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1. Introduction

In [9], by using his own generalization of the classical Knaster-Kuratowski-Mazurkie-
vicz theorem (simply, KKM theorem), Ky Fan obtains a matching theorem [9, Theo-
rem 3] for open coverings of convex sets. From this, he also obtains another matching
theorem [9, Theorem 4] for closed coverings of convex sets. Kim [15, Theorem 1]
and Shih and Tan [26, Theorem 2] establish the open version of the KKM principle
and prove that this is equivalent to Fan’s matching theorem for closed covering. In
[21, Theorem 5], Park obtains a matching theorem involving two maps, one of them
being acyclic. Under many aspects Park’s result generalizes Fan’s matching theorem
for closed coverings.

In this paper, we establish two matching theorems involving three maps. Appli-
cations of our matching theorems are given in Sections 3 (KKM type theorems),
4 (intersection theorems) and 5 (analytic alternatives, minimax inequalities and an
existence theorem for the solutions of certain variational inequalities). Our results
seem to be new, although they are closely related to some known results (see, for
instance, [5, 7, 10, 14, 16, 17, 20, 21, 24, 28, 29]).

2. Preliminaries

A set-valued mapping (simply, a map) T : X ( Y is a function from a set X into
the power set 2Y of a set Y , that is a function with the values T (x) ⊆ Y for each
x ∈ X. As usual, the set {(x, y) ∈ X×Y |y ∈ T (x)} is called the graph of T . For any
A ⊆ X, let T (A) = ∪{T (x) : x ∈ A}. To a map T : X ( Y are associated two maps
T− : Y ( X, the (lower) inverse of T , defined by T−(y) = {x ∈ X : y ∈ T (x)} and
the map T ∗ : Y ( X, the dual of T , defined by T ∗(y) = {x ∈ X : y /∈ T (x)}. Given
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two maps T : X ( Y and S : Y ( Z, the composite ST : X ( Z is defined by
(ST )(x) = S(T (x)) = ∪{S(y) : y ∈ T (x)}.

If Y is a subset of a topological vector space, by Y , co Y and co Y , we denote
the closure, convex hull and closed convex hull of Y , respectively. Given a map
T : X ( Y , the maps co T : X ( co Y , co T : X ( co Y are defined by
(co T )(x) = co (T (x)), (co T )(x) = co (T (x)) for all x ∈ X.

For topological spaces X and Y a map T : X ( Y is said to be upper semicon-
tinuous (abbreviated as u.s.c.) (respectively, lower semicontinuous (abbreviated as
l.s.c.)) if for every closed subset B of Y the set {x ∈ X : T (x)∩B 6= ∅} (respectively,
{x ∈ X : T (x) ⊆ B}) is closed; continuous if it is u.s.c. and l.s.c.; compact if T (X)
is contained in a compact subset of Y ; closed if its graph is closed in X × Y .

The following lemma collects two known facts [2].

Lemma 1. Let X and Y be two topological spaces and T : X ( Y a map. Then:

(i) if T is closed and Y is compact, then T is u.s.c. with compact values;

(ii) if T is u.s.c. with compact values, then T (K) is compact whenever K ⊆ X is
compact.

Suppose that X and Y are topological vector spaces. Given a class X of maps,
X (X, Y ) denotes the set of maps T : X ( Y belonging to X , and Xc the set of finite
compositions of maps in X . According to Park ([23]), a class A of maps is defined
by the following properties:

(i) A contains the class C of single-valued continuous functions;

(ii) each T ∈ Ac is u.s.c. with nonempty compact values; and

(iii) for any polytope ∆, each T ∈ Ac(X, X) has a fixed point, where the interme-
diate spaces of composites are suitably chosen for each A.

Examples of A are the Kakutani maps K (with convex values), the Aronszajn
maps M (with Rδ values), the acyclic maps V (with acyclic values), the admissible
maps of Gòrniewicz, the permissible maps of Dzedzej and many others (for details
see [22] and [25]).

Throughout this paper a real Hausdorff topological vector space is abbreviated
as t.v.s. and a real locally convex Hausdorff topological vector space as l.c.s.

3. Matching theorems

The following lemma is Theorem 4 in [23].

Lemma 2. Let X be a nonempty convex subset of a l.c.s. and T ∈ Ac(X, X). If T
is compact, then T has a fixed point x0 ∈ X; that is x0 ∈ T (x0).

We also need the following

Lemma 3. Let X be a topological space and Y a nonempty convex set in a l.c.s. E.
Let T : X ( Y be a nonempty valued u.s.c. map such that co T (x) is compact for
each x ∈ X. Then the map co T is u.s.c.
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Proof. Let V be a basis of open convex symmetric neighborhoods of the origin of
E. Let x0 ∈ X be arbitrarily fixed and let G be an open subset of Y such that
co T (x0) ⊆ G. We prove that for some V ∈ V

co T (x0) + V ⊆ G. (1)

In the contrary case, for each V ∈ V there exists a point yV ∈ co T (x0) such that
(yV + V ) ∩ (E \G) 6= ∅. Since V is symmetric, we infer that

yV ∈ (E \G) + V. (2)

Since (yV ) is a net in the compact co T (x0), we may suppose that (yV ) converges
to a point y0 ∈ co T (x0). From (2) we get y0 ∈ E \G = E \ G, hence y0 ∈
co T (x0) ∩ (E \G); this contradicts co T (x0) ⊆ G.

Let V ∈ V for which (1) holds and U ∈ V such that U ⊆ V . Since T is u.s.c. and
T (x0) is contained in the open set co T (x0) + U , there exists a neighborhood W of
x0 such that T (x) ⊆ co T (x0) + U , for all x ∈ W . The set co T (x0) + U is convex,
hence for all x ∈ W we have co T (x) ⊆ co T (x0) + U , whence

co T (x) ⊆ coT (x0) + U = co T (x0) + U ⊆ co T (x0) + V ⊆ G.

Thus, the map co T is u.s.c.

A particular case of Lemma 3 (when E is a Banach space) appears in [1].
A nonempty topological space is called acyclic if all its reduced Čech homology

groups over the rationals are trivial. For nonempty sets in topological vector spaces,
convex ⇒ star-shaped ⇒ contractible ⇒ acyclic ⇒ connected and not conversely.
If X and Y are topological spaces, T : X ( Y is called an acyclic map whenever T
is u.s.c. with compact acyclic values. Let V(X,Y ) be the class of all acyclic maps
T : X ( Y . As we have already mentioned, in the second section of the paper, V is
an example of map class A.

Theorem 1. Let X be a nonempty convex set in a l.c.s. and Y a nonempty convex
set in a t.v.s. Suppose that either X or Y is compact. Let S ∈ Vc(X,Y ) and
T : X ( Y , R : Y ( X two maps such that:

(i) R(y) ⊆ T−(y) for each y ∈ Y ;

(ii) R is u.s.c. with nonempty values;

(iii) co T−(y) is compact for each y ∈ Y .

Then there exists a nonempty finite set A ⊂ X such that S(co A) ∩⋂
x∈A T (x) 6= ∅.

Proof. For each y ∈ Y , by (i) and (iii), co R(y) is a compact subset of co T−(y).
By Lemma 3 the map co R : Y ( X is u.s.c., hence co R is a Kakutani map. Then
(co R)S ∈ Vc(X, X). Lemma 2 is applicable to the map (co R)S as soon as we
prove that this map is compact. Clearly, this happens if X is compact. When Y is
compact, since the maps S and co R are u.s.c. with compact values, by Lemma 1
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(ii), we infer successively that S(X) and co R(S(X)) are compact, hence (co R)S is
a compact map.

By Lemma 2, there is a point x0 ∈ X such that x0∈co R(S(x0))⊆(co T−)(S(x0)).
This implies that there exist y0 ∈ S(x0) and a finite set A ⊆ T−(y0) such that
x0 ∈ co A. But A ⊆ T−(y0) is equivalent to y0 ∈

⋂
x∈A T (x). On the other hand,

y0 ∈ S(x0) ⊆ S(co A), hence y0 ∈ S(co A) ∩⋂
x∈A T (x).

Theorem 2. Let X be a nonempty metrizable convex set in a l.c.s. and Y a
nonempty convex set in a t.v.s. Suppose that either X is compact and Y is para-
compact or Y is compact. Let S ∈ Vc(X,Y ) and T : X ( Y , R : Y ( X satisfying
conditions (i) and (iii) in Theorem 1 and

(ii’) R is l.s.c. with nonempty values.

Then there exists a nonempty finite set A ⊂ X such that S(co A) ∩⋂
x∈A T (x) 6= ∅.

Proof. As in the previous proof, for each y ∈ Y , co R(y) is a compact subset of
co T−(y). Since R is l.s.c., by Proposition 2.3 and 2.6 in [18], the map co R is
also l.s.c. and obviously, every co R(y) is nonempty and complete. By Theorem
1.1 in [19], there exists an u.s.c map R1 : Y ( X with nonempty values such that
R1(y) ⊆ co R(y) ⊆ co T−(y) for all y ∈ Y . Following the same argument as in the
proof of Theorem 1 we find a fixed point x0 for (co R1)S which is a fixed point for
(co T−)S, too. From x0 ∈ (co T−(S(x0)) it follows that there exist y0 ∈ S(x0) and
a finite set A ⊆ T−(y0) such that y0 ∈ S(co A) ∩⋂

x∈A T (x).

Let X be a convex set in a vector space and Y a nonempty set. If S, F : X ( Y
are two maps such that S(co A) ⊆ F (A) for each nonempty finite subset A of X,
then F is called a generalized KKM map w.r.t. S [6].

From each of Theorems 1 and 2 we derive a KKM type theorem.

Theorem 3. Let X be a nonempty convex set in a l.c.s. and Y a nonempty convex
set in a t.v.s. Suppose that either X or Y is compact. Let F : X ( Y be a map
such that F ∗ is u.s.c. and co F ∗(y) is compact for all y ∈ Y . If there exists a map
S ∈ Vc(X, Y ) such that F is a generalized KKM map w.r.t. S, then

⋂
x∈X F (x) 6= ∅.

Proof. Define T : X ( Y and R : Y ( X by

T (x) = Y \ F (x) and R(y) = F ∗(y)

Suppose that
⋂

x∈X F (x) = ∅. Then for each y ∈ Y there exists x ∈ X such that
y /∈ F (x), that is x ∈ R(y). Thus, R has nonempty values. It is easy to verify that
T and R satisfy conditions (i), (ii) and (iii) of Theorem 1. By Theorem 1, there
exists a nonempty finite set A ⊆ X such that S(co A) ∩ ⋂

x∈A T (x) 6= ∅, that is
S(co A) *

⋃
x∈A F (x) = F (A). This contradicts the fact that F is a generalized

KKM map w.r.t. S.

In a similar manner, using Theorem 2 instead of Theorem 1 as an argument we
can prove
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Theorem 4. Let X be a nonempty metrizable convex set in a l.c.s. and Y a
nonempty convex set in a t.v.s. Suppose that either X is compact and Y is para-
compact or Y is compact. Let F : X ( Y be a map such that F ∗ is l.s.c. and
co F ∗(y) is compact for all y ∈ Y . If there exists a map S ∈ Vc(X,Y ) such that F
is a generalized KKM map w.r.t. S, then

⋂
x∈X F (x) 6= ∅.

4. Intersection theorems

Theorem 5. Let X be a compact convex set in a l.c.s. and Y a compact convex set
in a t.v.s. Let B, C,D, E be four subsets of X × Y such that:

(i) C and E are closed in X × Y ;

(ii) C ⊆ B and E ⊆ D;

(iii) for each y ∈ Y , {x ∈ X : (x, y) /∈ B} is convex;

(iv) for each x ∈ X, {y ∈ Y : (x, y) ∈ C} is acyclic;

(v) for each y ∈ Y , co{x ∈ X : (x, y) ∈ D} is compact;

(vi) for each x ∈ X, {y ∈ Y : (x, y) ∈ E} is nonempty.

Then B ∩D 6= ∅.
Proof. Define the maps S : X ( Y , T : X ( Y , R : Y ( X by

S(x) = {y ∈ Y : (x, y) ∈ C}, T (x) = {y ∈ Y : (x, y) ∈ D},

R(y) = {x ∈ X : (x, y) ∈ E}.
Since Y is compact and the graph of S is closed in X × Y , S is u.s.c. and

compact valued, by Lemma 1.(i). By (iv), S has acyclic values, hence S ∈ V(X,Y ).
Similarly, one can prove that R is u.s.c. For each y ∈ Y , R(y) ⊆ T−(y), since
E ⊆ D. Furthermore, R has nonempty values (by (vi)) and for each y ∈ Y co T−(y)
is compact (by (v)). Then, Theorem 1 implies that there exist a finite set A ⊆ X,
x0 ∈ co A and y0 ∈ Y such that y0 ∈ S(x0) ∩

⋂
x∈A T (x). Therefore (x0, y0) ∈ C

and (x, y0) ∈ D for all x ∈ A.
We show that for some x1 ∈ A, (x1, y0) ∈ B and thus (x1, y0) ∈ B ∩ D. If

(x, y0) /∈ B for all x ∈ A, by (iii) we get (x0, y0) /∈ B, and, since C ⊆ B, (x0, y0) /∈ C;
a contradiction.

Theorem 6. Let X be a nonempty metrizable convex set in a l.c.s. and Y a
nonempty compact convex set in a t.v.s. Let B, C,D, E be four subsets of X × Y
satisfying conditions (ii), (iii), (iv), (v) and (vi) of Theorem 5 and

(vii) C is closed in X × Y ;

(viii) for each open subset U of X the set
⋃

x∈U{y ∈ Y : (x, y) ∈ E} is open in Y .

Then B ∩D 6= ∅.
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Proof. Let the maps S, T, R be defined as in the proof of Theorem 5. We show that
R is l.s.c. Let U be an open subset of X. Then

R−(U) = {y ∈ Y : R(y) ∩ U 6= ∅} =
⋃

x∈U

{y ∈ Y : (x, y) ∈ E}.

By (viii), R−(U) is open, hence R is l.s.c. Now the proof is similar to the previous
proof using Theorem 2 instead of Theorem 1 as an argument.

Remark 1. Condition (viii) of Theorem 6 is fulfilled if E is open in X×Y . Indeed,
in this case, for any x ∈ X the function qx : Y → X×Y , qx(y) = (x, y) is continuous
and the set ∪x∈U{y ∈ Y : (x, y) ∈ E} =

⋃
x∈U q−1

x (E) is a union of open sets, hence
it is open.

5. Analytic alternatives, minimax inequalities, variational in-
equalities

Let X be a convex subset of a vector space, Y a set and f, g : X × Y → R two real
functions. We say that f is g-quasiconcave in x [6] if for any nonempty finite subset
A of X we have

f(u, y) ≥ min
x∈A

g(x, y) for any u ∈ co A and all y ∈ Y.

It is clear that if g(x, y) ≤ f(x, y) for each (x, y) ∈ X × Y and for each y ∈ Y one of
the functions x → f(x, y), x → g(x, y) is quasiconcave, then f is g-quasiconcave in
x.

Theorem 7. Let X be a compact convex set in a l.c.s., Y a compact convex set in
a t.v.s., f, g, h : X × Y → R three real functions and α, β, γ three real numbers such
that α < β ≤ γ. Suppose that:

(i) the sets {(x, y) ∈ X × Y : f(x, y) ≤ α} and {(x, y) ∈ X × Y : h(x, y) ≥ γ} are
closed in X × Y ;

(ii) h(x, y) ≤ g(x, y) for each (x, y) ∈ X × Y ;

(iii) for each x ∈ X the set {y ∈ Y : f(x, y) ≤ α} is acyclic or empty;

(iv) f is g-quasiconcave in x;

(v) for each y ∈ Y , the set co {x ∈ X : g(x, y) ≥ β} is compact or empty.

Then, at least one of the following assertions holds:

(a) There exists x0 ∈ X such that f(x0, y) > α for all y ∈ Y ;

(b) There exists y0 ∈ Y such that h(x, y0) < γ for all x ∈ X.
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Proof. Let S : X ( Y , T : X ( Y , R : Y ( X be defined by

S(x) = {y ∈ Y : f(x, y) ≤ α},
T (x) = {y ∈ Y : g(x, y) ≥ β},
R(y) = {x ∈ X : h(x, y) ≥ γ}.

Suppose that both assertions (a) and (b) are not true. This means that S and R
have nonempty values. Since the graph of S is closed and Y is compact, S is u.s.c.
with compact values. By (iii), S ∈ V(X,Y ). Similarly, one obtains that R is u.s.c.
For all y ∈ Y , R(y) ⊆ T−(y) (by (ii) and β ≤ γ) and co T−(y) is compact (by (v)).

Applying Theorem 1 we find a finite set A ⊆ X, a point x0 ∈ co A and a point
y0 ∈ Y such that y0 ∈ S(x0) ∩

⋂
x∈A T (x). Thus

f(x0, y0) ≤ α and min
x∈A

g(x, y0) ≥ β. (3)

By (3) and (iv) we obtain

β ≤ min
x∈A

g(x, y0) ≤ f(x0, y0) ≤ α,

which contradicts the hypothesis α < β.

From Theorem 7 we derive the following minimax inequality:

Corollary 1. Let X be a compact convex set in a l.c.s., Y a compact convex set in
a t.v.s. and f, g, h : X × Y → R three real functions satisfying:

(i) f is l.s.c. and h is u.s.c. on X × Y ;

(ii) h(x, y) ≤ g(x, y) for each (x, y) ∈ X × Y ;

(iii) for each α > sup
x∈X

min
y∈Y

f(x, y) and any x ∈ X, {y ∈ Y : f(x, y) ≤ α} is acyclic;

(iv) f is g-quasiconcave in x;

(v) for each β < inf
y∈Y

max
x∈X

h(x, y) and any y ∈ Y , co {x ∈ X : g(x, y) ≥ β} is

compact.

Then inf
y∈Y

max
x∈X

h(x, y) ≤ sup
x∈X

min
y∈Y

f(x, y).

Proof. First, let us observe that if f is l.s.c. on X ×Y , then for each x ∈ X, f(x, ·)
is also an l.s.c. function of y on Y and therefore its minimum min

y∈Y
f(x, y) on the

compact set Y exists. Similarly, sup
x∈X

h(x, y) can be replaced by max
x∈X

h(x, y). Note

also that condition (i) implies that f and h satisfy condition (i) of Theorem 7.
Suppose the conclusion were false and choose three real numbers α, β, γ such

that
sup
x∈X

min
y∈Y

f(x, y) < α < β ≤ γ < inf
y∈Y

max
x∈X

h(x, y).



376 M.Balaj

We prove that neither assertion (a) nor assertion (b) of the conclusion of Theorem
7 can take place.

If (a) happens, then

sup
x∈X

min
y∈Y

f(x, y) ≥ min
y∈Y

f(x0, y) > α; a contradiction.

If (b) happens, then

inf
y∈Y

max
x∈X

h(x, y) ≤ max
x∈X

h(x, y0) < γ; a contradiction again.

Further on, versions of Theorem 7 and Corollary 1 will be obtained using Theo-
rem 2 instead of Theorem 1 as an argument.

For X, Y topological spaces a function h : X × Y → R is said to be marginally
l.s.c. in y [3] if for every open subset U of X the function y → sup

x∈U
h(x, y) is l.s.c. on

Y . Obviously, every function l.s.c. in y is marginally l.s.c. in y. The example given
in [3, p. 249] shows that the converse is not true.

Theorem 8. Let X be a nonempty metrizable convex set in a l.c.s., Y a nonempty
compact convex set in a t.v.s., f, g, h : X × Y → R three real functions and α, β, γ
three real numbers such that α < β ≤ γ. Suppose that f, g, h satisfy conditions (ii),
(iii), (iv), (v) of Theorem 7 and:

(vi) the set {(x, y) ∈ X × Y : f(x, y) ≤ α} is closed in X × Y ;

(vii) h is marginally l.s.c. in y.

Then, at least one of the following assertions holds:

(a) There exists x0 ∈ X such that f(x0, y) > α for all y ∈ Y .

(b) There exists y0 ∈ Y such that h(x, y0) < γ for all x ∈ X.

Proof. Suppose that both assertions (a) and (b) are not true and define the maps
S, T : X ( Y , R : Y ( X by

S(x) = {y ∈ Y : f(x, y) ≤ α}, T (x) = {y ∈ Y : g(x, y) ≥ β},

R(y) = {x ∈ X : h(x, y) > γ}.
Let U be an open subset of X. Since

{y ∈ Y : R(y) ∩ U 6= ∅} = {y ∈ Y : sup
x∈U

h(x, y) > γ},

by (vii), it follows that R is l.s.c. Other requirements of Theorem 2 are easily checked
and, as in the proof of Theorem 7, Theorem 2 yields a contradiction.

From Theorem 8 we immediately obtain the following
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Corollary 2. Let X be a nonempty metrizable convex set in a l.c.s., Y a nonempty
compact convex set in a t.v.s. and f, g, h : X × Y → R three real functions. Suppose
that f is l.s.c. on X × Y and that f, g, h satisfy conditions (ii)÷(v) in Corollary 1
and condition (vii) in Theorem 8. Then inf

y∈Y
sup
x∈X

h(x, y) ≤ sup
x∈X

min
y∈Y

f(x, y).

The origin of Corollaries 1 and 2 goes back to the famous Sion’s minimax theorem
[27].

We need now to recall Berge’s maximum theorem [4].

Lemma 4. Let X and Y be topological spaces, f : X×Y → R a continuous function
and F : X ( Y a continuous map with nonempty compact values. Then the map
G : X ( Y defined by G(x) = {y ∈ F (x) : f(x, y) = max

v∈F (x)
f(x, v)} is u.s.c.

Note also that if f and F are as in Lemma 4, then the map S : X ( Y defined
by S(x) = {y ∈ F (x) : f(x, y) = min

v∈F (x)
f(x, v)} is u.s.c., too.

Theorem 9. Let X be a nonempty compact convex set in a l.c.s. and Y a nonempty
convex set in a t.v.s. Let f, g : X × Y → R be two continuous functions and F :
X ( Y a continuous map with nonempty compact values. Suppose that:

(i) for each x ∈ X the set {y ∈ F (x) : f(x, y) = min
v∈F (x)

f(x, v)} is acyclic;

(ii) for each y ∈ Y the set co{x ∈ X : g(x, y) = max
u∈X

g(u, y)} is nonempty compact;

(iii) f is g-quasiconcave in x on F (X).

Then

(a) there exists (x0, y0) ∈ graphF such that

max
x∈X

g(x, y0) ≤ min
y∈F (x0)

f(x0, y);

(b) the following minimax inequality holds:

inf
y∈Y

max
x∈X

g(x, y) ≤ max
x∈X

min
y∈F (x)

f(x, y).

Proof. Consider the maps S, T : X ( Y defined by

S(x) = {y ∈ F (x) : f(x, y) = min
v∈F (x)

f(x, v)},
T (x) = {y ∈ Y : g(x, y) = max

u∈X
g(u, y)}.

By Lemma 4 the maps S and T− are u.s.c. Since f is continuous and F is
nonempty compact valued, for each x ∈ X, S(x) is a nonempty compact subset of
F (x). By (i) the values of S are acyclic, hence S ∈ V(X,Y ). Note also that for each
y ∈ Y , co T−(y) is nonempty compact.
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Applying Theorem 1 in the particular case R = T− we get a finite set
{x1, . . . , xn} ⊆ X and two points x0 ∈ co {x1, . . . , xn} and y0 ∈ Y such that
y0 ∈ S(x0) ∩

⋂n
i=1 T (xi).

Since y0 ∈ S(x0), for each x ∈ X we have

f(x0, y0) ≤ f(x0, y). (4)

Since y0 ∈ ∩n
i=1T (xi), for each x ∈ X we have

g(x0, y0) ≤ max
u∈X

g(u, y0) = g(x1, y0) = · · · = g(xn, y0) = min
1≤i≤n

g(xi, y0). (5)

Then, for each y ∈ F (x0) and x ∈ X, by (4), (5) and (iii) we have

g(x, y0) ≤ min
1≤i≤n

g(xi, y0) ≤ f(x0, y0) ≤ f(x0, y).

Assertion (b) follows immediately from (a) since

inf
y∈Y

max
x∈X

g(x, y) ≤ max
x∈X

g(x, y0) ≤ min
y∈F (x0)

f(x0, y) ≤ max
x∈X

min
y∈F (x)

f(x, y).

The next two corollaries are particular cases of Theorem 9.

Corollary 3. Let X be a compact convex set in a l.c.s., Y a compact convex set in
a t.v.s., and f, g : X × Y → R two continuous functions such that:

(i) for each x ∈ X the set {y ∈ Y : f(x, y) = min
v∈Y

f(x, v)} is acyclic;

(ii) for each y ∈ Y the set co {x ∈ X : g(x, y) = max
u∈X

g(u, y)} is nonempty compact;

(iii) f is g-quasiconcave in x.

Then
min
y∈Y

max
x∈X

g(x, y) ≤ max
x∈X

min
y∈Y

f(x, y).

Proof. Take F (x) = Y for all x ∈ X and apply Theorem 9.

The origin of the following corollary goes back to Ky Fan’s minimax inequality
[8].

Corollary 4. Let X be a compact convex set in a l.c.s. and f, g : X ×X → R two
continuous functions such that:

(i) for each x ∈ X the set co {x ∈ X : g(x, y) = max
u∈X

g(u, y)} is nonempty and
compact;

(ii) f is g-quasiconcave in x.

Then
min
y∈X

max
x∈X

g(x, y) ≤ max
x∈X

f(x, x).
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Proof. Apply Theorem 9 with X = Y , F (x) = {x}.
Corollary 4 can be applied to the existence of solutions of certain variational

inequalities:

Corollary 5. Let X be a compact conex set in a l.c.s. and p, q : X × X → R,
h : X → R continuous functions satisfying:

(i)
n∑

i=1

λip(xi, y) ≤ q(
n∑

i=1

λixi, y) for all {x1, . . . , xn} ⊂ X, y ∈ Y , λi > 0,
n∑

i=1

λi = 1;

(ii) q(x, x) ≤ 0 for each x ∈ X;

(iii) h is quasiconvex;

(iv) for each y ∈ X the set co {x ∈ X : p(x, y) − h(x) = max
u∈X

[p(u, y) − h(u)]} is

nonempty and compact.

Then there exists y0 ∈ X such that

p(x, y0) + h(y0) ≤ h(x) for all x ∈ X.

Proof. Define the continuous functions f, g : X ×X → R by

f(x, y) = q(x, y) + h(y)− h(x),

g(x, y) = p(x, y) + h(y)− h(x).

By (iv) it follows that condition (i) in Corollary 4 is fulfilled. We prove now that
f is g-quasiconcave in x. Suppose that there exist a finite set {x1, . . . , xn} ⊆ X,
x0 ∈ co {x1, . . . , xn} and y0 ∈ Y such that f(x0, y0) < min

1≤i≤n
g(xi, y0), that is

q(x0, y0)− h(x0) < p(xi, y0)− h(xi) for 1 ≤ i ≤ n. (6)

Suppose that x0 =
n∑

i=1

λixi, with λi > 0,
n∑

i=1

λi = 1. Multiplying (6) by λi and

summing over i we find

q(x0, y0)− h(x0) <

n∑

i=1

λip(xi, y0)−
n∑

i=1

λih(xi),

and since the function h is quasiconvex we obtain

q(
n∑

i=1

λixi, y0)− h(x0) <

n∑

i=1

λip(xi, y0)− h(x0),

which contradicts (ii).
Then f and g satisfy the requirements of Corollary 4. Furthermore f(x, x) =

q(x, x) ≤ 0.
Therefore, the conclusion follows by Corollary 4.

Remark 2. It is easily seen that condition (i) holds if p(x, y) ≤ q(x, y) for each
(x, y) ∈ X ×X and for every y ∈ X one of the function f and g is concave in x.
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