FINITE p-GROUPS ALL OF WHOSE PROPER SUBGROUPS HAVE ITS DERIVED SUBGROUP OF ORDER AT MOST p

Zvonimir Janko
University of Heidelberg, Germany

Abstract. We give in Theorem 7 a complete characterization of the title groups.

Here we give a complete characterization of the title groups. This result is important for the structure theory of finite p-groups and also it solves the Problem 39 stated by Y. Berkovich in [1]. In the proofs we use partly some ideas of J. Q. Zhang and X. H. Li ([5, Proposition 3]) and V. Čepulić and O. Pylyavska ([4, Proposition 5]). To facilitate the proof of the main result (Theorem 7), we shall first prove some auxiliary results.

Our notation is standard (see [1]) and we consider here only finite p-groups.

Proposition 1. Let G be a title group. Then for all $x, y \in G$ such that $\langle x, y \rangle < G$ we have $o([x, y]) \leq p$ and $[x, y] \in Z(G)$.

Proof. Suppose that $[x, y] \neq 1$. Let X be a maximal subgroup of G containing $\langle x, y \rangle$. Then $X' = \langle [x, y] \rangle \leq G$ with $o([x, y]) = p$ and so $[x, y] \in Z(G)$.

Proposition 2. If G is a title group, then G' is abelian of order $\leq p^3$.

Proof. We may assume that G is nonabelian. Let $X \neq Y$ be two maximal subgroups of G. Then $|X'| \leq p$ and $|Y'| \leq p$. By a result of A. Mann (Exercise 1.69(a) in [1]), $|G' : (X'Y')| \leq p$ and so $|G'| \leq p^3$. If G' would be nonabelian, then $|G'| = p^3$ and $Z(G')$ (being of order p) is cyclic and so (by an elementary result of W. Burnside, see Lemma 1.4 in [1]) G' is also cyclic, a contradiction. Hence G' is abelian.

2010 Mathematics Subject Classification. 20D15.

Key words and phrases. Finite p-groups, minimal nonabelian p-groups, commutator subgroups, nilpotency class of p-groups.
Proposition 3 (Zhang and Li). If G is a title group and $|G'| \geq p^2$, then $d(G) \leq 3$.

Proof. Assume that $|G'| \geq p^2$. Then G is not minimal nonabelian and so there exists a maximal subgroup A with $|A'| = p$ and we have $A' \triangleleft G$. Suppose that $M' \leq A'$ for each maximal subgroup M of G. Then G/A' is minimal nonabelian. But then $d(G/A') = 2$, $A' \leq \Phi(G)$ and so $d(G) = 2$ and we are done in this case.

We may assume that G has a maximal subgroup B such that $B' \not\leq A'$. We get $|A'| = |B'| = p$ and $A' \cap B' = \{1\}$. Let $a_1, a_2 \in A$ and $a_3, a_4 \in B$ be such that $A' = \langle [a_1, a_2] \rangle$ and $B' = \langle [a_3, a_4] \rangle$. Since $|[a_1, a_2, a_3, a_4]|' \geq p^2$, we get $[a_1, a_2, a_3, a_4] = G$ and so $d(G) \leq 4$.

We assume, by a way of contradiction, that $d(G) = 4$. By Proposition 1, for any $x, y \in G$ we have $o([x, y]) \leq p$ and $[x, y] \in Z(G)$. This implies that G' is elementary abelian and $G' \leq Z(G)$. In particular, G is of class 2.

For any $k \in \{1, 2\}$ and $l \in \{3, 4\}$, we have $(a_1, a_2, al) < G$ and $(a_k, a_3, a_4) < G$ and so $(a_1, a_2, al)' = \langle [a_1, a_2] \rangle$ and $(a_k, a_3, a_4)' = \langle [a_3, a_4] \rangle$. It follows that $[a_k, a_l] \in \langle [a_1, a_2] \rangle \cap \langle [a_3, a_4] \rangle = \{1\}.$

This implies $[a_1, a_2, a_3] = [a_1, a_2][a_1, a_3] = [a_1, a_2]$ and $[a_2, a_3, a_4] = [a_2, a_4][a_3, a_4] = [a_3, a_4]$.

But then (a_1, a_2, a_3, a_4) is a proper subgroup of G and we have $|(a_1, a_2, a_3, a_4)'| \geq p^2$, a contradiction. Our proposition is proved.

Proposition 4 (Y. Berkovich). Suppose that G is a nonabelian p-group. If $d(G) = 2$, then $H' < G'$ for each $H < G$.

Proof. Let $R < G'$ be a G-invariant subgroup of index p in G'. Then $|G/R'| = p$ and $d(G/R) = 2$. This implies that G/R is minimal nonabelian. For each maximal subgroup H of G, $H' \leq R < G'$ and we are done.

Proposition 5 (Čepulić and Pylyavskaya). Let G be a title p-group with $p > 2$. Then for any $a, b \in G$, we have $[a^p, b] = [a, b]^p = [a, b]^p$.

Proof. We set $g = [a, b]$. If g commutes with a, then for each $n \geq 1$ we prove by induction that $[a^n, b] = [a, b]^n$. Indeed, for $n > 1$,

$$[a^n, b] = [a^{n-1}, b] = [a, b]^{n-1} [a^{n-1}, b] = [a, b][a^{n-1}, b] = [a, b][a, b]^{n-1} = [a, b]^n.$$

In particular, we have $[a^p, b] = [a, b]^p$.

We assume now that $[a, b] = z \neq 1$. Since $\langle g, a \rangle < G$, Proposition 1 implies that $o(z) = p$ and $z \in Z(G)$. We note that

$$g^a = a^{-1} a^g = g (g^{-1} a^{-1} g a) = g[a, a] = g z$$ and so $g^n = g z^n.$
for all \(i \geq 1 \). We have

\[
[a^p, b] = [a \cdot a^{-1}, b] = [a, b]^{a^{-1}} [a^{p-1}, b] = [a, b]^{a^{-1}} [a \cdot a^{p-2}, b]
\]

and so continuing we get finally:

\[
[a^p, b] = [a, b]^{a^{-1}} [a, b]^{a^{p-2}} \cdots [a, b]^2 [a, b]^3
\]

of which we may use Lemma 1.1 in [1] since \(\Phi(G) \) is cyclic and therefore \(K_3(G) \cong E_{p^2} \). We have \(\mathcal{U}_1(G) \leq Z(G) \) and so \(\Phi(G) = \mathcal{U}_1(G)G' \) is abelian and \(G'/\Phi(G) \cong E_{p^2} \). Also, \(\mathcal{U}_1(G)K_3(G) \leq Z(G) \) and in fact \(\mathcal{U}_1(G)K_3(G) = Z(G) \). Indeed, if \(\mathcal{U}_1(G)K_3(G) < Z(G) \), then \(G/Z(G) \cong E_{p^2} \). But in that case \(G \) has \(p+1 \) abelian maximal subgroups and this implies (Exercise P1 in [3]) \(|G'| = p \), a contradiction. Let \(M \) be any maximal subgroup of \(G \) such that \(|M: \Phi(G)| = p \). Then \(M \) is either abelian or \(Z(G) = Z(M) \) and \(M/Z(M) \cong E_{p^2} \). In the second case we may use Lemma 1.1 in [1] since \(\Phi(G) \) is an abelian maximal subgroup of \(M \). From \(|M| = p[Z(M)]/|M'| \), we get \(|M'| = p \). We have proved that in this case \(G \) has the title property.

Suppose that \(G \) is a \(p \)-group in (d). For any \(x, y \in G \) we have \([x^p, y] = [x, y]^p = 1 \) and so \(\mathcal{U}_1(G) \leq Z(G) \). It follows that \(\Phi(G) = \mathcal{U}_1(G)G' \leq Z(G) \) and \(G'/\Phi(G) \cong E_{p^2} \). Let \(M \) be any maximal subgroup of \(G \) such that \(|M: \Phi(G)| = E_{p^2} \). It follows that \(p+1 \) maximal subgroups of \(M \) which contain \(\Phi(G) \) are abelian. This implies that \(|M'| \leq p \) and we are done. \(\Box \)
Theorem 7. A p-group \(G \) has the property that each proper subgroup of \(G \) has its derived subgroup of order at most \(p \) if and only if one of the following holds:

(a) \(|G'| \leq p \);
(b) \(d(G) = 2, |G'| = p^2 \);
(c) \(p > 2, d(G) = 2, c(G) = 3, G' \cong E_{p^3}, \mathcal{U}_1(G) \leq Z(G) \)

(note that such \(p \)-groups exist. See for example \(\Lambda_2 \)-groups of order \(p^5 \), \(p > 2 \), in Proposition 71.5(b) in [2]);
(d) \(d(G) = 3, c(G) = 2, G' \cong E_{p^3} \) or \(E_{p^2} \). Here we have \(\Phi(G) = Z(G) \).

Proof. If \(G \) is a \(p \)-group in (a), (b), (c) or (d), then Proposition 6 implies \(|H'| \leq p \) for each subgroup \(H < G \).

Suppose that \(G \) is a \(p \)-group all of whose proper subgroups have its derived subgroup of order \(\leq p \). If \(|G'| \leq p \), then we have the groups in part (a) of our theorem. In what follows we assume that \(|G'| \geq p^2 \). By Proposition 2, \(G' \) is abelian of order \(p^2 \) or \(p^3 \). By Proposition 3, we have \(d(G) \leq 3 \).

(i) First assume \(d(G) = 2 \). If \(|G'| = p^2 \), then we have obtained the groups in part (b) of our theorem. In the sequel we shall assume here \(|G'| = p^3 \). By a result of A. Mann (Exercise 1.69(a) in [1]), all \(p + 1 \) maximal subgroups \(M_i \) \((i = 1, 2, \ldots, p + 1)\) of \(G \) are nonabelian, \(|M_i'| = p \) and for any \(i \neq j \) we have \(M_i' \cap M_j' = \{1\} \) so that \(M_i' \times M_j' \cong E_{p^2} \) and \(M_i' \times M_j' \leq Z(G) \). If \(c(G) = 2 \), then \(d(G) = 2 \) would imply that \(G' \) is cyclic, contrary to the existence of the subgroup \(M_i' \times M_j' \cong E_{p^2} \). Hence \(c(G) \geq 3 \). But \(\{1\} \neq K_3(G) = [G, G'] \leq M_i' \times M_j' \leq Z(G) \) and so \(c(G) = 3 \). We set \(E = M_i' \times M_j' = G' \cap Z(G) \cong E_{p^2} \).

Whenever \(a, b \in G \) are such that \((a, b) = G \), then \([a, b] \in G' \). For any \(x \in G \) we have \(g^x = ge \) with some \(e \in E \). Then \(g^{x^2} = ge^i \) and so \(g^{x^p} = g \). It follows that \(\mathcal{U}_1(G) \) centralizes \(G' \) and so \(\Phi(G) = \mathcal{U}_1(G)G' \) centralizes \(G' \).

(ii) Now assume \(p > 2 \). Suppose in addition that \(G' \) is not elementary abelian. Then \(E = \mathcal{U}_1(G') \) and set \(\{1\} \neq \mathcal{U}_3(G') = \langle s \rangle < E \) so that \(G'/\langle s \rangle \cong E_{p^2} \). If \(K_3(G) = [G, G'] \cong \langle s \rangle \), then \(G'/\langle s \rangle \) is of class 2 so that \(d(G'/\langle s \rangle) = 2 \) would imply that \(G'/\langle s \rangle \cong (G/\langle s \rangle)' = (G/\langle s \rangle)'' \) is cyclic, a contradiction. Hence there is an element \(c \in G - \Phi(G) \) such that \(g^c = gl \) with \(l = [g, c] \in E - \langle s \rangle \). Let \(d \in G - \Phi(G) \) such that \([c, d] = G \) so that \([c, d] = G'' \). By Proposition 5, \([c, dp] = [c, dp] \equiv s^j \) where \(j \neq 0 \) (mod \(p \)). Consider the maximal subgroup \(C = \langle \Phi(G), c \rangle \). Since \(g, c, dp \in C \), we have \(C' \geq \langle g, c \rangle, [c, dp] = \langle l, s^j \rangle = E \cong E_{p^2} \), a contradiction. We have proved that \(G' \cong E_{p^2} \). For any \(x, y \in G \) we get by Proposition 5, \([x^p, y] = [x, y]^p = 1 \) and so \(\mathcal{U}_1(G) \leq Z(G) \). We have obtained the groups given in part (c) of our theorem.

(2) It remains to consider the case \(p = 2 \). Assume in addition that \(\{1\} \neq K_3(G) = [G, G'] < E \) and set \([G, G'] = \langle u \rangle \), where \(u \) is an involution
in $E \leq Z(G)$. Note that $\Phi(G)$ centralizes G' and for each $x \in G - \Phi(G)$ and $y \in G' - E$ we have $y^x = yu'$ with $u' \in \langle u \rangle$. Set $G_0 = C_G(G')$ so that we have $|G : G_0| = |G_0 : \Phi(G)| = 2$. Since $G'/\langle u \rangle$ is of class 2 and $d(G'/\langle u \rangle) = 2$, we have $G'/\langle u \rangle$ is cyclic. Hence if $g \in G' - E$, then $g^2 = v$ is an involution in $E - \langle u \rangle$ and therefore $E = \Omega_1(G') = \langle u, v \rangle$ and $U_1(G') = \langle v \rangle$. Take some elements $a \in G_0 - \Phi(G)$ and $b \in G - G_0$. Then $\langle a, b \rangle = G$ and therefore $[a, b] = h \in G' - E$ with $h^2 = v$, $h^a = h$ and $h^b = hu$. Consider the maximal subgroup $H = \langle \Phi(G), b \rangle$. Since

$$[a^2, b] = [a, b]^a[a, b] = h^a h = h^2 = v \text{ and } [h, b] = u,$$

we get $H' \geq \langle u, v \rangle = E \cong E_4$, a contradiction.

We have proved that $K_3(G) = [G, G'] = E = G' \cap Z(G) \cong E_4$. Let $a, b \in G - \Phi(G)$ be such that $\langle a, b \rangle = G$. Then $g = [a, b] \in G' - E$, $[g, a] = c_1$, $[g, b] = c_2$, where $\langle c_1, c_2 \rangle = E = K_3(G)$. We set $c_3 = c_1c_2$ and get

$$[g, ab] = [g, b][a, g]^b = [g, b][a, g] = c_2 c_1 = c_3.$$

We compute the commutator subgroups of our three nonabelian maximal subgroups $X_1 = \langle \Phi(G), a \rangle$, $X_2 = \langle \Phi(G), b \rangle$ and $X_3 = \langle \Phi(G), ab \rangle$, where we note that we must have $|X_i'| = 2$ for $i = 1, 2, 3$.

Since $[g, a] = c_1$ and

$$[a^2, b] = [a, b]^a[a, b]^b = gg^b = g \cdot gc_2 = g^2 c_2,$$

we have $X_1' = \langle c_1 \rangle$ and so we must have $g^2 c_2 \in \langle c_1 \rangle$. This forces either $g^2 = c_2$ or $g^2 = c_3$.

Since $[g, b] = c_2$ and

$$[a^2, b] = [a, b]^a[a, b] = g^a g = gc_1 \cdot g = g^2 c_1,$$

we have $X_2' = \langle c_2 \rangle$ and so we must have $g^2 c_1 \in \langle c_2 \rangle$. This forces either $g^2 = c_1$ or $g^2 = c_3$. With the above we get exactly $g^2 = c_3$.

Since $[g, ab] = c_3$ and

$$[a^2, ab] = [a, ab]^a[a, ab] = g^a g = gc_1 \cdot g = g^2 c_1,$$

(where we have used the fact that $[a, ab] = [a, b]$) we have $X_3' = \langle c_3 \rangle$ and so we must have $g^2 c_1 \in \langle c_3 \rangle$. But we know that $g^2 = c_3$ and so $g^2 c_1 = c_3 c_1 = c_2 \in \langle c_3 \rangle$, a contradiction. We have proved that such 2-groups do not exist!

(ii) Finally, assume that $d(G) = 3$. For any $x, y \in G$ we have $\langle x, y \rangle < G$ and so Proposition 1 implies that $o([x, y]) \leq p$ and $[x, y] \in Z(G)$. But then G' is elementary abelian (of order p^2 or p^3) and $G' \leq Z(G)$ and so we have obtained the groups from part (d) of our theorem. For any $a, b \in G$, $[a^p, b] = [a, b]^p = 1$ and so $\Phi(G) \leq Z(G)$. If $Z(G) \not\leq \Phi(G)$, then there is a maximal subgroup M of G such that $G = \langle M, x \rangle$, where $x \in Z(G)$. But then $G' = M'$ and so $G' = 2$, a contradiction. Hence $\Phi(G) = Z(G)$. Theorem 7 is completely proved.
References

[4] V. Čepulíč and O. Pylyavska, Determination of p-groups all of whose proper subgroups have a commutator subgroup of order equal or less than p ($p \geq 3$), Naukovi zapysky, Kyjevo 39 (2005), 28–34.

Z. Janko
Mathematical Institute
University of Heidelberg
69120 Heidelberg
Germany
E-mail: janko@mathi.uni-heidelberg.de
Received: 16.11.2010.