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1. Introduction

In this paper we study the following inequality due to J. Radon, first published in
[12]. More precisely, for every real numbers p > 0, xk ≥ 0, ak > 0, for 1 ≤ k ≤ n,
the following inequality holds true:

n∑
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≥ (
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(
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k=1 ak)p , p > 0. (1)

For the proof and other comments, see [12, p. 1351], or the monograph [7, p. 31].
Inequality (1) is widely studied by many authors because of its intrinsec beauty and
also because of its utility in practical applications, as in the case of obtaining more
general inequalities involving manifolds [9, p. 692]. A particular case p = 2,
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is also well-known under the name of Bergström’s inequality, e.g., [3, 4, 6]. It is equiv-
alent to the Cauchy-Buniakovski-Schwarz inequality, while the Radon’s inequality
(1) is equivalent to the more general Hölder’s inequality.

Generalizations of Bergström inequality and of the Cauchy-Buniakovski-Schwarz
inequality are established by many authors, in particular by [1, 2, 5] and [11] and
later in [8]. We give here more general versions of the results from [8] and these
results are also generalizations of the Radon inequality and the Hölder inequality.
In this sense, note that the Radon’s inequality (1) follows from
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by raising to the (p + 1)-th power, where (p + 1)−1 + q−1 = 1.

2. The results

It is established as the main result in [8] that:
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, (2)

for xk ≥ 0, ak > 0, 1 ≤ k ≤ n, which is considered as an extension of the Bergström
inequality. It was proved in [8], and before as a special case in [2, 5] and [11], that
the sequence
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is increasing and inequality (2) is dn ≥ d2, where
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We complete here that by putting xk = λkak, 1 ≤ k ≤ n, in inequality (2), a more
convenient form is obtained, at least if we think that the involved maximum can be
calculated more easily. More precisely,
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In a general case, first we establish the following

Theorem 1. For every p > 0, a, b > 0, x, y ≥ 0,

xp+1

ap
+

yp+1

bp
− (x + y)p+1
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≥ p(x + y)p−1(bx− ay)2

ab(a + b)p

holds.

Proof. The expression on the left-hand side of the inequality can be written as

xp+1

ap
+

yp+1

bp
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]− y
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apbp(a + b)p
. (3)

Without loss of generality, we assume that bx ≥ ay. As a simple consequence of the
Lagrange theorem, for every p > 0 and 0 < u ≤ v, we have
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pup−1(v − u) ≤ vp − up ≤ pvp−1(v − u).

Using this double inequality in the square brackets from (3), we obtain

x
[
(abx + b2x)p − (abx + aby)p

]− y
[
(abx + aby)p − (a2y + aby)p

]

apbp(a + b)p

≥ xp(abx + aby)p−1(b2x− aby)− yp(abx + aby)p−1(abx− a2y)
apbp(a + b)p

=
p(x + y)p−1(bx− ay)2

ab(a + b)p
.

Now we are in the position to give the extension of inequality (2), which is
stronger than the Radon’s inequality.

Theorem 2. For every n ≥ 2, p > 0, ak > 0, xk ≥ 0, 1 ≤ k ≤ n, it holds:
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(4)

Denoting xk = λkak, 1 ≤ k ≤ n, we have the equivalent form:
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(5)

Proof. Note first that inequality (2) is obtained as a particular case of our result
(4) for p = 1. Let us define the sequence (δn)n≥2 by the formula

δn =
xp+1

1

ap
1

+
xp+1

2

ap
2

+ ... +
xp+1

n

ap
n
− (x1 + x2 + ... + xn)p+1

(a1 + a2 + ... + an)p
.

We claim that the sequence (δn)n≥2 is increasing. In this sense, we have:
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because of the classical Radon inequality (1). Now, the monotonicity of the sequence
(δn)n≥2 implies that δn ≥ δ2, for every n ≥ 2, and by Theorem 1,
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Now note that the obtained inequality

δn ≥ p(x1 + x2)p−1(a1x2 − a2x1)2

a1a2(a1 + a2)p

remains true even if we replace a1, a2, x1, x2 by any ai, aj , xi, xj , respectively, with
1 ≤ i < j ≤ n, so the Theorem is proved.

A different bound was proved in [1] for p ≥ 1.
In the first part of this section we show how Theorem 2 can be used to establish

generalizations of the inequalites from [8]. If we put xk = 1 in (4), we obtain the
following

Corollary 1. For every n ≥ 2, p > 0, ak > 0, 1 ≤ k ≤ n, it holds:
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By adding all the n(n− 1)/2 inequalities of the form
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, 1 ≤ i < j ≤ n,

we can state the next

Corollary 2. For every n ≥ 2, p > 0, xk ≥ 0, ak > 0, 1 ≤ k ≤ n, the following
extension of the Radon’s inequality holds:
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Another place to use our result is Nesbitt’s inequality. For every xk > 0, 1 ≤
k ≤ n, with x1 + x2 + ... + xn = s, the following inequality holds:

n∑

k=1

xk

s− xk
≥ n

n− 1
. (6)

It was strengthened in [8] in the following way:
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] . (7)

Next we give the following inequality which generalizes (6) and (7).
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Corollary 3. For every n ≥ 2, p > 0, xk ≥ 0, ak > 0, 1 ≤ k ≤ n, with s =
x1 + x2 + ... + xn, the following extension of Nesbitt’s inequality holds:
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Then, the conclusion follows by the inequality n(x2
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Finally, remark that the reverse inequality of (1) is true in case p ∈ 〈−1, 0〉,
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k=1 ak)p , p ∈ 〈−1, 0〉.

(see for example [12]).
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[8] D.Mărghidanu, J. L.Dı́az-Barrero, S. Rădulescu, New refinements of some
classical inequalities, Math. Inequal. Appl. 12(2009), 513–518.

[9] C.B.Morrey, A class of representations of manifolds, Amer. J. Math. 55(1933),
683–707.
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