This paper presents the basic concepts of Role and Reference Grammar [RRG], a theory of grammar which draws heavily on the analysis of non-Indo-European languages and which is concerned with the interaction of syntax, semantics and pragmatics in grammatical systems. RRG is a monostratal theory which posits a single syntactic representation for a sentence, which is linked directly to a semantic representation by means of a linking algorithm. The syntactic representation of clause structure in RRG is called the layered structure of the clause. It postulates that clauses are universally composed of a nucleus (which contains the predicking element), a core (which contains the nucleus and the arguments of the predicking element), and a periphery (which contains the temporal and locative modifiers of the core). Modifying each of the layers of the clause are what are called operators in RRG: they include grammatical categories like tense, aspect, modality, negation and illocutionary force. Complex sentences are composed of these units: nucleus + nucleus constitutes a nuclear juncture, core + core constitutes a core juncture, and clause + clause constitutes a clausal juncture. The units in a juncture may stand in one of three relationships to each other: coordination, subordination and cosubordination. There are thus nine abstract juncture-nexus types in universal grammar, and the juncture-nexus types occurring in a particular language may be realized by one or more formal construction types.

The semantic representation of a sentence is built on an Aktionsart-based system of lexical decomposition; it is termed a logical structure [LS]. The semantic functions of arguments are defined in terms of LS-positions. Crucial to the theory is the notion of semantic macrorole; there are two, actor and undergoer. The macroroles and other arguments are linked to the syntax by the linking algorithm. RRG does not assume traditional grammatical relations; it recognizes only a single grammatical function, termed the privileged syntactic argument.
In addition to the syntactic and semantic representations, there is also a representation of the focus structure of the sentence. It indicates the scope of the assertion in an utterance in contrast to the pragmatic presupposition. It is an important part of the RRG analysis of many grammatical phenomena, and one of the theory’s major typological claims is that significant differences among grammatical systems reflect the different roles that focus structure can play in the grammar, particularly in the linking algorithm.

The RRG view of language acquisition holds that children construct a grammar on the basis of their general cognitive endowment plus the data in the speech to which they are exposed; no autonomous language acquisition device is required.

Key words: syntactic theory, linking, lexical decomposition, macrorole, focus structure, language acquisition, clause linkage

1. Introduction

Role and Reference Grammar [RRG] (Van Valin 1993b, Van Valin & LaPolla 1997, Yang 1998) grew out of an attempt to answer two basic questions: (i) what would linguistic theory look like if it were based on the analysis of Lakhota, Tagalog and Dyirbal, rather than on the analysis of English?, and (ii) how can the interaction of syntax, semantics and pragmatics in different grammatical systems best be captured and explained? RRG takes language to be a system of communicative social action, and accordingly, analyzing the communicative functions of grammatical structures plays a vital role in grammatical description and theory from this perspective. Language is a system, and grammar is a system in the traditional structuralist sense; what distinguishes the RRG conception of language is the conviction that grammatical structure can only be understood and explained with reference to its semantic and communicative functions. In terms of the abstract paradigmatic and syntagmatic relations that define a structural system, RRG is concerned not only with relations of cooccurrence and combination in strictly formal terms but also with semantic and pragmatic cooccurrence and combinatory relations. It is a monostratal theory, positing only one level of syntactic representation, the actual form of the sentence (cf. fn. 3).

With respect to cognitive issues, RRG adopts the criterion of psychological adequacy formulated in Dik (1991), which states that a theory should be “compatible with the results of psycholinguistic research on the acquisition, processing, production, interpretation and memorization of linguistic expressions” (1991: 248). It also accepts the related criterion put forth in Bresnan & Kaplan (1982) that theories of linguistic structure should be directly relatable to testable theories of language production and comprehension. The RRG approach to language acquisition, sketched in Van Valin (1991a, 1994, 1998) and Van Valin & LaPolla (1997), rejects the position that grammar is radically arbitrary and hence unlearnable, and maintains that it is relatively
motivated (in Saussure's sense) semantically and pragmatically. Accordingly, there is sufficient information available to the child in the speech to which it is exposed to enable it to construct a grammar.

2. Central concepts of the theory
The basic organization of RRG is given in Figure 1.

![Figure 1: Organization of Role and Reference Grammar](image)

As mentioned earlier, RRG is a monstratal theory, and there is a direct mapping or linking between the semantic representation of a sentence and its syntactic representation. Each of the aspects of this figure will be explicated in the course of the discussion.

2.1 Clause structure RRG rejects the standard formats for representing clause structure (grammatical relations, X-bar syntax), because they are not universal and hence necessarily impose aspects of structure on at least some languages where it is not appropriate. This follows from the assumptions regarding a theory of clause structure in (1).

(1) General considerations for a theory of clause structure:

a. A theory of clause structure should capture all of the universal features without imposing features on languages in which there is no evidence for them.

b. A theory should represent comparable structures in different languages in comparable ways.

The RRG conception of clause structure (originally proposed in Foley & Van Valin 1984 and further developed in Van Valin 1993b), is known as the LAYERED STRUCTURE OF THE CLAUSE [LSC]. It is made up of the NUCLEUS, which contains the predicate(s), the CORE, which contains the nucleus plus the arguments of the predicate(s), and the PERIPHERY, which contains adjunct temporal and locative modifiers of the core. It is illustrated in Figure 2, and the semantic basis of the LSC is
summarized in Table 1.

**Figure 2: The units of the layered structure of the clause**

<table>
<thead>
<tr>
<th>Semantic Element(s)</th>
<th>Syntactic Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicate</td>
<td>Nucleus</td>
</tr>
<tr>
<td>Argument in semantic representation of predicate</td>
<td>Core argument</td>
</tr>
<tr>
<td>Non-arguments</td>
<td>Periphery</td>
</tr>
<tr>
<td>Predicate + Arguments</td>
<td>Core</td>
</tr>
<tr>
<td>Predicate + Arguments + Non-arguments</td>
<td>Clause (= Core + Periphery)</td>
</tr>
</tbody>
</table>

Table Semantic Units Underlying the Syntactic Units of the Layered Structure of the Clause

These aspects of the LSC are universal. Some languages have a PRE-CORE SLOT [PrCS], which is the position of WH-words in languages like English and Malagasy, and a LEFT-DETACHED POSITION, [LDP], which is the position of the pre-clausal element in a left-dislocation construction or the NP marked by -(n)un in Korean or wa in Japanese (Yang 1994). In addition, some verb-final languages have a POST-CORE SLOT [PoCS] (e.g. Japanese; Shimojo 1995), and some languages also have a RIGHT-DETACHED POSITION, [RDP], which is the position of the post-clausal element in a right-dislocation construction. Each of the major layers (nucleus, core, clause) is modified by one or more OPERATORS, which include grammatical categories such as tense, aspect, modality and evidentiality. The LSC applies equally to fixed word-order and free word-order languages, to head-marking and dependent-marking languages, to languages with and without grammatical relations. It is argued that noun phrases and adpositional phrases have a comparable layered structure; see Van Valin (1993b), § 1.7, Van Valin & LaPolla (1997), § 2.3. Operators in the NP include determiners, quantifiers and adjectival and nominal modifiers. In the formal representation of the LSC (proposed in Johnson 1987), operators are represented in a
distinct projection of the clause from the predicates and arguments (the constituent projection). This is presented in Figures 3-6.

Figure 3: The Layered Structure of the Clause

The periphery has been omitted from this diagram for the sake of simplicity.
Figure 4: The LSC in English and Croatian^2
The man saw the woman in the mountains.

'He killed them.'

'I killed those bears.'
Dyirbal (Australia; Dixon 1972) and Lakhota (Siouan, North America) represent free-word-order and head-marking languages, respectively; Dyirbal is also dependent-marking. The operator projections have been omitted in the Dyirbal and Lakhota examples. The lines connecting the determiners to the head nouns are the operator projection within the NP, analogous to the operator projection within the clause, as in Figures 3-4. Both Croatian and Dyirbal exhibit discontinuous constituency, and this is handled by means of the operator projection within the NPs, as in Figures 4 and 5. In head-marking languages like Lakhota, the bound pronominals on the verb are considered to be the core arguments; overt NPs are within the clause in apposition to them (Van Valin 1985, 1987). Note that despite the differences between the three languages in Figures 4-6, comparable structural relations, e.g. core argument, peripheral adjunct, are represented in the same way. It should be noted that these representations are not abstract, unlike relational networks or functional structures; they are intended to be concrete, in the sense that they should represent the actual form of the sentence, including the linear sequence of its constituent elements and their morphological properties.3

Representations of constituent projections such as these should be viewed as syntactic templates, the inventory of which in a language constitutes an important component of its grammar. It may be termed the SYNTACTIC INVENTORY and complements the lexicon. RRG also employs constructional templates to characterize the idiosyncratic features of grammatical constructions.

The three layers of the LSC are also the three basic building blocks of complex sentences in human language. The unmarked pattern for the construction of complex sentences involves combining nuclei with nuclei, cores with cores, or clauses with clauses. These are called levels of JUNCTURE in RRG, i.e. nuclear juncture, core juncture and clausal juncture. Clausal junctures, as the name implies, involve sentences containing multiple clauses. Examples of nuclear junctures from French, English and Mandarin are given in (2) and their representations are in Figure 7. Justifications for these structures can be found in Foley & Van Valin (1984), Van Valin (1993b), Van Valin & LaPolla (1997).

(2) a. Je ferai manger les gâteaux à Jean. [two nuclei, faire and manger, in a single core]
   1sg make. FUT eat the cakes to John
   'I will make John eat the cakes.'

   b. John forced open the door. [two nuclei, push and open, in a single core]
c. Tā qiāo pò le yī ge fānwǎn. [two nuclei, qiāo 'hit' and pò 'break', in 3sg hit break PRFV one CL bowl a single core] (Hansell 1993)

'He broke (by hitting) a ricebowl.'

Figure 7: Nuclear junctures in French, English and Mandarin

Core junctures involve two or more cores (which may themselves be internally complex) in a clause. Examples from French, English and Mandarin are given in (3) and their structures in Figure 8. In this type of core juncture, the two cores share a core argument; ‘sharing a core argument’ is defined formally in terms of the linking algorithm mapping syntactic and semantic representations into each other (cf. § 2.4).
(3) a. Je laisserai Jean manger les gâteaux.
    1sg let.FUT John eat the cakes
    'I will let John eat the cakes.'
  b. I ordered Fred to force the door open.
  c. Tā jiāo wǒ xiě zì.
    3sg teach 1sg write characters
    'She teaches me to write characters.'

Figure 8: Core Junctures in French, English and Mandarin

The RRG theory of complex sentences is equally concerned with the set of possible syntactic and semantic relations between the units in a juncture. The syntactic relations between units are termed NEXUS relations in RRG. Traditionally, only two basic nexus relations are recognized, coordination and subordination, but RRG, following Olson's (1981) analysis of clause linkage in Barai (a Papuan language),

---
4 The semantic relations will be discussed in § 2.2 below.
postulates three nexus types: coordination, subordination, and COSUBORDINATION, which is in essence dependent coordination. The dependence is operator dependence; that is, in cosubordination, the units obligatorily share one or more operators at the level of juncture. In the Mandarin example in (2c), aspect obligatorily has scope over both nuclei, and therefore the nexus is cosubordination. This is represented as in Figure 9.

![Figure 9: Nuclear cosubordination in Mandarin](image)

The following examples from Turkish (Watters 1993) exemplify obligatory operator sharing and the lack of it in Turkish core cosubordination and coordination, respectively.

(4) a. Gid-ip gör-meli-yiz.
   go-CMPL see-MODAL-1pl
   'We ought to go and see.'

   b. Müzik dinle-yerek, uyu-yabil-ir-im.
   music listen-CMPL sleep-MODAL-AOR-1sg
   'Listening to music, I can sleep.'
In (4a), the modal operator -mEl- 'ought' has scope over both cores, and accordingly the nexus is cosubordinate; in (4b), on the other hand, the modal operator -yAbi- 'able' has scope only over the final core, hence coordinate nexus. The following examples from Kewa (Franklin 1971) are a minimal triple for the three nexus types at the level of clausal juncture.

    3sg come-3sgPRES but 1sg afraid NEG-be.1sgPRES
    'He is coming, but I am not afraid.'

b. (Ní ) Épo lá-ri épá-wa.
    1sg whistle say-SIM.SS come-1sgPAST
    'I whistled while I came,' or 'I came whistling.'

\[\text{The term 'coordination' here is being used for an abstract linkage relation referring to a relationship of equivalence and independence at the level of juncture. It is distinct from conjunction, which is a construction type of the general form 'X conj Y', which may be one of the formal instantiations of coordinate nexus.}\]
c. (Nǐ) Épo lā -lo-pulu irikai é pa-lia. Subordination
1sg whistle say-1sgPRES-CAUSAL dog come-3sgFUT
‘Because I am whistling, the dog will come.’

The three levels of juncture together with the three nexus types create nine possible complex sentence types. Not all of them are instantiated in every language; for example, Korean appears to have all nine (Yang 1994), while English appears to have six and Jakaltek (Mayan) seven. The juncture-nexus types found in a language may be realized by more than one formal construction type; for example, both Mary sat playing the guitar and Robin tried to open the door instantiate core cosubordination, while both For Sam to leave now would be a mistake and Lisa’s losing her job shocked everyone instantiate core subordination in English. The nine juncture-nexus types may be ordered into a hierarchy in terms of the tightness of the syntactic link between the units (see the hierarchy in Figure 12 in § 2.2).

2.2 Semantic structure The semantic representation in Figure 1 is based on a system of lexical representation and semantic roles. The system of lexical representation is based on Vendler’s (1967) Aktionsart classification of verbs into states, activities, achievements and accomplishments. There is an additional class, called active accomplishments, which are telic uses of activity verbs. Examples of each class and their formal representation are given in (6)-(7).6

(6) a. State: The teacher is upset about the school situation.
   a'. Causative state: The school situation upsets the teacher.
b. Achievement: The bubble popped.
b'. Causative achievement: The baby popped the bubble.
c. Accomplishment: The snow melted.
c'. Causative accomplishment: The hot sun melted the snow.
d. Activity: The soccer ball rolled around the field.
d'. Causative activity: The girl rolled the soccer ball around the field.
e. Active accomplishment The soldiers marched to the barracks.
e'. Causative active accomplishment The sergeant marched the soldiers to the barracks.

---

6 This system differs in important ways from the one proposed in Foley & Van Valin (1984) and Van Valin (1990, 1991b, 1993).
(7) a. State
   predicate’ (x) or (x, y)

   b. Activity
   do’ (x, [predicate’ (x) or (x, y)])

   c. Achievement
   INGR(ESSIVE) predicate’ (x) or (x, y), or
   INGR do’ (x, [predicate’ (x) or (x, y)])

   d. Accomplishment
   BECOME predicate’ (x) or (x, y), or
   BECOME do’ (x, [predicate’ (x) or (x, y)])

   e. Active accomplishment
   do’ (x, [predicate’ (x, (y)]) & BECOME predicate’ (z, x) or (y)

   e. Causative
   α CAUSE β, where α, β are representations of any type

Achievements are punctual, and accomplishments are durative, as are their causative counterparts.

A crucial component of this system is a set of syntactic and semantic tests for determining the class membership of a verb in a particular sentence, since the class of the verb determines its lexical representation or LOGICAL STRUCTURE [LS] (see Van Valin & LaPolla 1977, § 3.2.2). Examples of English verbs with their LSs are given in (8).

(8) a. STATES
   Pat is a lawyer.  be’ (Pat, [lawyer’])
   The glass is shattered.  shattered’ (glass)
   Chris is at the house.  be-at’ (house, Chris)
   Kim saw the message.  see’ (Kim, message)

b. ACTIVITIES
   The children cried.  do’ (children, [cry’ (children)])
   The wheel squeaks.  do’ (wheel, [squeak’ (wheel)])
   Dana ate pizza.  do’ (Dana, [eat’ (Dana, pizza)])

c. ACHIEVEMENTS
   The glass shattered.  INGR shattered’ (glass)
   The bubble popped.  INGR popped’ (bubble)
   Kim noticed the message.  INGR see’ (Kim, message)

d. ACCOMPLISHMENTS
   The snow melted.  BECOME melted’ (snow)
   The sky reddened.  BECOME be’ (sky, [red’])
   Leslie learned Korean.  BECOME know’ (Leslie, Korean)
e. **ACTIVE ACCOMPLISHMENTS**
   Dana ate the pizza. \( \text{do'} (\text{Dana}, \text{[eat'} (\text{Dana}, \text{pizza})) \& \text{BECOME eaten'} (\text{pizza}) \)
   Chris ran to the house. \( \text{do'} (\text{Chris}, \text{[run'} (\text{Chris})) \& \text{BECOME be-at'} (\text{house, Chris}) \)

f. **CAUSATIVES**
   The dog frightens the boy.
   \( \text{[do'} (\text{dog, } \emptyset) \text{ CAUSE [feel'} (\text{boy, [afraid.of } (\text{dog}))]\) \)
   Kim showed Pat the message.
   \( \text{[do'} (\text{Kim, } \emptyset) \text{ CAUSE [INCH see'} (\text{Pat, message})\] \)
   The girl shattered the glass.
   \( \text{[do'} (\text{girl, } \emptyset) \text{ CAUSE [INCH shattered'} (\text{glass})\] \)
   The sun melted the snow.
   \( \text{[do'} (\text{sun, } \emptyset) \text{ CAUSE [BECOME melted'} (\text{snow})\] \)
   The girl rolled the soccer ball.
   \( \text{[do'} (\text{girl, } \emptyset) \text{ CAUSE [do'} (\text{ball, [roll'} (\text{soccer ball}))\] \)
   Chris fed Dana the pizza.
   \( \text{[do'} (\text{Chris, } \emptyset) \text{ CAUSE [ do'} (\text{Dana, [eat'} (\text{Dana, pizza})) \& \text{BECOME eaten'} (\text{pizza}) \]

Examination of the verbal systems of a number of languages had led to the conclusion that this set of distinctions is one of the fundamental organizing principles of verbal systems in human language.8

The RRG theory of semantic roles is rather different from that of other theories, in that it posits two types of semantic roles. The first are specific thematic relations, the traditional (since Fillmore 1968 and Gruber 1965) notions of agent, theme, patient, experiencer, etc. The second are generalized semantic roles called SEMANTIC MACROROLES; they were introduced in Van Valin (1977b) and have no exact analog in other theories, although Jackendoff’s ‘action tier’ and Dowty’s proto-roles bear some resemblance (see Van Valin 1999a for more discussion). Following the ideas of Gruber (1965) and Jackendoff (1976), RRG defines thematic relations in terms of argument positions in LSs such as those in (8)-(9). All thematic relations are defined in terms of argument positions in state and activity LSs; all other LS types are composed of them plus elements like BECOME, INGR and CAUSE, as shown in (7). Since thematic relations have no independent status, they are really just mnemonics for the argument positions in LSs. In verbs that lexicalize agency, e.g. murder, agent is represented by ‘DO (x, ...’ , following Dowty (1979). However, in most cases agent is

---

7 ‘do’ (x, ∅)’ indicates that the nature of the causing activity is unspecified.

an implicature related to human effectors with certain types of activity predicates and would not be represented in the LS of the verb. See Holisky (1987), Van Valin & Wilkins (1996).

The second type of semantic role plays a central role in the theory; macroroles acts as the primary interface between the LS and syntactic representations. There are only two macroroles, ACTOR and UNDERGOER, corresponding to the two primary arguments in a prototypical transitive relation. They are called 'macroroles' because each subsumes a number of specific thematic relations; the relationship between the macroroles and the argument positions in LS is captured in the Actor-Undergoer Hierarchy in Figure 11.

![Actor-Undergoer Hierarchy](image)

Given the LS of a verb, the most agent-like argument will be actor, the most patient-like undergoer, in the default case. Macroroles are not equivalent to grammatical relations, as shown in (9).

   'Peter opened the window.'
   'The window opened.'
   'Jasna works in Zagreb.'
   'The window has been broken.'

The exact role of macroroles in the mapping (or linking) between semantic and syntactic representations will be sketched in §2.4 and summarized in Figure 15.

As mentioned in §2.1, an important component of the theory of complex sentences is the semantic relations that obtain between units in a juncture. These include causality, psych-action, direct perception, cognition, propositional attitude, conditional, and varieties of temporal sequence. These may be ordered into a hierarchy in terms of whether the units in the juncture express facets of a single...
event, state or action or distinct events, states or actions. This semantic hierarchy interacts with the syntactic hierarchy of juncture-nexus types as follows: there is an iconic relation between the semantics and syntax of clause linkage, such that the tightness of the syntactic linkage directly reflects the semantic integration of the units in the linkage (cf. Silverstein 1976, Givón 1980, Foley & Van Valin 1984). This is expressed in the Interclausal Relations Hierarchy in Figure 12:

![Interclausal Relations Hierarchy](image)

Van Valin & Wilkins (1993) employ this hierarchy, together with an enriched version of the system of lexical representation introduced above, to show how it is possible to predict the syntactic form of certain types of complex sentences from their semantic representations.

2.3 The lexicon RRG is a lexicalist theory, and therefore the lexicon plays a very important role in it. Lexical entries for verbs are based on LSs; the lexical representation of nouns follows the theory of nominal qualia proposed in Pustejovsky (1995). RRG takes the position that lexical entries for verbs should contain only idiosyncratic information, with as much as possible derived from general lexical principles or rules. Information about transitivity is very important, and RRG defines transitivity in terms of the number of macroroles that a verb takes: transitive = 2, intransitive = 1, atransitive = 0. The general principles in (10) predict the transitivity of regular verbs.
(10) Default Macrorole Assignment Principles

a. Number: the number of macroroles a verb takes is less than or equal to the number of arguments in its logical structure
   1. If a verb has two or more arguments in its LS, it will take two macroroles.
   2. If a verb has one argument in its LS, it will take one macrorole.

b. Nature: for verbs which take one macrorole,
   1. If the verb has an activity predicate in its LS, the macrorole is actor.
   2. If the verb has no activity predicate in its LS, the macrorole is undergoer.

In RRG, no syntactic subcategorization information is included in lexical entries; all of the relevant information is derivable from the LS of the verb plus information about its transitivity. Thus these principles have the effect of predicting the syntactic subcategorization of a verb from its semantic representation. See Van Valin (1990, 1991b) for application of this to the analysis of syntactic issues in Italian, Georgian and Icelandic. All theories must stipulate the transitivity of exceptional verbs, and this is done in RRG by specifying their transitivity in terms of \([\text{MR}_\alpha]\), where \(\alpha\) is 0, 1 or 2. Sample lexical entries for some English verbs are given in (11).9

(11) a. kill [do' (x, [\text{dead'} (y)])]
b. receive INGR have' (x,y)
c. own have' (x, y)
d. belong (to) have' (x, y) [MR1]
e. arrive BECOME be-at' (x,y)
f. seem seem' (x,y) [MR0]
g. see see' (x,y)
h. watch do' (x, [see' (x,y)])
i. show [do' (w, [\text{see'} (x,y)]) CAUSE INGR see' (x,y)]
j. run do' (x, [run' (x)])
k. drink do' (x, [drink' (x, y)])
l. melt BECOME melted' (x)

---
9 These are intended as lexical representations. It is well-known that verbs can have constructionally derived Aktionsart properties, e.g. run, an activity verb, behaves like an accomplishment in run to the store. Hence the semantic representation of a core containing a verb may well have a derived LS expanding the LS from the lexical entry of the verb. See Van Valin & LaPolla (1997) for detailed discussion.
The prepositions that mark oblique core arguments can in many instances be predicated from the LS of the verb and therefore need not be listed in the lexical entry (cf. Jolly 1993).

RRG distinguishes lexical from syntactic phenomena in terms of the linking scheme, as will be discussed below. Basically, any process which affects LSs or the arguments therein or the mapping between LSs and macroroles is considered to be lexical. Examples include causativization, regardless of whether it is morphologically unmarked (as in English) or marked (as in Turkish and Chichewa), noun incorporation, the ‘dative alternation’ (which is analyzed as variable linking to undergoer; cf. Van Valin 1993b, Van Valin & LaPolla 1997, and Zovko 2000, 2001 for an analysis of dative shift in Croatian), and some types of passivization and antipassivization. Syntactic phenomena involve the mapping between macroroles and the syntactic representation, e.g. some types of passivization and antipassivization, WH-question formation in languages like English, Icelandic and Malagasy, and ‘raising’ constructions (cf. Van Valin 1993b, Roberts 1995, Van Valin & LaPolla 1997).

2.4 Focus structure The issue of the distribution of information in clauses and sentences was not addressed in Foley & Van Valin (1984), and in Van Valin (1993b) Lambrecht’s (1986, 1987, 1994) theory of FOCUS STRUCTURE is integrated into RRG. Focus structure is the grammatical system which serves to indicate the scope of the assertion in an utterance in contrast to the pragmatic presupposition, and it is vital to the RRG analysis of many grammatical phenomena. An innovation in RRG is the distinction between the potential focus domain [PFD] i.e. the syntactic domain in the sentence where focus may fall, and the actual focus domain, i.e. the part that is focussed in a particular sentence. Languages vary in terms of how the PFD is restricted, both in simple sentences and in complex sentences, and this variation underlies important grammatical differences across languages (cf. Van Valin 1993b, 1995, 1999b). The focus structure of an utterance is represented in a distinct projection of the clause from the operator and constituent projections; this is exemplified in Figure 13 for a predicate-focus construction in English. ‘Predicate focus’ is Lambrecht’s term for the traditional ‘topic-comment’ structure with a topical subject and a focal predicate.
It is possible to represent all three projections in a single representation, as in Figure 14.
2.5 Grammatical relations and linking

In the earliest work on RRG it was argued that grammatical relations like subject and direct object are not universal and cannot be taken as the basis for adequate grammatical theories. In place of these notions, RRG employs the notion of privileged syntactic argument [PSA], which is a construction-specific relation and is defined as a restricted neutralization of semantic roles and pragmatic functions for syntactic purposes. The other arguments in a clause are characterized as direct or oblique core arguments; there is nothing in RRG corresponding to direct or indirect object. See Van Valin (1993b), Van Valin & LaPolla (1997) for detailed discussion.

The linking system relating semantic and syntactic representations is summarized in Figure 15. Syntactic functions like PSA and direct core argument (which are structurally instantiated in the LSC) represent the syntactic pole of the system, while LSs represent the semantic pole. In every language with grammatical relations, there is an accessibility to PSA hierarchy for multiple-argument verbs; it is given in (12).

(12) Privileged Syntactic Argument Selection Hierarchy

arg of DO > 1st arg of do’ > 1st arg of pred’ (x, y) > 2nd arg of pred’ (x, y) > arg of pred’ (x)

In syntactically accusative languages like English and Croatian, the highest ranking macrorole in terms of (12) is the default choice for PSA, whereas in syntactically ergative languages like Dyirbal and Sama (Austronesian, Philippines; Walton 1986), the lowest ranking macrorole is the default choice. That is, in a syntactically accusative language the unmarked choice for the PSA of a transitive verb is the actor, with the undergoer being a marked choice possible only in a passive construction. On the other hand, in a syntactically ergative language, the unmarked choice for the PSA of a transitive verb is the undergoer, with the actor being a marked choice possible only in an antipassive construction. With an intransitive verb, the hierarchy is irrelevant, as the single macrorole functions as PSA regardless of whether it is actor or undergoer.

The overall linking system is summarized in Figure 15. We have discussed logical structures, macroroles and the hierarchy linking them. This part of the system is universal, in that there is very little cross-linguistic variation; this is the domain of lexical processes, as mentioned in § 2.3. Where languages differ substantially is how macroroles and other arguments link into the syntax. The reason the arrows in Figure 15 are double-headed is that the linking system works both from semantics to syntax and from syntax to semantics. In § 1 I mentioned the criterion of psychological adequacy and in particular the point made by Bresnan & Kaplan (1982) that theories of linguistic structure should be directly relatable to testable theories of language production and comprehension. A theory which could describe the linking from semantics to syntax only could be part of a language production system, but it would
not be adequate for a comprehension system. In such a system, the parser, as an idealization, would take the input and produce a structured syntactic representation of it, identifying the elements of the layered structure of the clause and the cases, adpositions and other grammatically relevant elements in the sentence. It is then the grammar’s job to map this structure into a semantic representation, as the first step in interpreting it, and this is where the syntax → semantics linking algorithm is required. The details of the linking algorithm are given in Van Valin & LaPolla (1997). It is constrained by the Completeness Constraint, given in (13).

(13) Completeness Constraint: All of the arguments explicitly specified in the semantic representation of a sentence must be realized syntactically in the sentence, and all of the non-predicate elements in the syntactic representation of a sentence must be linked to an argument position in a logical structure in the semantic representation of the sentence.

**SYNTACTIC FUNCTIONS** : Direct Core Arguments

Privileged Syntactic Argument [PSA] Selection:
- Highest ranking MR = default (e.g. English)
- Lowest ranking MR = default (e.g. Dyirbal)

**SEMANTIC MACROROLES**

<table>
<thead>
<tr>
<th>ACTOR</th>
<th>Undergoer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg of</td>
<td>1st arg of</td>
</tr>
<tr>
<td>2nd arg of</td>
<td>Arg of state</td>
</tr>
<tr>
<td>DO do' (x,...</td>
<td>pred' (x,y)</td>
</tr>
<tr>
<td>pred' (x,y)</td>
<td>pred' (x,y)</td>
</tr>
<tr>
<td>pred' (x)</td>
<td></td>
</tr>
</tbody>
</table>

Transitivity = No. of Macroroles [MRs]
- Transitive = 2
- Intransitive = 1
- Atransitive = 0

Argument Positions in **LOGiCAL STRUCTURE**

**Logical Structure**

| STATE          | predicate' (x) or (x,y) |
| ACTIVITY       | do' (x, [predicate' (x) or (x,y)]) |
| ACHIEVEMENT    | INGR predicate' (x) or (x,y) |
| ACCOMPLISHMENT | BECOME predicate' (x) or (x,y) |
| ACTIVE ACCOMPLISHMENT | do' (x, [predicate' (x, (y))]) & BECOME predicate' (x, (z) or (y)) |
| CAUSATIVE      | α CAUSE β, where α, β are LSs of any type |

Figure 15: RRG Linking System
Most of what counts as 'syntax' in many theories, e.g. case assignment, agreement, WH-movement, and reflexivization, is handled in RRG in terms of the syntactic phase of the linking. The analysis of reflexivization in RRG follows the approach in Jackendoff (1992) and states the constraints for core-internal ('clause-bound' in other theories) reflexivization at the LS level, not with respect to the syntactic representation. The linking in a WH-question in English is illustrated in Figure 16.

The role of discourse-pragmatics in linking will be discussed below. Note that there is a direct linking between the WH-word in the precore slot and the semantic representation. Constraints on WH-question formation and other 'extraction' constructions is explained in terms of the interaction of focus structure and syntax, in particular in terms of restrictions on the potential focus domain (Van Valin 1993b, 1995). The case assignment rules for Croatian proposed in Dahm-Draksic (1997) are given in (14) as an example; they presuppose an accusative PSA selection hierarchy.

---

The subscripts 'ACV', 'ACS' and 'INA' stand for 'activated', 'accessible' and 'inactive', respectively, and they refer to different cognitive statuses that a referent of the element may have; cf. Lambrecht (1994).
Case assignment rules for Croatian and other accusative languages

a. Assign nominative case to the highest ranking macrorole argument.
b. Assign accusative case to the other macrorole argument.
c. Assign dative case to non-macrorole arguments (default). (11)

These rules account for case marking in simple and complex sentences, including WH-questions. The linking from semantics to syntax and from syntax to semantics in a simple sentence in Croatian is illustrated in Figures 17 and 18. The details of the linking algorithm are presented in Van Valin & LaPolla (1997).

Figure 17: Linking from semantics to syntax in Croatian

The first step in the linking from semantics to syntax is the constitution of the LS of the clause in the lexicon, and the next step is the determination of which arguments will be actor and undergoer. This is based on the hierarchy in Figure 11: Petar-, the first argument of do', is the actor; knjig-, the second argument of have', is the undergoer; and žen-, the first argument of have', is a non-macrorole argument. The next step is link these arguments to the syntax. Petar-, the actor, is the PSA, following the hierarchy in (12), and the other two arguments are non-PSA core arguments. Word order, aside from the location of the second-position clitic je, is determined by focus structure. The case rules in (14) determine the case of the NPs: Petar-, the actor, is the highest ranking macrorole and therefore appears in the

---

11 The idea of dative case as the default case for non-macrorole direct core arguments in languages with morphological case systems is derived from Silverstein (1976, 1981, 1990). Dative is the default case for non-macrorole direct core arguments, and as a default case it may be overridden with certain verbs. See Van Valin (1991b), Michaelis (1993), Van Valin & LaPolla (1997).
nominative case, following (14a); knjig-, the undergoer, is the other macrorole, and therefore appears in the accusative case, following (14b); and žen-, a non-macrorole core argument, appears in the dative case, following (14c). The linking from semantics to syntax is illustrated in Figure 17.

Figure 17: Linking from semantics to syntax in Croatian

The first step in the linking from syntax to semantics is determining the voice of the verb. Since the verb is active voice in Figure 18, the PSA in the nominative case is the actor; hence Petar is the actor. Accusative case with a transitive verb always indicates the undergoer in Croatian, and therefore it may be concluded that knjigu is the undergoer. The third argument, ženi, is a non-macrorole core argument.

The next step is to retrieve the LS for dati from the lexicon and assign macroroles to it. Since x is the highest ranking argument in terms of Figure 11, it is the actor. Dati does not allow variable linking to undergoer (dative shift) (Zovko 2000, 2001), and therefore the lowest ranking argument, z, is the undergoer. This means that Petar is the x argument, and knjigu is the z argument. That leaves one unlinked argument in the syntax, žen-, and one unlinked argument position in the semantics, y, and they must be linked in order to satisfy the Completeness Constraint. This yields the correct interpretation for the sentence.

Figure 18: Linking from syntax to semantics in Croatian

One of the questions which RRG asks is, when there is an option as to which arguments can be linked to PSA, what factors can affect the choice? It turns out that the answer to this question has important typological ramifications, for some languages permit discourse-pragmatic factors to play a role, whereas others do not. In Figure 16 there is input from discourse-pragmatics to the linking. It is represented by the
subscripts on the referring expressions filling argument positions in the semantic representation of the sentence (cf. fn. 10). The status of a referent in the discourse context not only influences the form of the expression used to denote it, as is well known, but it may also affect how arguments may be linked into the syntax in some languages. That is, in some languages, but not all, a highly topical (activated) argument tends to appear as PSA, regardless of its semantic function. This has been much discussed in the literature on topic, subject and voice over the past two decades. This distinction is expressed in the RRG contrast between SYNTACTIC and SEMANTIC PIVOTS, on the one hand, and PRAGMATIC PIVOTS, on the other. English, Dyirbal, Malagasy, Sama and Icelandic all have pragmatic pivots in their grammatical system, whereas Lakhota, Warlpiri, Zapotec and Tongan do not. One of the major themes in RRG work is the important role that discourse-pragmatics plays in grammar, and the many ways in which discourse-pragmatics may affect grammatical processes is summarized in Figure 19.

Figure 19: Interaction of discourse-pragmatics and grammar in RRG

The interaction of the three projections of the clause with linking is represented in Figure 20.
3. Some implications of RRG

RRG illustrates one possible answer to the questions stated at the beginning of § 1, and it shows that it is possible to have a rigorous, typologically-sensitive grammatical theory which takes semantics and pragmatics as central features.

It was mentioned in § 1 that Van Valin (1991a) takes a rather strong position with respect to the question of language acquisition, one that is at odds with most other theories, but there is substantial empirical work supporting this view. Braine (1992) shows how a conception of clause structure very much like the layered structure of the clause could be constructed developmentally by the child. Rispoli (1991a,b, 1994, 1995) shows how the lexical representations in § 2.2 and the conception of grammatical relations in § 2.4 could be learned. Bowerman (1990) provides evidence in favor of the view that rules linking syntactic and semantic representations of the type summarized in Figure 15 are learned, and Van Valin (1994, 1998) puts forward an account of how some of the constraints on linking between syntactic and semantic representations in complex sentences (i.e. subjacency) could be learned. Van Valin (2001) presents the predictions the RRG theory of complex sentences makes about
acquisition, and shows that they are generally correct, using data from seven typologically disparate languages.  

References


---  A bibliography of work in RRG and papers, master’s theses and dissertations in RRG in downloadable PDF format can be found on the RRG web site, http://wings.buffalo.edu/linguistics/rrg.


RRG web site]


SAŽETAK

Robert D. Van Valin, Jr.

KRATAK UVOD U GRAMATIKU ULOGE I REFERENCI

Ovaj članak prikazuje temeljne pojmove gramatike uloge i referenci (GUR), gramatičke torije koja se osobito oslanja na analizu neindoeuropskih jezika. Ta se teorija bavi uzajamnim djelovanjem sintakse, semantike i pragmatike u gramatičkim sustavima. GUR je jednorazinska teorija koja pretpostavlja samo jedan sintaktički prikaz rečenice, neposredno povezan sa semantičkim prizazom putem algoritma povezivanja. Sintaktički prikaz strukture klauze naziva se u GUR slojevita struktura klauze. Pretpostavlja se da se klauze beziznimno sastoje od nukleusa (koji sadržava predicirajući element), jezgre (koja sadržava nukleus i argumente predicirajućeg elementa), i periferije (koja sadržava vremenske i lokativne modifikatore jezgre). Svaku razinu klauze u GUR modificiraju tzv. operatori: oni uključuju gramatičke kategorije kao što su vrijeme, vid, modalnost, negacija i ilokucijska snaga. Složene rečenice sastoje se od ovih jedinica: nukleus + nukleus tvori nuklearnu spojnicu, jezgra + jezgra tvori jezgrenu spojnicu, a klauza + klauza tvori klauzalnu spojnicu. Jedinice u spojnici mogu uzajamno stajati u jednom od tri odnosa: koordinacija, subordinacija i kosubordinacija. Na taj način razlikuje se devet tipova spojnice i zavisnosti (nekusa) u univerzalnoj gramatici; tipovi spojnice i zavisnosti koji se pojavljuju u pojedinom jeziku mogu se ostvariti u jednom ili u više tipova formalnih konstrukcija.

Semantički prikaz rečenice izgrađen je na sustavu leksičke dekompozicije utemeljenom na pojmu Aktionsarta. Taj sustav naziva se logičkom strukturom (LS). Semantičke funkcije argumenta definiraju se prema položajima u LS. Za čitavu teoriju temeljan je pojam semantičke makrouloge; postoje dvije makrouloge, činitelj i trpitelj. Makrouloge i drugi argumenti povezuju se sa sintaktičkom strukturom algoritmom povezivanja. GUR ne pretpostavlja tradicionalne gramatičke relacije; priznaje samo jednu gramatičku funkciju, koja se naziva privilegirani sintaktički argument. Osim sintaktičkih i semantičkih prikaza, postoji i prikaz fokusne strukture rečenice. On pokazuje opseg onoga što se u iskazu tvrdi, u opreci spram pragmatičke presupozicije. Prikaz fokusne strukture važan je dio analize mnogih gramatičkih pojava prema GUR, a jedna je od temeljnih tipoloških teza te teorije da su važne razlike među gramatičkim sustavima odraz različitih uloga koje fokusna struktura može igrati u gramatici, osobito u algoritmu vezivanja. GUR prilazi usvajanju jezika tezom da djeca izgrađuju gramatiku na temelju svoje opće kognitivne sposobnosti i podataka u govoru kojem su izložena; nije potrebno pretpostaviti autonomni mehanizam za usvajanje jezika.

(preveo dr. Ranko Matasović)