(\mathbf{u} \) of the curve. Relationship between arc-length of the extended and the non-extended segment of the mooring line is given by (14). Based on these equations the axial elongation condition is formulated [13]

\[\frac{1}{(1 + \varepsilon)^2} \frac{d\mathbf{r}}{ds} \cdot \frac{d\mathbf{r}}{ds} = 1. \]

This condition interconnects the deformed position and the elongation of the mooring line.

\[\text{2.1.3 Effective tension-elongation relation} \]

The elongation \(\varepsilon \) of the mooring line can be given in classical form [11], involving Young’s modulus \(E \) and Poisson’s ratio \(\nu \)

\[\varepsilon = \frac{1}{E} \left(\sigma_A - \nu (\sigma_c + \sigma_R) \right). \]

where \(\sigma_A \), \(\sigma_c \) and \(\sigma_R \) are the axial, the circumferential and the radial stress, respectively. Dividing the real tension force \(T_e \) in the mooring line by the cross-section area \(A \) gives the axial stress

\[\sigma_A = \frac{T_e}{A}. \]

Both the circumferential and the radial stress vary as a function of a radial distance from the mooring line axis, but their sum is constant. At any point on the cross-section sum of these stresses is defined by Lamé’s formula

\[\sigma_c + \sigma_R = -2p, \]

where \(p \) is hydrostatic pressure of the surrounding sea water.

The effective tension force \(T_e \) is decomposed into two components, upon substitution of (5) in (10)

\[T_e = \frac{dr}{ds} \mathbf{F} + \frac{dr}{ds} \mathbf{P}. \]

The first component is scalar projection of the cross-area internal force \(\mathbf{F} \) onto the unit tangent vector \(u = \frac{dr}{ds} \). The obtained scalar variable is real tension force \(T_R \) and can be calculated analogous to (10)

\[T_R = \frac{dr}{ds} \mathbf{F}. \]

Similar, the second component is simplified as

\[|\mathbf{P}| = \frac{dr}{ds} \mathbf{P}, \]

since vectors \(\mathbf{P} \) and \(\frac{dr}{ds} \) are parallel, see Figure 2. Using (3), the second component is even more simplified

\[pA = \frac{dr}{ds} \mathbf{P}. \]

Upon substitution of (21) and (23) into (20), another equation is obtained that connects the real and the equivalent segment of the mooring line, see subsection: Motion equation

\[T_e = T_R + pA. \]

Relationship between the real tension \(T_R \) and the effective tension \(T_e \) is defined in (24). Similar formula can be found in [12]. Next, the axial stress \(\sigma_A \) in (18) is given in the form suitable for further derivations using (24)

\[\sigma_A = \frac{T_e - pA}{A}. \]

Based on (17), (19) and (25) a new definition of the elongation \(\varepsilon \) is obtained
For synthetic ropes Poisson’s ratio is assumed to be [8]

\[\nu \approx 0.5. \]
(27)

The final form of effective tension-elongation relationship is defined by (26) and (28)

\[\epsilon = \frac{T_s}{AE}. \]
(28)

2.1.4 Axial stiffness of polyester rope

The elongation of a polyester rope does not have linear relationship with its tension. A direct simulation of the polyester rope dynamics is extremely complicated. To simplify numerical simulation an empirical formulation is used to model axial stiffness \(AE \) of the polyester rope [9]

\[AE = RHOL \left(\alpha + \beta \frac{T_s}{B_s} \right) \cdot 10^6 \ \text{[N]}, \]
(29)

where \(B_s \) is minimum breaking strength, \(T_s \) is time dependent real tension, and \(RHOL \) is dry weight per unit length of the rope. Constants \(\alpha \) and \(\beta \) depend on the type of polyester rope and they are obtained experimentally. The stiffness described by (29) is formulated in terms of the dynamics analysis but it is often used for static calculations. A similar definition of polyester Young’s modulus can be found in [7].

2.1.5 Finite element for the static analysis

The effective distributed load \(\mathbf{q}_s \) for the static analysis of the mooring line is formulated according to (4)

\[\mathbf{q}_s = \mathbf{q}_b + \mathbf{q}_d, \]
(30)

where \(\mathbf{q}_b \) is distributed weight of dry mooring line. Distributed buoyancy \(\mathbf{q}_d \) is given as

\[\mathbf{q}_d = -\rho \hat{A} \mathbf{g}, \]
(31)

where \(\rho \) is density of the sea water, and \(\mathbf{g} \) is gravitational acceleration. Similarly, \(\mathbf{q}_d \) is expressed as

\[\mathbf{q}_d = \hat{m} \mathbf{g}. \]
(32)

In the above equations, variables \(\hat{A} \) and \(\hat{m} \) are related to the extended case of the mooring line, so they depend on the elongation \(\epsilon \). Already in this paper, the Poisson’s ratio of polyester rope is assumed to be 0.5; see (27). Therefore, the volume of any deformed segment is conserved [8]. The cross-section area \(\hat{A} \) and the distributed mass \(\hat{m} \) are formulated as

\[\hat{A} = \frac{A}{1 + \epsilon}, \]
(33)

\[\hat{m} = \frac{m}{1 + \epsilon}. \]
(34)

where \(A \) and \(m \) are related to the non-extended case, so they are constant. Finally, by omitting inertial term in the motion equation (15) and combining with from (30) to (34), the static equation is defined as

\[\frac{d}{ds} \left(T_s \frac{dr}{ds} \right) + mg - \rho \hat{A} \mathbf{g} = \mathbf{0}. \]
(35)

The elongation \(\epsilon \) formulated by (28) is included in the static equation (35) and the axial elongation condition (16) in inconvenient way for further derivations. Simplification is obtained by using Taylor series [10] for (35)

\[\frac{1}{1 + \epsilon} = 1 - \epsilon + \epsilon^2 + O(\epsilon^3) \]
(36)

and for (16)

\[\left(1 + \epsilon \right)^2 = 1 - 2\epsilon + 3\epsilon^2 + O(\epsilon^3). \]
(37)

The final form of governing equations for the static analysis is composed of (16), (28) and (35) with simplifications according to (36), (37)

\[\frac{d}{ds} \left[\left(T_s - T_s \frac{T_s}{AE} + T_s \left(\frac{T_s}{AE} \right)^2 \right) \frac{dr}{ds} \right] + mg - \rho \hat{A} \mathbf{g} = \mathbf{0}. \]
(38)

and

\[\left[1 - 2 \frac{T_s}{AE} + 3 \left(\frac{T_s}{AE} \right)^2 \right] \frac{dr}{ds} \frac{dr}{ds} = 1. \]
(39)

It should be noted that (39) is intentionally defined in approximate form. By observing (16) and (28) an exact form of the axial elongation condition can be obtained, simply by multiplying (16) with \((1 + \epsilon)^2 \). As it will be written below, this approximate form of eq. (39) provides a symmetric equation set for numerical calculations.

In (38) and (39) there are two unknown variables: effective tension \(T_s \) and the position vector of mooring line \(\mathbf{r} \). This equation set is solved utilizing finite element method (FEM). The application of FEM starts from describing (38) and (39) in index notation

\[\left[\left(T_s - T_s \frac{T_s}{AE} + T_s \left(\frac{T_s}{AE} \right)^2 \right) \frac{dr}{ds} \right]^{ij} + \rho \hat{A} \mathbf{g} = \mathbf{0}, \]
(40)

and

\[\left[1 - 2 \frac{T_s}{AE} + 3 \left(\frac{T_s}{AE} \right)^2 \right] r_i' r_j' = 1, \]
(41)

with

\[i, j = 1, 2, 3 \]
(42)

where prime denotes differentiation with respect to \(s \). Here unknown variables \(T_s \) and \(r_i \) are approximated as [14]

\[r_i (s) = A_i (s) U_i. \]
(43)
the mooring line elongation ε according to (28), K_{moor}^1 can be considered as linear and K_{moor}^2 quadratic change coefficient of the geometric stiffness.

Axial elongation condition (41) is also discretized using Galerkin’s method [15] and combining with (43) and (44) as follows

$$\left(B_{\text{axi}}^0 + \lambda_n B_{\text{axi}}^1 + \lambda_n \lambda_p B_{\text{axi}}^2 \right) U_{\text{axi}} = 0,$$

with

$$B_{\text{axi}}^0 = \int_0^L P_n A_n' A_n'' ds$$

$$B_{\text{axi}}^1 = \int_0^L \frac{2}{AE} P_n P_n A_n' A_n'' ds$$

$$B_{\text{axi}}^2 = \int_0^L \frac{3}{(AE)^2} P_n P_n P_n A_n' A_n'' ds$$

$$C_n = \int_0^L P_n ds.$$
\[
\{ R \} = \left\{ R_1^1, R_1^2, R_2^1, R_2^2, R_3^1, R_3^2, R_4^1, R_4^2 \right\}^T.
\]

Calculations are carried out iteratively according to the following algorithm
\[
\{ \Delta Y \} = \left[K^{-1} \right]^{(i)} \{ F \}^{(i)}
\]
\[
\{ Y \}^{(i+1)} = \{ Y \}^{(i)} + \{ \Delta Y \},
\]
where \(\{ Y \} \) is global “nodal displacement” vector, \([K] \) global “stiffness” matrix and \(\{ F \} \) is global “nodal force” vector.

By detailed inspection of (59) it can be found that formulation of the Jacobian matrix is symmetrical. As it is known, the Jacobian matrix in most cases is not symmetric when a nonlinear equation system is considered. In this study special effort is invested to achieve this symmetrical form. The symmetry is mainly realized by selecting appropriate form of the axial elongation condition (16). As already written, by Taylor series in (37) and (28) an approximate form of axial elongation condition is given in (39). This form provides a requested basis for the symmetry. Furthermore, during formulation of the Newton-Rapson procedure (59), discretized axial elongation condition (54) is multiplied by -1/2 to achieve the complete symmetry. This symmetric form of the Jacobian matrix enables easier numerical implementation utilizing classical FEM codes.

2.1.6 Finite element for the dynamic analysis

Distributed hydrodynamic load \(\mathbf{q}_d \) on the mooring line is derived utilizing Morison equation [14] as follows
\[
\mathbf{q}_d = -C_s \rho \mathbf{A} \mathbf{v}^n + C_d \rho \mathbf{A} \mathbf{v}^v + \frac{1}{2} C_d \rho D \mathbf{v}^v \cdot \mathbf{v}^v (\mathbf{v}^v - \mathbf{r}^v) \tag{71}
\]
with
\[
\mathbf{r}^n = \mathbf{r} - \left(\mathbf{r} \frac{d\mathbf{r}}{ds} \right) \frac{d\mathbf{r}}{ds},
\]
\[
\mathbf{r}^v = \mathbf{r} - \left(\mathbf{v} \frac{d\mathbf{r}}{ds} \right) \frac{d\mathbf{r}}{ds},
\]
\[
\mathbf{v}^v = \mathbf{v} - \left(\mathbf{v} \frac{d\mathbf{r}}{ds} \right) \frac{d\mathbf{r}}{ds}.
\]

where \(| \cdot | \) denotes the length of a vector; \(A \) and \(D \) are cross-section area and diameter of the non-extended mooring line respectively; \(C_s, C_d \) and \(C_d \) are added mass, inertial and drag coefficients. In (72), \(\mathbf{r}^n \) is a component of the mooring line acceleration normal to the mooring line, see Figure 5. Analogously, \(\mathbf{r}^v \) is the normal component of the mooring line velocity. Motion of the surrounding sea water is considered through normal components of water particle acceleration \(\mathbf{v}^v \) and velocity \(\mathbf{v}^v \). In the next step, hydrodynamic load needs to be considered within the motion equation (15). Therefore, the effective distributed load \(\mathbf{q}_d \) for dynamic analysis is formulated according to (4) and (30)
\[
\mathbf{q}_d = \mathbf{q}_a + \mathbf{q}_d + \mathbf{q}_b.
\]

The final form of motion equation is derived using (15), (31), (32), (33), (34) and (73) as follows
\[
\frac{d}{ds} \left(T_{\varepsilon} \frac{d\mathbf{r}}{ds} \right) + mg - \rho A g + \mathbf{q}_b = m \ddot{\mathbf{r}}. \tag{74}
\]

It should be noted that in the previous chapter the formulation of the distributed buoyancy \(\mathbf{q}_b \) is based on the cross-section area \(A \) of the extended mooring line, see (31). In (33), the relation of the cross-section area for extended and non-extended state is formulated based on the elongation \(\varepsilon \). For sake of simplicity, the elongation \(\varepsilon \) is not considered in the derivation of distributed hydrodynamic load in (71), so the cross-section area \(A \) as well as the diameter \(D \) are assumed to be constant. With same intention, the elongation is neglected in the formulation of acceleration and velocity normal components in (72), where the unit tangent vector \(dr/ds \) of the extended mooring line is replaced by \(dr/ds \) and \(dr/ds \). The elongation is also neglected in the derivation of motion equation (74), so that the term \(1 + \varepsilon \) that should multiply \(\mathbf{q}_b \) is dropped, see (15) and (73).

![Normal component of the mooring line acceleration](image)

Slika 5 Normalna komponenta ubrzanja sidrenih linija

The axial elongation condition given by (16) must be fulfilled during dynamic analysis. To obtain symmetric equation set for numeric calculation an approximate form of the condition is chosen as follows
\[
\frac{1}{1 + \varepsilon} \left(\frac{dr}{ds} \frac{dr}{ds} \right) - 1 - \varepsilon = 0. \tag{75}
\]

The final form of governing equations for dynamic analysis is composed of (28), (74) and (75) with simplification according to (36), given in index notation
\[
\left[T_{\varepsilon} - T_{\varepsilon} \frac{T_{\varepsilon}}{AE} + T_{\varepsilon} \left(\frac{T_{\varepsilon}}{AE} \right)^2 \right] \dot{\mathbf{r}} + mg - \rho A g + \mathbf{q}_b = m \ddot{\mathbf{r}}. \tag{76}
\]
and

\[
\left[1 - \frac{T_e}{AE} + \left(\frac{T_e}{AE} \right)^2 \right] r'_e - 1 - \frac{T_e}{AE} = 0.
\]

(77)

Note that in the above equations there is new label \(q^o \) for the hydrodynamic load to avoid confusion when using index notation. Unknown variables \(T_e \) and \(r_e \) are approximated in the same way as for static calculations by (43) and (44), in this case here unknown coefficients \(U \) and \(\lambda \) are time dependent.

Finite element discretization of the motion equation (76) is based on Galerkin’s method [15] as follows

\[
\left(M_{	ext{gl}} + M_{	ext{A}}^u \right) \ddot{U}_k + \left(K_{	ext{gl}}^0 + K_{	ext{A}}^0 \right) \dot{U}_k + K_{	ext{A}}^0 \Lambda U_k + F_e + F_{g}^H = 0,
\]

(78)

with

\[
M_{	ext{gl}} = -\int_0^1 m \Delta \nu \, ds,
\]

(79)

\[
M_{	ext{gl}}^0 = -\int_0^1 \left(C_A \rho A \right) A \nu_e A' \nu_e A' \nu_e A' U_e U_e \, ds + \frac{1}{2} \int_0^1 \left(C_A^{0.5} A \nu_e A' \nu_e A' \nu_e A' \nu_e A' \right) \nu_e A' A' A' U_e U_e U_e U_e \, ds
\]

(80)

\[
F_e = \frac{1}{2} \int_0^1 \left(C_A^{0.5} A \nu_e A' \nu_e A' \nu_e A' \nu_e A' \right) \nu_e A' A' A' U_e U_e U_e U_e \, ds + \frac{1}{2} \int_0^1 \left(C_A^{0.5} A \nu_e A' \nu_e A' \nu_e A' \nu_e A' \right) \nu_e A' A' A' U_e U_e U_e U_e \, ds
\]

(81)

and

\[
a, b, c, d, e, f, g, h = 1, 2, 3, \quad r, t, u, v, z = 1, \ldots, 4.
\]

(82)

where \(\nu_e \) is Levi-Civita symbol. Eq. (78) is the dynamic equation of finite element, where \(M_{	ext{gl}} \) denotes mass matrix due to own mass; \(M_{	ext{gl}}^0 \) is added mass matrix and \(F_{g}^H \) is nodal force vector due to hydrodynamic load. Stiffness matrices \(K_{	ext{gl}}^0 \), \(K_{	ext{A}}^0 \) and \(K_{	ext{A}}^0 \) as well as nodal force vector \(F_e \) are the same as for the static case, see (48). The (78) is a second order differential equation. The order of this equation is derated using the time integration given by eq. (90) and discretized axial elongation condition (91) are highly nonlinear. Therefore, the Newton-Rapson iterative method [10] is used to solve this equation set, as follows

\[
\left[\frac{j_{1}^1(k+1)}{j_{1}^0} \right]_{\text{gl}} + \left[\frac{j_{2}^1(k)}{j_{2}^0} \right]_{\text{kl}} + \left[\frac{j_{2}^1(k)}{j_{2}^0} \right]_{\text{kl}} \left[\Delta U_k \right] = \left[\tilde{R}_g^{(1,1)} \right]_{\text{gl}}
\]

(96)

with

\[
\frac{j_{1}^1(k+1)}{j_{1}^0} = \frac{4}{\Delta t} \tilde{M}_{\text{gl}} + \tilde{K}_{\text{gl}} \Lambda_k
\]

(97)

\[
\frac{j_{2}^1(k+1)}{j_{2}^0} = \frac{4}{\Delta t} \tilde{M}_{\text{gl}} + \tilde{K}_{\text{gl}} \Lambda_k
\]

(98)

\[
\frac{j_{2}^1(k+1)}{j_{2}^0} = \frac{1}{2} \tilde{C}_\text{es} + \frac{1}{2} \left(\frac{j_{2}^1(k+1)}{j_{2}^0} \right)_{\text{es}} + \tilde{F}_g^H + \tilde{F}_g^H
\]

(99)

\[
\tilde{R}_g^{(1,1)} = \frac{4}{\Delta t} \tilde{M}_{\text{gl}} + \tilde{K}_{\text{gl}} \Lambda_k + \tilde{F}_g^H + \tilde{F}_g^H + \frac{4}{\Delta t} \tilde{F}_g^H - \frac{4}{\Delta t} \tilde{F}_g^H
\]

(100)

\[
\tilde{R}_g^{(1,1)} = \frac{4}{\Delta t} \tilde{M}_{\text{gl}} + \tilde{K}_{\text{gl}} \Lambda_k + \tilde{F}_g^H + \tilde{F}_g^H + \frac{4}{\Delta t} \tilde{F}_g^H
\]

(101)

Vector \(C_{\text{es}} \) is the same as for eq. (54).

Finite element dynamic equations with implemented time integration given by eq. (90) and discretized axial elongation condition (91) are highly nonlinear. Therefore, the Newton-Rapson iterative method [10] is used to solve this equation set, as follows

\[
\left[\frac{j_{1}^1(k+1)}{j_{1}^0} \right]_{\text{gl}} + \left[\frac{j_{2}^1(k)}{j_{2}^0} \right]_{\text{kl}} + \left[\frac{j_{2}^1(k)}{j_{2}^0} \right]_{\text{kl}} \left[\Delta U_k \right] = \left[\tilde{R}_g^{(1,1)} \right]_{\text{gl}}
\]

(96)

with

\[
\frac{j_{1}^1(k+1)}{j_{1}^0} = \frac{4}{\Delta t} \tilde{M}_{\text{gl}} + \tilde{K}_{\text{gl}} \Lambda_k
\]

(97)

\[
\frac{j_{2}^1(k+1)}{j_{2}^0} = \frac{4}{\Delta t} \tilde{M}_{\text{gl}} + \tilde{K}_{\text{gl}} \Lambda_k
\]

(98)

\[
\frac{j_{2}^1(k+1)}{j_{2}^0} = \frac{1}{2} \tilde{C}_\text{es} + \frac{1}{2} \left(\frac{j_{2}^1(k+1)}{j_{2}^0} \right)_{\text{es}} + \tilde{F}_g^H + \tilde{F}_g^H
\]

(99)

\[
\tilde{R}_g^{(1,1)} = \frac{4}{\Delta t} \tilde{M}_{\text{gl}} + \tilde{K}_{\text{gl}} \Lambda_k + \tilde{F}_g^H + \tilde{F}_g^H + \frac{4}{\Delta t} \tilde{F}_g^H
\]

(100)

\[
\tilde{R}_g^{(1,1)} = \frac{4}{\Delta t} \tilde{M}_{\text{gl}} + \tilde{K}_{\text{gl}} \Lambda_k + \tilde{F}_g^H + \tilde{F}_g^H + \frac{4}{\Delta t} \tilde{F}_g^H
\]

(101)
where \(k \) in superscripts denotes iteration number within a time step. In (96) \(J_{\text{fl}} \), \(J_{\text{me}} \) and \(J_{\text{fn}} \) compose a Jacobian matrix while \(\hat{R}_l \) and \(\hat{R}_c \) are parts of a residual vector. Simplified form of (96) for a single finite element is given as

\[
\hat{R} = \frac{1}{2} \begin{bmatrix} \hat{B}_m^2 + \lambda_m \hat{B}_m^2 + \lambda_p \hat{B}_p^2 \end{bmatrix}^T U_\beta (\omega_0) \hat{I}_p (\omega_0) + \hat{C}_m \lambda_m \hat{B}_m^2 - C_m
\]

(102)

where \(\lambda_p \) is the added mass and \(\lambda_m \) is the hydrostatic stiffness parameter. The symmetry is mostly achieved by selecting an appropriate form of the axial elongation condition in (75). Also, during derivation of the Newton-Raphson method given by (96), the discretized axial elongation condition (91) is multiplied by \(-\frac{1}{2}\) to fully realize the symmetry.

Detailed inspection of (96)

Detailed inspection of (96) reveals symmetric form of the Jacobian matrix. The symmetry is mostly achieved by selecting appropriate form of the axial elongation condition in (75). Also, during derivation of the Newton-Raphson method given by (96), the discretized axial elongation condition (91) is multiplied by \(-\frac{1}{2}\) to fully realize the symmetry.

2.2 Time domain hydrodynamics of a floating body

Hydrodynamics of a floating body in the time domain is defined by Cummins [16], in the following form

\[
\begin{bmatrix} M^+ \end{bmatrix} + \begin{bmatrix} A^- \end{bmatrix} \begin{bmatrix} \xi (t) \end{bmatrix} + \int_0^\infty \begin{bmatrix} K(t-\tau) \end{bmatrix} \begin{bmatrix} \xi (\tau) \end{bmatrix} d\tau + \begin{bmatrix} C^+ \end{bmatrix} \begin{bmatrix} \xi (t) \end{bmatrix} = \begin{bmatrix} F(t) \end{bmatrix}
\]

(105)

where

- \(\{\xi (t)\} \) – displacement vector of a floating body dependent on time
- \(\begin{bmatrix} M^+ \end{bmatrix} \) – mass matrix due to own mass of a floating body
- \(\begin{bmatrix} A^- \end{bmatrix} \) – added mass independent of frequency (or added mass for the time domain)
- \(\begin{bmatrix} C^+ \end{bmatrix} \) – hydrostatic stiffness matrix
- \(\begin{bmatrix} K(t) \end{bmatrix} \) – matrix of impulse response function (memory function)
- \(\{F(t)\} \) – excitation force vector.

It is shown in [16] that the impulse response function can be calculated from frequency dependent damping coefficients \([B(\omega)\/]

\[
\begin{bmatrix} K(t) \end{bmatrix} = \frac{2}{\pi} \int_0^\infty \begin{bmatrix} B(\omega) \end{bmatrix} \cos(\omega t) d\omega
\]

(106)

Added mass in (105) is defined by Ogilvie [17] as follows

\[
\begin{bmatrix} A^- \end{bmatrix} = \begin{bmatrix} A(\omega_{ac}) \end{bmatrix} + \frac{1}{\omega_{ac}} \int_0^\infty \begin{bmatrix} K(t) \end{bmatrix} \sin(\omega_{ac} t) dt
\]

(107)

where

- \(\begin{bmatrix} A(\omega) \end{bmatrix} \) – frequency dependent added mass
- \(\omega_{ac} \) – arbitrary chosen frequency

Considering a moored floating object, excitation force vector \(\{F(t)\} \) is calculated as

\[
\begin{bmatrix} F(t) \end{bmatrix} = \begin{bmatrix} F_{w0}(t) \end{bmatrix} + \begin{bmatrix} F_{w0}^2(t) \end{bmatrix} + \begin{bmatrix} F_{wn}(t) \end{bmatrix} + \begin{bmatrix} F_{wa}(t) \end{bmatrix} + \begin{bmatrix} F_{vd}(t) \end{bmatrix} + \begin{bmatrix} F_{vd}(t) \end{bmatrix} + \begin{bmatrix} F_{vd}(t) \end{bmatrix} + \begin{bmatrix} F_{vd}(t) \end{bmatrix},
\]

(108)

where

- \(\begin{bmatrix} F_{w0}(t) \end{bmatrix} \) – wave loads of the first order on a floating object (in the time domain)
- \(\begin{bmatrix} F_{w0}^2(t) \end{bmatrix} \) – wave loads of the second order
- \(\begin{bmatrix} F_{wn}(t) \end{bmatrix} \) – wind loads
- \(\begin{bmatrix} F_{wa}(t) \end{bmatrix} \) – sea current loads
- \(\begin{bmatrix} F_{vd}(t) \end{bmatrix} \) – viscous drag loads.

Calculation procedures of the above listed loads are shown in Appendix B.

2.3 Coupled model

For complete description of the moored object response it is necessary to develop a coupled model. In this study, the coupling is achieved on the floating object’s connection points with the mooring lines. At each connection point, two conditions must be fulfilled.

The first condition requires that the upper end of the mooring line has the same displacement in time as the connection point on the floating object. This condition is usually called a displacement compatibility and in this case is formulated using Figure 6, where

- \(\hat{P} \) – coordinate system of the floating object
- \(\{\xi \} \) – displacement vector of \(\hat{P} \)
- \(\{\xi \} \) – displacement vector of \(\hat{P} \)
- \(\{\xi \} \) – displacement vector of \(\hat{P} \)

Figure 6 The displacement compatibility of \(\hat{P} \)

Slika 6 Kompatibilnost pomaka točke \(\hat{P} \)
\(\mathbf{x}, \alpha \) – translational and angular displacement vector of the floating object, respectively

\(\mathbf{p} \) – position vector of \(P \) in regard to \(G \)

\(\mathbf{y}^{\text{MC}} \) – position vector of the upper end of the mooring line.

According to Figure 6, the displacement compatibility is formulated for \(P \) as follows

\[
y^{\text{MC}} = \mathbf{r}^G + \mathbf{x}^G + \mathbf{p} + \alpha \times \mathbf{p}.
\]

(109)

The second condition is based on the equilibrium of forces at the connection point defined as

\[
\mathbf{F}^{\text{FC}} + \mathbf{F}^{\text{MC}} = 0,
\]

(110)

where

\(\mathbf{F}^{\text{FC}} \) – force on the floating object due to the mooring line

\(\mathbf{F}^{\text{MC}} \) – force on the mooring line due to the floating object.

To carry out calculation of the coupled model, the force \(\mathbf{F}^{\text{MC}} \) must be taken into account when defining the global force vector of the corresponding mooring line, see (69). Similar, the force \(\mathbf{F}^{\text{FC}} \) should be considered when defining governing equation (105) of the floating object. In this case, the moment regarding the centre of gravity caused by \(\mathbf{F}^{\text{FC}} \) should also be considered.

3 Case study I - single mooring line

This case study is based on observation of Tahar & Kim [9] who have considered a single polyester mooring line. The mooring line is placed vertically, and it is used for a buoy, see Figure 7.

Figure 7 Single mooring line
Slika 7 Jednostruka sidrena linija

It is assumed that the buoy is floating at calm free surface of the sea. Hydrodynamic loads as well as environmental loads are not taken into account. Properties of the mooring line are given in Table 1.

<p>| Table 1 | Properties of the single mooring line |</p>
<table>
<thead>
<tr>
<th>Tablica 1</th>
<th>Značajke sidrene linije</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Quantity</td>
</tr>
<tr>
<td>Pretension</td>
<td>412.8</td>
</tr>
<tr>
<td>Length</td>
<td>914.4</td>
</tr>
<tr>
<td>Segment 1 (ground section): chain</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>12.19</td>
</tr>
<tr>
<td>Diameter</td>
<td>70</td>
</tr>
<tr>
<td>Distributed mass</td>
<td>30.2</td>
</tr>
<tr>
<td>Wet weight</td>
<td>258</td>
</tr>
<tr>
<td>Stiffness (AE)</td>
<td>(1.08 \cdot 10^5)</td>
</tr>
<tr>
<td>Minimum breaking load (MBL)</td>
<td>(11.8 \cdot 10^3)</td>
</tr>
<tr>
<td>Segment 2: wire (polyester)</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>856.49</td>
</tr>
<tr>
<td>Diameter</td>
<td>85</td>
</tr>
<tr>
<td>Distributed mass - RHOL</td>
<td>5.06</td>
</tr>
<tr>
<td>Wet weight</td>
<td>12.3</td>
</tr>
<tr>
<td>Linearized stiffness</td>
<td>(2.429 \cdot 10^4)</td>
</tr>
<tr>
<td>Stiffness parameters:</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>2.5</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2.0</td>
</tr>
<tr>
<td>Minimum breaking load (MBL)</td>
<td>(1.97 \cdot 10^3)</td>
</tr>
<tr>
<td>Segment 3: chain</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>45.72</td>
</tr>
<tr>
<td>Other parameters are the same as for the segment 1.</td>
<td></td>
</tr>
</tbody>
</table>

Static case

Initial state is characterized by a pretension force and associated elongation of the mooring line. This force is applied at the

Figure 8 The relation vertical force-elongation of single mooring line with linearized material properties
Slika 8 Odnos vertikalne sile i istezanja sidrene linije s lineariziranim značajkama materijala
upper end of the mooring line. At the same position additional vertical force is applied with the maximum value of 103 kN. Material of the mooring line is assumed to be linear. The relationship between the vertical force and the elongation obtained by the improved model developed in this paper is shown in Figure 8. Within this model 22 finite elements were used. Out of these elements one element is used for each chain segment. For this case it is possible to obtain an analytical solution, see Appendix C. The analytical result is also shown in Figure 8 for comparison, alongside with result from Tahar & Kim [9].

Next, the nonlinear properties of the polyester rope are considered, see (29). The results of these calculations are presented in Fig. 9.

![Graph showing the relation vertical force-elongation of single mooring line with nonlinear material properties](image)

Figure 9 The relation vertical force-elongation of single mooring line with nonlinear material properties

Slika 9 Odnos vertikalne sile i istezanja sidrene linije s nelinijarnim značajkama materijala

4 Case study II - spar platform

Input data for this case study are found in Arcandra [14]. A spar platform moored by polyester ropes is considered. The sea depth is 1 830 m. Characteristics of the platform are given in Table 2. A taut mooring system consisting of four identical mooring lines is used, see Figure 10. Properties of the mooring lines are shown in Table 3. Wind, wave and sea current loads are coming from different directions, see Table 4.

Table 2 Characteristics of the spar platform

<table>
<thead>
<tr>
<th>Designation</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>214.88</td>
<td>m</td>
</tr>
<tr>
<td>Draught</td>
<td>198.12</td>
<td>m</td>
</tr>
<tr>
<td>KB</td>
<td>164.59</td>
<td>m</td>
</tr>
<tr>
<td>KG</td>
<td>129.84</td>
<td>m</td>
</tr>
<tr>
<td>Displacement</td>
<td>220 740</td>
<td>t</td>
</tr>
<tr>
<td>Pitch radius of gyration in air</td>
<td>67.36</td>
<td>m</td>
</tr>
<tr>
<td>Yaw radius of gyration in air</td>
<td>8.69</td>
<td>m</td>
</tr>
<tr>
<td>Drag force coefficient</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>Wind force coefficient</td>
<td>2 671.59</td>
<td>N/(m/s)^2</td>
</tr>
</tbody>
</table>

Table 3 Properties of mooring lines for the spar platform

<table>
<thead>
<tr>
<th>Designation</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretension</td>
<td>2357</td>
<td>kN</td>
</tr>
<tr>
<td>Length</td>
<td>2590.8</td>
<td>m</td>
</tr>
<tr>
<td>Fairlead location above base line</td>
<td>91.44</td>
<td>m</td>
</tr>
<tr>
<td>Segment 1 (ground section): chain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>121.92</td>
<td>m</td>
</tr>
<tr>
<td>Diameter</td>
<td>245</td>
<td>mm</td>
</tr>
<tr>
<td>Distributed mass</td>
<td>287.8</td>
<td>kg/m</td>
</tr>
<tr>
<td>Wet weight</td>
<td>2 485</td>
<td>N/m</td>
</tr>
<tr>
<td>Stiffness AE</td>
<td>1.03·10^6</td>
<td>kN</td>
</tr>
<tr>
<td>Minimum breaking load (MBL)</td>
<td>11.8·10^3</td>
<td>kN</td>
</tr>
<tr>
<td>Distributed added mass</td>
<td>37.4</td>
<td>kg/m</td>
</tr>
<tr>
<td>Drag force coefficient</td>
<td>2.45</td>
<td></td>
</tr>
</tbody>
</table>

Segment 2: wire (polyester)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2 377.44</td>
<td>m</td>
</tr>
<tr>
<td>Diameter</td>
<td>210</td>
<td>mm</td>
</tr>
<tr>
<td>Distributed mass - RHOL</td>
<td>36.52</td>
<td>kg/m</td>
</tr>
<tr>
<td>Wet weight</td>
<td>75.5</td>
<td>N/m</td>
</tr>
<tr>
<td>Linearized stiffness AE</td>
<td>3.18·10^5</td>
<td>kN</td>
</tr>
<tr>
<td>Minimum breaking load (MBL)</td>
<td>12.79·10^3</td>
<td>kN</td>
</tr>
<tr>
<td>Distributed added mass</td>
<td>28.8</td>
<td>kg/m</td>
</tr>
<tr>
<td>Drag force coefficient</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

Segment 3: chain

<table>
<thead>
<tr>
<th>Designation</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>91.44</td>
<td>m</td>
</tr>
</tbody>
</table>

Other parameters are the same as for the segment 1.

Table 4 Environmental conditions for the spar platform

<table>
<thead>
<tr>
<th>Designation</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waves</td>
<td>H_s</td>
<td>m</td>
</tr>
<tr>
<td>T_p</td>
<td>14</td>
<td>s</td>
</tr>
<tr>
<td>Wave spectrum</td>
<td>JONSWAP (γ = 2.5)</td>
<td></td>
</tr>
<tr>
<td>Wave direction</td>
<td>180</td>
<td>degree</td>
</tr>
<tr>
<td>Wind speed (1 h):</td>
<td>16.28</td>
<td>m/s @ 10 m</td>
</tr>
<tr>
<td>Wind spectrum</td>
<td>API RP 2A-WSD</td>
<td></td>
</tr>
<tr>
<td>Wind direction</td>
<td>210</td>
<td>degree</td>
</tr>
<tr>
<td>Sea current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile:</td>
<td>depth</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td>: 0 m</td>
<td>0.0668</td>
</tr>
<tr>
<td></td>
<td>: 60.96 m</td>
<td>0.0668</td>
</tr>
<tr>
<td></td>
<td>: 91.44 m</td>
<td>0.0014</td>
</tr>
<tr>
<td></td>
<td>seabed</td>
<td>0.0014</td>
</tr>
<tr>
<td>Current direction</td>
<td>150</td>
<td>degree</td>
</tr>
</tbody>
</table>

Dynamic case

Each mooring line is modelled by 7 finite elements, and one of them is used for each chain segment. Length of the time step is 0.2 s, see (83) to (90). Within each time step 3 iterations are carried out, see (96) to (104). Hydrodynamic calculations are done using HYDROSTAR [18]. The obtained numerical results are shown in the following figures.
5 Conclusion

In this study, high elongation of polyester mooring lines is considered within a stiffness model in a new, improved way. The nonlinear tension-elongation relation of a polyester rope is a part of the improved stiffness model. Development of the model is done considering the coupled dynamic analysis of a moored vessel.

Special effort is invested to achieve symmetrical forms of equation sets for static and dynamic analysis. These symmetrical forms enable easier numerical implementation utilizing classical FEM codes.

Comparison between the improved model and the current equivalent model is done, see Case study I. The single mooring line that can be analytically described was a base for comparison. The improved model achieved better matching with analytical results. Satisfactory stability and results of the improved model are found in the coupled dynamic analysis of a moored deepwater spar, see Case study II. Therefore, the mooring line model from this paper is a good cornerstone for future research.

References

AN IMPROVED STIFFNESS MODEL FOR POLYESTER MOORING LINES

I. ĆATIPOVIĆ, V. ČORIĆ, J. RADANOVIĆ

Appendix A

Shape functions

Hermite polynomials are used for shape functions \(A_i \) and \(P_m \) during derivation of FEM, as follows [14]

\[
A_i = 1 - 3ξ^2 + 2ξ^3
\]

\[
A_i = L(ξ - 2ξ^2 + ξ^3)
\]

\[
A_i = 3ξ^2 - 2ξ^3
\]

\[
A_i = L(-ξ^2 + ξ^3)
\]

and

\[
P_i = 1 - 3ξ^2 + 2ξ^3
\]

\[
P_i = 4ξ(1 - ξ)
\]

\[
P_i = ξ(2ξ - 1)
\]

with

\[
ξ = \frac{L}{L}
\]

where \(L \) is length of finite element.

Appendix B

Loads on a moored floating object

Wave loads of the first order on the floating object are defined by linear transfer function (LTF), according to [18]

\[
\{F_w^{(1)}(t)\} = R\{\sum_{j=1}^{N} a_j \{ f^{(1)} \}_j e^{-ıtω_j \cdot t} \}, \quad \text{(B1)}
\]

where

- \(i \) – imaginary unit
- \(e^x \) – exponential function of \(x \)
- \(R\{\} \) – denotes real part of complex quantity
- \(\{ f^{(1)} \}_j \) – linear transfer function (LTF) for wave loads of the first order
- \(a_j \) – complex amplitude of a wave component
- \(ω_j \) – frequency of a wave component
- \(N \) – total number of wave components.

Wave loads of the second order are defined using quadratic transfer function (QTF), according to [18] and [19]

\[
\{F_w^{(2)}(t)\} = R\{\sum_{j=1}^{N} \sum_{k=1}^{N} \{ f^{(2)} \}_{jk} a_j a_k^* e^{-ıt(ω_j - ω_k) \cdot t} \}, \quad \text{(B2)}
\]

where

- \(\{ f^{(2)} \}_{jk} \) – quadratic transfer function (QTF) for wave loads of the second order
- \(a_j^* \) – complex conjugate of \(a_j \).

The amplitude of each wave component is determined based on a wave spectrum that describes a sea state

\[
a_j = e^{ıt} \sqrt{2S_{ww}(ω_j)Δω_j}, \quad \text{(B3)}
\]

where

- \(S_{ww} \) – wave spectrum
- \(θ_j \) – phase of a wave component (determined on the basis of a random number)
- \(Δω_j \) – frequency step size.

Wind load on the hull of a floating object can be calculated using simplified engineering approximation

\[
F_{WW} = C_{WW} V_{WW}^2, \quad \text{(B4)}
\]
where
\[F_{WN}, C_{WN} \] – wind load coefficient dependant on the type of floating object and the exposed projected area.

The wind speed is defined on the basis of wind spectrum, see [20].

It can be assumed that the load due a sea current has only constant component. To determine the amount of load the following formula is used

\[F_{CR} = \frac{1}{2} C_{CR} \rho V_{CR}^2 A_{UP}, \]

(B5)

where
\[F_{CR} \] – sea current load
\[C_{CR} \] – coefficient of sea current load (or drag force coefficient)
\[\rho \] – density of the sea water
\[V_{CR} \] – speed of the sea current
\[A_{UP} \] – underwater projected area.

Appendix C

Analytical solution for the case study I

The analytical solution of a single mooring line in the Case study I (see Fig. 7) is based on a classical equation for rod deformation

\[AE \frac{du}{dx} = N, \]

(C1)

where
\[AE \] – axial stiffness of a rod
\[u \] – longitudinal displacement
\[x \] – local longitudinal coordinate axis
\[N \] – cross-sectional force.

Eq. (C1) is used for each segment of the mooring line. The origin of the local coordinate system is set up at the end of the segment that is closer to the seabed. In the case of a single mooring line the cross-section force \(N \) and the real tension force \(T \) are the same.

Since the segments of the mooring line are vertical, the force \(T \) is simply formed for each segment in the local coordinate system

\[T_1(x) = R + q_{E1}x, \text{ for Segment 1} \]

(C2)

\[T_2(x) = (R + q_{E1}l_1 + q_{E2}x - \rho g(l_1 + l_2 - x)A), \text{ for Segment 2} \]

(C3)

\[T_3(x) = (R + q_{E1}l_1 + q_{E2}l_2) + q_{E3}x, \text{ for Segment 3} \]

(C4)

with

\[R = F_V - q_{E1}l_1 - q_{E2}l_2 - q_{E3}l_3 \]

(C5)

where \(R \) is reaction force at the seabed; \(q_{E1}, q_{E2} \) and \(q_{E3} \) are effective distributed loads of segments, see (30); \(l_1, l_2 \) and \(l_3 \) are lengths of segments; \(F_V \) is the vertical force on the top of the mooring line which contains initial pretension. During formulation of (C3) for Segment 2 it is necessary to consider (24). For the nonlinear case of polyester rope material axial stiffness is calculated using (29).