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Abstract. In this paper, we determine the total Stiefel-Whitney classes of vector bundles
over the product of the complex projective space CP(j) with the quaternionic projective
space HP (k). Moreover, we show that every involution fixing C'P(2m+1) x HP(k) bounds.
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1. Introduction

In 1962, Steenrod raised to Conner the following questions:

Given a smooth closed manifold F' (not necessarily connected), does there exist a
non-trivial smooth involution 7" on a smooth closed manifold M with F as its fixed
point set? Can we determine all involutions (M, T') up to bordism for the manifold
F?

When F is the disjoint union of some spaces, there have been many results, see
[3, 4, 7, 8, 11, 12]. But there are few results for the case that F' is the product of
some spaces, see [6, 10, 13]. We shall particularly be concerned with the case in
which F' = CP(2m + 1) x HP(k), where by CP(2m + 1) and HP(k) we denote
a (2m + 1)-dimensional complex projective space and a k-dimensional quaternionic
projective space, respectively.

From [1], we know that the bordism class of an involution (M, T') with F as its
fixed point set is determined by the bordism class of the normal bundle over F'. To
calculate characteristic numbers of the normal bundle over F = CP(2m+1)x HP(k),
we need to know the possible form of the total Stiefel-Whitney classes of vector
bundles over it. We have the following theorem:

Theorem 1. The total Stiefel-Whitney class of a vector bundle & over CP(j) x
HP(k) has the form

98

w(€) = (1+a)"(1+8)"(1+a® + B) (1 +a'" 5 )7,
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where o € H?(CP(j); Za), B € H*(HP(k); Z2) are nonzero classes, a, b, d are
non-negative integers, and € =0 or 1. When € = 1, we must have

i=2t2p+1), t>1,
j=2t2p+1) +x, 0<z<?2t
Ak =25 — 21 (2p+ 1) +y, 0<y < 2+L,
By using this result, we prove
Theorem 2. Every involution fizing CP(2m + 1) x HP(k) bounds.

The paper is organized as follows. In Section 2, we prove Theorem 1. In Section
3, we discuss the existence of involutions fixing CP(2m + 1) x HP(k) and prove
Theorem 2.

2. Characteristic classes of vector bundles

Let
H*(CP(j) x HP(k); Z) = Z[a] /o’ () 2[5/,

)
where a € H2(CP(5); Z), B € H4(HP( ); Z) are generators. For convenience, we
also denote generators of H2(C'P(j); Z2), H*(HP(k); Z2) by «, (3.

Let P, : CP(j) x HP(k) — CP(j), Py : CP(j) x HP(k) — HP(k) be the
projection maps. We have a complex line bundle Py (L,) over CP(j) x HP(k),
which is the pullback of the canonical complex line bundle L, over CP(j) with the
total Chern class ¢(Pf(Ls)) = 1 + o, and a 2-dimensional complex bundle P5(Lg)
over CP(j) x HP(k), which is the pullback of the canonical quaternionic line bundle
Lg over HP(k) with total Chern class ¢(P5(Lg)) =1+ (.

Lemma 1. The total Chern class of the bundle Pf(Ly) ® Py (Lg) over CP(j) x
HP(k) is ¢(Pyf(La) ® P3(Lg)) =1+ 2a +a? + 3.

Proof. We define a map i; : CP(j) — CP(j) x HP(k) by i1(z) = (x,pt1), x €
CP(j) and a map iy : HP(k) — CP(j) x HP(k) by i2(z) = (pte,x), x € HP(k),
where pt; € HP(k), pta € CP(j) are fixed points. Thus

Pyiy : CP(j) — CP(j) is the identity on C'P(j),
Pyig : HP(k) — HP(k) is the identity on HP(k).

So we have
(Plil)*(La) = Zy1KP1*(Loz) =L, (1)
and
(P2i2)*(Lg) = i5P5 (Lg) = Lg. (2)
From (1), we have
Pi(La) @) P (Lp)) = clii P (La) Q) i1 P5 (L)) = c(La (X) C?)
Lo QCEPC))=c( Q@La )=142a+a?, (3)
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where C' is an i-dimensional trivial complex bundle over CP(j). Similarly, from (2)
we have i5(c(Pf (L) ® P3 (L)) = e(Lg) = 1+ 6.

Let ¢(Py(La) @ P;(Lg)) =1+ epa + £102 + £33. Then
i (c(Pf(La) Q) P35 (Lp))) = i1 (1 + 200 + €10 + £28) = 1 + £0a + £10°.
From (3), e0 = 2 and ¢; = 1. Similarly, we have e = 1. O

Lemma 2. There is a 4-dimensional real vector bundle n over CP(j)x HP(k) such
that the total Stiefel-Whitney class w(n) =1+ o? + (3.

Proof. Consider the 2-dimensional complex bundle P;(L,)® Py (Lg) as a real bun-
dle. Let n be the real bundle. It follows from Lemma 2.1 that

w(n) = (P} (La) Q) P5 (Lp)) mod2 =1+ a® + 3.
O

Lemma 3. Let the total Stiefel-Whitney class of a vector bundle £ be w(§) = 1+
was + higher terms. Then wos1; = 0 and S¢twys =0 for 0 <1< 2°1, where Sqt is
the Steenrod operation.

Proof. If 0 <1 < 2571, then wy.-1,; = 0. Using the Wu formula

i
: i1 o
Sqlw]-:E (j lt +t>witwj+t for i < j,
t=0

we have that for 0 <1 < 2571,

2571
s—1 [—1+1t
0= Sq2 Wos—14] = Z < ¢ ) Wos—1_Wos—1 47144
t=0
25741 —1
= 25,1 WoW2s ] = Was 4.

S

Then Sg‘ws. = (2 l )w0w2s+l 0, 0

Proof of Theorem 1. Let P (L,), P5(Lg) as above. Consider P;(L,) and
P5(Lg) as real bundles. We have w(P;(Ly)) = 1+ o and w(Py(Lg)) =1+ 5. We
write a for E D --- P and (=& —nfor (B n=E¢E.

—_———

If w(€) = 1+ aja+ higher terms, then we have w(¢ — a1 Py (Ly)) = 1+ aza? +
b15+ higher terms. Since w(2P;(Ly)) = 1+ o2, w(€ — a1 Py (La) — 2a2Pf (Ly) —
b1 P5(Lg)) = 1 + wg+ higher terms. We have

w(dP; (La)) =1+ ', w(2P; (Lg)) = 1+ % w(n) =1+ a® + 3
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and

(14 a®)(1+p)

w(2P{(La) + Py (Lg) —n) = 1+a2+3

=14 a?3 + higher terms.

By subtracting multiples of these bundles, we may obtain a sum 6 of vector bundles

such that w(€ —60) = 14w +higher terms. Proceeding inductively, we may suppose

that there is a sum 6’ of vector bundles such that w(§ —6") = 14 wsys +higher terms.
Since

w@ TP (La) =1+ 0% w(@ 2P (Lg)) =1+ 5%

and

w(2573(2Pf (Lo) + Py (Lg) — 1)) =1+ o R 4 higher terms,
we may also suppose that wgs (€ — 6’) is a sum of monomials alﬂQSZ% with ¢ # 0,
2572 25—1 Among all such monomials we may suppose that the values of i are all
divisible by 2¢(2 < 2! < 2°72) with at least one odd multiple of 2! occurring. If a

T with h = 2¢(2p + 1) occurs, then we have
o . on 2—2h sroanatts

t 25 —2h42tt1
ah+2 ﬂ vy

monomial o

2% —2h

+ahs

If h is an even multiple of 2¢, then Sq¢2' (ahﬁyz%) = 0. Thus, we have

t+1 t+1 2h t 25-2h 25 _gpyottl
0=25¢>" wy = Z S¢* T (a )= Z (@27 +ap 1 ).
h h=2t(odd)

However if h, h' are odd multiples of 2t and h # h’, then

h 9t t 2h/ t o 25-2h B o,25—2n 42ttt
+ 7& h'+2 ﬁ ah+2 ﬁ 1 7& @ ﬁ T ,
25—2h+2‘+1 t 28 —2h 25 —op2t+l ;25 _2p’4attl
a3 £ ahpT Aol g ;

. . t+1 25 _2h t+1 25 —2n'
i.e. cancellation does not occur among Sq¢®> (o377 ) and S¢®> (o BT ).

. . R L TR .
So, if wes is nonzero, there must be a monomial a!3~  with i = 2¢(2p+1) for which
i+t 25 _2; 25 —2i42tt1 i . i
o2 377 and oip 1 are zero. For « , we have i < j
—2i

s . . . s_o; +1 . s
and 2 4_2’ < k. We must have j < i+2% and k < % so that oﬂ”tﬂz 3

and

25—21+2t+1 —2h

o'~ 1 — are zero. Since every other monomial in wsgs is of the form ahﬁ2
with A divisible by 2! and h # i, then either h > i or 222 > 2-2¢ and so the

monomials are zero. Thus wsgs = aiﬁz ™ and
i=2(2p+1), t>1,
j=2t2p+1) +x, 0<z<2

4k =25 - 21 (2p + 1) +y, 0 < y < 20HL
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From Lemma 3, we have wys,; = 0 for 0 < 1 < 257!, For [ > 2°~!, suppose that
was 4 contains a monomial a*BY with 2u +4v = 2%+ 1 > 2° + 251 Ifuw > i+ 2¢,
then u > j. If u < i + 2¢, then

2% 42571 2y 2542571 2j 20+l 25 9j4 ot+l

> > k.
v= 1 > 1 = 1 >

For both cases we have 3" = 0. So wasy; =0 for [ > 0.
The proof is completed. O

Corollary 1. If v is a non-bounding vector bundle over CP(2m+1) x HP(k) with

the total Stiefel-Whitney class w(v) = (1 +a)*(14 B)*(1 +a? + B)4(1 + oﬁﬂﬁzm )e,
then a is odd.

Proof. v has a nonzero characteristic number because it is non-bounding. A nonzero
characteristic number must contain the monomial o™ *13*. Since the total Stiefel-
Whitney class of CP(2m + 1) x HP(k) is of the form w = (1 + a)?™*2(1 + g)k+!
which contains only even powers of «, the class w(r) must involve an odd power of
«. By Theorem 1, we know that ¢ is even. Thus the odd power of o can only be
given by (14 «)® and a is odd. O

3. Existence of involutions and their classification

Since F = CP(2m + 1) x HP(k) bounds, there exists a manifold V4m+2+4k+1 gych
that CP(2m + 1) x HP(k) = 0V. Let £" — V be the r-dimensional trivial bundle
over V. If V" is the boundary of £ — V, then the disc bundle D" has the boundary
Dv" ) S¢". Multiplying the fibers of £&” by —1 induces an involution on DE". The
restriction on S&" of the involution is free and on Dv" is to multiply the fibers by -1,
so it fixes the zero section, which is CP(2m + 1) x HP(k). The normal bundle over
CP(2m+1) x HP(k) is v". Thus there is a bounding involution (M4m+2+4k+r )
fixing CP(2m+ 1) x HP(k) for every r > 0. However, we are interested in whether
there is a non-bounding involution fixing CP(2m + 1) x HP(k).

Let us recall some results about the bordism of involutions. Suppose that (M, T')
is a closed manifold M with involution 7" and the fixed point set of T is F =
CP(2m + 1) x HP(k). Let v denote the normal bundle of F in M. From [1]
we know that the bordism class of (M, T) is determined by the bordism class of
the bundle (F, v). Further, the real projective space bundle RP(r) bounds in the
bordism of RP*°, where the map into RP° classifies the double cover of RP(v) by
the sphere bundle S(v).

The mod 2 cohomology of CP(2m + 1) x HP(k) is

H*(CP(2m +1) x HP(k); Zy) = Zs[a, B]/(a*™+2 = gF+1 =),

where « is the 2-dimensional class coming from C'P(2m+1) and f is the 4-dimensional
class coming from HP(k). The total Stiefel-Whitney class of CP(2m + 1) x HP(k)
is

w= (14 a)*" (1 + )"
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Let
u=14+u +us+---+u € H(CP(2m+1) x HP(k); Zs)

denote the total Stiefel-Whitney class of v". Then the cohomology of RP(v") is
ZQ[O[, ,6, C]/(a2m+2 _ ﬂk+1 =0; &+ U10T71 + u20r72 +otu, = 0)
and the total Stiefel-Whitney class of RP(v") is

w(RP(W")) = w{(1+0)" +ur(1+0)" "+ +ur}

— (1 + a)2m+2(1 +B>k+1{(1 +c)r +U1(1 +C)r—1 +... +Ur},
where ¢ € HY(RP(v"); Z5) is the Stiefel-Whitney class of the double cover of RP(v")
by S(v") (see [1, p. 75]).

The class of RP(v") in the bordism of RP* is determined by the characteristic

numbers
wi, (RP(v)) -~ wi, (RP(v))c' [RP(v)],
where 43 + -+ i+t = dAimRP(¥") = 4m + 2+ 4k +r — 1. In order to find the
value of such numbers, we have a formula of Conner [2, (3.1)]
o' B RP (V)] = o B/ Uam+ 244k —2i—1;[CP(2m + 1) x HP(k)]
= coefficient of o*™*+1 3% in aiﬁjﬂ4m+2+4k,2i,4j,
where 20 +4j +t =4m + 2+ 4k +r — 1 and @ = 1/u is the dual Stiefel-Whitney
class of v".
For convenience, we introduce the following characteristic classes which were
initially introduced in [9].
. w(RP(W))
w(j] = W
c)r—i
— 'lU{(1+C)j +U1(1+C)j71 ++uj +uj+1(1+0)71 +}
=1+ wljli +wljlza + - + wljlamsorarrr-1,
for which w[j]; is a polynomial in the classes ws(RP(v)) and c. These classes satisfy
(see [9])
wli]a; = wic’ + terms with smaller powers of ¢,
wli]zit1 = (Wip1 +uip1)c’ + terms with smaller powers of ¢,

wli]aite = uir1¢71 + terms with smaller powers of c.

In particular,
’LU[O]l = u1 + wq,

wl0]z = urc+ (w2 + uywy + u2),
wl0]4 = u e + (us + w1u1)02 + (us + wouq)c + wq + wsug + woug + wius + ug.

Suppose that (M*m+2+4k+7 T is an involution fixing CP(2m + 1) x HP(k).
When r > 4m + 2 + 4k, from [5] we know that the involution bounds. When r=0 or
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r=1, it is not difficult to prove that every involution bounds. Then we assume that
1<r<4dm+2+4k.
The proof of Theorem 2 is divided into two cases: (I) k = 2n, (II) k = 2n + 1.

(1) k=2n
Proposition 1. Every involution fizing CP(2m + 1) x HP(2n) bounds.

Proof. If there is a non-bounding involution fixing CP(2m + 1) x HP(2n), then
the normal bundle v" is non-bounding. By Corollary 1, we know that a is odd.
Then u; = 0, ug = a, we = 0 and w[0]s = wic + (wy + wywy + ug) = a. Let
2m +1=2P(2¢+1)—-1(p>1, ¢ >0). Then

w(RP(V")) = (1+a)*" P21+ 3" {1 +e) +u(14+¢)" P+ +u,}

— (1 JrOL21>)2q+1(1 +ﬂ)2n+1{(1 Jrc)r Jrul(l JrC)rfl N Jrur}’
where a2’ (2¢+1) = 0 and #?"*! = 0. Thus (1+a?" )29 =1+0?" +---+a*"27 and
(L+ B> =146+ + 52

If r is odd, then

Wopt1.9g18n4r—1 (RP(V7)) = a2 2482 (e 4 (r — Dure™ 2 4+ upy)

is the top-dimensional class in w(RP(v")), and

w[0]3 " wari1.0g 1 gn g1 (RP(V7))[RP (V)]
= a®HE e+ (= Dure™? + -t up ) [RP(VT))
_ ran-',—lﬂanr—l [RP(V7)]

= ra?™ 1B [CP(2m + 1) x HP(2n)] =,

which is a nonzero characteristic number. Since we know that RP(v") bounds, this
is a contradiction.

If r = 4h + 2, then (3) =1 (mod?2), (';2) =0 (mod 2) and

P

w[0]3 M war+ 1044 gntr—2(RP(V7))c[RP(V7)]
_ a2m+1ﬁ2n(cr—1 N ur,gc)[RP(l/T)]
_ a2m+162ncr71[RP(Vr)}
= > B2 OP(2m +1) x HP(2n)] =1 #£0,

we get a contradiction.

If 7 = 4h, then (}) =0 (mod2), (";?) =1 (mod2) and

P

w[O]g 72“’2"*1‘2q+8n+7'—2(RP(VT))C3[RP(VT)]
_ a2mﬂ2n(acr71 N ur_gc?’)[RP(lf)]
— a2m+1ﬂ2ncr71 [RP(V’I“)]
= > B2 OP(2m + 1) x HP(2n)] # 0,

we also get a contradiction.
So every involution fixing CP(2m + 1) x HP(2n) bounds. O
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() k=2n+1

Suppose that 2m+1=2P(2¢+1)—1 and 2n+1 = 2p'(2q’+l) —1,wherep>1, g >
0, p’ > 1 and ¢’ > 0. To determine the bordism classification of all involutions fixing
CP(2m+ 1) x HP(2n+ 1), we explore the conditions under which the bundle with

25—2;

class u = (1 + )1+ B)’(1 + a2+ B)4 1+ a’3~ 7 )¢ bounds.

Lemma 4. Suppose that v" is the normal bundle of the fized point set of a non-
bounding involution fixing CP(2m + 1) x HP(2n + 1) with u = (1+ a)*(1 +8)b(1+

25 24 2524

a2+ﬂ)d(1+ai@ T e =u'(1+aiB™7 )%, whereu = (1+a)*(1+3)°(1+a?+3)%.
If e=1 and 272 is odd, then uj,, g,1q = "B+ and Usmisnia = 0.

Proof. Let 252 =21 —1 (I > 0). Then i =21 — 4] +2 =2(2°72 — 2] + 1). By
Theorem 1, 2m+1 =i+1 and 8n+4 = 2% —2¢. Thus ¢ = 2m and % =2n+1. We

assert u,,  gnya 7 0. If Wy ignis = 0, then Uapisnta = Wiy snis + a2mgentl —
a?m B2+l £ 0. Sor > 4m+8n+4. Since r < 4m—+2+8n-+4, we have r = 4m+8n+4
or "=4m+ 14 8n+4.

(1) For r = 4m + 8n + 4, we have w = (1 + a)*™2(1 + 8)*"*2 w; = w41 =
wy = Wyryo = 0 and

wlr —1)ar = urc” + upwi "+ w1 A Upwoc” T 4wy yoc” 2

+ terms with smaller powers of ¢
= u,c" + terms with smaller powers of ¢
= up(urc" FuadE L )

+ terms with dimension smaller than 2r
= u,usc” "2 + terms with smaller power of ¢

= a?m 13241 =2 | terms with smaller power of c.

Then wr —1]a,.c[RP(v")] = 2™ 132+ 1= RP(v7)] # 0, which is a contradiction.

(2) For r = 4m + 1 + 8n + 4, we have

wlr — 21y = ur_1¢" "1+ terms with smaller power of ¢

= a?"B* =1 4 terms with smaller power of c.

So w[0]ow[r — 2]a—1)[RP(V")] = o®™ 1321 = [ RP (V)] # 0, which is a con-
tradiction. Thus ul,, g,,4 7# 0, and it contains a monomial ol 37" with ' <
2m + 1, 7 < 2n+ 1 and 27 + 45" = 4m + 8n + 4. Such a monomial must be

2m g2n+1 / _ o 2ma2ntl _
@®M 3P S0 wl, ygnpa = 2B and ugpysnga = 0. O

Lemma 4 shows that terms of the form %, qoddgodd —qoddgeven = ,even godd

(3°44 in u can only be given by w’.

Lemma 5. If v" is the normal bundle of the fixed point set of a non-bounding
involution firing CP(2m + 1) x HP(2n + 1) with u = (1 + a)*(1 + B)b(1+ a2 +
B)4(1 —|—oﬂﬂ2 _21)5, then b and d are odd.
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Proof. If b and d are even, by Lemma 4, v and w contain only even power of 3,
where w denotes the total Stiefel-Whitney class of CP(2m+1) x HP(2n+1). Thus
" bounds, which is a contradiction.

By Corrolary 1, we know that a is odd. If b is even and d is odd, then

' = (14 a)*(1+8)°(1 +a® 4 p)?
= (1+a)(1+a®+ )1 +a)* (1 +5)"(1+a®+ )"
_ (1 +a—|—a2 +a3 _’_IB_i_aﬁ)(Zaevenﬁeven).
If b is odd and d is even, then
v = (1+a)*(1+B)°(1+a®+B)*
=(1+a) 1+ 81 +a) (1+8)" (1 +a®+5)!
— (1 +O‘+5+O‘/B)(Z aeuenﬂeven>'
For both cases, we have w[0]2 = ujc + (wy + uywy + ug) = a and
’UJ[OM = Ulcg + (UQ + w1U1)62 + (U3 + wgul)c + wq + wW3uUp + Wole + Wi1U3 + Ug
=ac® +e1a + 1,
where €1 = 0 or 1. Then
U)[O]%erl’w[OﬁnJrlCT_l[RP(I/T)] _ a2m+162n+16T_1[RP(1/T)} 7& 07
which is a contradiction. So b and d are odd. O

Lemma 6. Suppose that v" is a vector bundle over CP(2m + 1) x HP(2n+ 1) and
the total Stiefel-Whitney class of V" has the form u = (1 + a)?(1 + B)°(1 + o +

2524

B)H 1+ a3~ )%, for which a, b and d are odd. Then for 2m+1>5, v" bounds
if and only if

(1) 2m+1 <20+t —2 2n 41 =27 (2¢ +1) — 1, where p’ > 1 and ¢’ >0,

(2) 2m +1 < 271 — 2 where b—d =24(2f + 1),

(3) e=0o0re=1and2m+ 1 # 27Tt — 1, where 27 is the largest power of 2 in
the common terms of the 2-adic expansions of 2m + 1 and 8n + 4.

Proof.

2524
1

u=1+a)1+p)"(1+a”+p)'1+a's 7 )
= (1+a+a?+a®+a28+ 5+ a8+ ap?)i,

where @ = (14 a)* 114311+ a?+B) 11+ R )€. Since 2m +1 > 5,
wehave i #2, u3 =0, us =, uz =0, ug =102, us =0, ug = 10>, uy =0 and

ug = a?B+eat +e38%, where e, =0or 1 (1 <k <2)and e3 = (g) + (g) +bd =
(b—;d> (mod 2).
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Since w = (1 + a)?™2(1 + 8)?"+2 = (1 4+ a)?™T2(1 + BZPI)Zq/J,-l’ we have

Wairy1 = 0, woy = <2mi/—|— 2) o for i <P’ tt
/ 2m + 2 /1
Wop!+2 = 3 +( op’+1 )O‘Zp :
- 2m + 2 4 '
Let Wop/ +2 = Wop/ 42 + ( 2p'+1 ) ugp +1 _ ﬁ2p .
If 2m+1> 2?1 — 2 we have
B2 o (us + eud)? T2 TVIOP@m 4 1) x HP(2n + 1))
— 3720 (0?8 + 8% a2 2 D (CP(2m + 1) x HP(2n + 1))
Q2MTLETNCOP(2m 4 1) x HP(2n + 1)),

which is nonzero. Thus the bundle v” does not bound.
So we suppose 2m + 1 < 2P +1 — 2. The following argument is divided into two
cases: (1) ug = a?8 + e2at, (2) ug = a?B + ez + 32.

(1) ug = a?B + ez

In this case, ez = b—;d = 0 (mod2), then b+ d is divisible by 4. We write
b+d=2* (odd) with 28 > 4. Then
1 U
YT 0w

s

—21
4

= (14+8)(1+a+p) (1 +a'B T )

(18" A+ a® + B+ 5)" " D1+ alp”
=

=

s

—2i
4

e
+ 8 10214 B)Y I+ B2 4 i )e
+a?+ a4 @24 (020 4 g 4 gy
x(14a'p SZZi)E
with b+d—2*d = 2% (odd) —2*- (odd) =0 (mod 2+1).

(i) If 28 > 2¢' then the characteristic ring of v (i.e. the subring of H*(C'P(2m+
1) x HP(2n+1); Z3) generated by the classes u; and w;) contains o, a3, -,

P _ P . .
a?23?" 1 and B8%° . So we have a nonzero characteristic number

(5712 (0237 ") 12O P(2m + 1) x HP(2n + 1)].

(ii) If 28 <27’ then o, 28, ---, o282 2 and o282~ + 2" are characteristic
classes. Let 2n+ 1 = 2F — 1 4 2F .. We have a nonzero characteristic number
for2m+12>5

(Ck2ﬁ2k_1 + ﬂ2k)la2ﬂzk_2a2ﬂa2m+1_4[C’P(2m +1) x HP(2n + 1)].
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These nonzero characteristic numbers show that the bundle is always non-bounding

for ug = a2 + esa®.

(2) us = a?pB + e2a* + 52

b;d =1 (mod2), so b+d = 2 (mod4) and b—d = b+d—2d =

2 —2=0 (mod4). We write b — d = 2!(2f + 1) with 2¢ > 4. Then

In this case, e3 =

u = ﬁ =(1+a?+a?8+ )1+ 3)°741 + ai52522i )¢
= (1+a?+a28+ B)41+ BT A1 4 oip™T™)e
and
u' = = S =0+ Qi BT

(1 4+ u2 + ug + eau3)

If ¢ = 0 and 2! < 27, the characteristic ring of the bundle is generated by the
classes a, a?f + 32 and 3% . If ¢ = 0 and 2! > 2P the characteristic ring of the

bundle is generated by the classes o, a3+ 32 and /6’21)/.

If e = 1, then write 27 < 2m +1 < 271! where 27 is the largest common term of
2m~+1 and 8n+4 (8n+4 = 20/ +29¢/4-20'+2 4 — op'+29¢/ 4 op' 1L oitl L 9i 4
4, j <p'). By Theorem 1, 2m+1 = 27(2g+1)+x < 271 Tt forces g = 0, i = 27 and
8n+4 = 2520y — 95—y yoitlyy — o' +290 yop'Hl L oitly9i 4y,

Thusy =2/ + -+ +4,8n+4 =251 4. ... 42071 4 27 ... 4 4 =2°— 4 and
In+1=2"2_1=2"_11If2¢ < 21’/, then the characteristic ring/of v is generated
by the classes o, a28+ 32, 5% and oﬂﬂQLM. If 2t > 27" then 3% = 32" = 0. The
characteristic ring is generated by the classes a, a8 + 5% and oﬂﬂQSZm.

Fore=0or 1, write 2n+1 =2/ — 1+ 200 If 201 —2 < 2m + 1 < 2P'+1 — 2 we
have

(OtQﬁ + ﬁ2)2t_1(ﬁ2t)la2m+1—(2t+1_2) [CP(Zm + 1) > HP(QTL + 1)] 7& 0,
which shows that the bundle is non-bounding.
Now we suppose 2m + 1 < 2t+1 — 2,
If the class oziﬁ% is present (i.e. € = 1), then 8% =0, a’ﬂT = a?' B

i 9P _9i—1 i aop’ _gi—1 . ’ i ’ t
=a? 3% 72 and (a¥ % 7% )2 =0. Since 2 + 27" — 2171 > 2P we have 5% -
a2fﬂ2f"—2ﬂ'*1 i1

25 _gj+1
4

= 0. The only possible characteristic number involving o? 6
which could be nonzero would be of the form

o (B(a? + B) (o 7~ HCPEm + 1) x HP(2n + 1)),

and the value of this class is the coefficient of a2m+1-2'=2" 327" =1 in (8(a2 + B))¥',
where 22/ + 8y’ = 4m+2+8n+4—29Ft1 — (2P 2 27Ty = 4m -2 and ¢y <2771 1.
The coeflicient is

Y _ Y _ Y
(W):(2y,(2j11)):(2j11y’ mod 2.
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It is nonzero if and only if ¢’ = 2= — 1, and in this case 2m + 1 = 277t — 1.
If e =0,0or e =1and 2m + 1 # 297! — 1, then the characteristic numbers

which could be nonzero would involve only polynomials in a, «?8 + 82 and ﬂ2k ,
where 2% = min(2¢, 27"). We will show that every characteristic number involving

a, o?p+ % and ﬁzk is zero.
Suppose that there exist some Z, § and Z such that

a®(B(a? +ﬁ))ﬂﬁ2k"5[CP(2m+ 1)x HP(2n+1)] = ( o1 ) =1 (mod 2),
2
where ,
2% + 87+ 2F+2. 2 = 4m + 2+ 8n + 4,
27 — 2mEL=T | ok 7 = on + 1.
If £ =2m+ 1, we have 27 + ok .z =on+ 1, which is impossible since &’ > 1. So
T <2m+1 and 7 is odd. /
Writing 2n + 1 = 2 — 1 + 2¥'[, we have ﬁQk (+1) = 0. Thus 2 < I. Recall
that 2m + 1 < 2¥+1 — 2 then (o283 + 52)2" = 82" "' Suppose § < 2*'. We have
49 < 2¥'+2. From

Af=4An+2+2m—+1-2"+1z 3
=oFHl _9 oK't f o 41— Mtz _ g
=M —5) + M — 24 2m+1—F
> Qk/+1(l — )+ 21c'+17

we know that Z =1 and 4§ = 25"+ — 2+ 2m + 1 — &. Thus j = 2F'~1 4 2mtl=g=2

implies § = 2 —1. So 2m+1 = 2¥+1—24 7 > 2K *+1 _2 and this is a contradiction.
Thus every characteristic number involving o, 28 + 82 and 82° is zero and v"
bounds.

The proof is completed. O

Proposition 2. For2m+1=2"—1and2n+1=2° —1, every involution firing
CP(2m + 1) x HP(2n + 1) bounds.

Proof. If 2m +1 =27 —1 and 2n+1 =27 — 1, then w = (1 + o' )(1 + 6217/) =1

So the bordism class of the normal bundle v" is totally determined by the class u.
By R. we denote the characteristic ring of the map of RP(v") into RP, i.e.

the subring of H*(RP(v"); Z2) generated by ¢ and the classes w;(RP(v")), where

w(RP(V")) = (14+¢)" +ur(14+¢)" 4+ +u,.

Since ¢ € R,, we can solve inductively to obtain u; € R, for 1 < ¢ < r. So
R, contains the characteristic ring of v (i.e. the classes uy, ug, ---, u,). For
every partition w of 4m + 2 + 8n + 4, we have u,[CP(2m + 1) x HP(2n + 1)] =
u,c”HRP(v")] = 0. So v" bounds. O
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Lemma 7 (See [5]). Let (M™, T) be a smooth involution on a closed n-dimensional
manifold with the fized point data (F, v) = | J(F™ ", v"). If f(x1, - ,x,) is a

-
symmetric polynomial over Zy in n variables of degree at most n, then

T 1 Y B A R

r [T(1 + i)

1

where the expressions are evaluated by replacing the elementary symmetric functions
oi(x), oi(y), and 0,(z) by the Stiefel-Whitney classes w;(M), w;(v"), and w;(F), re-
spectively, and taking the value of the resulting cohomology class on the fundamental
homology class of M or F.

Lemma 8 (See [5, p. 317]). Let oj(x1, -+ ,&p, &pq1,- - ,&y) be the j-th elementary

symmetric function in n variables. Then

Jj(1+y13"'71+y7’,217"’72n—r)
r—
= Z ( f >Up(y1’“-’y'r)UQ(Zl""7znr)‘
\J —P—4q
P+q<j

Proposition 3. For 2m+1 > 5, every involution fixing CP(2m+1) x HP(2n+1)
bounds.

Proof. If there is a non-bounding involution fixing CP(2m+1) x HP(2n+1), then
the total Stiefel-Whitney class of the normal bundle v" has the form
u=(1+a)(1+B)"(1+a+ B 1L +aip™ 7 )
= (1+a+a®+a®+a?8+ 3%+ a3+ aB?),

98

where a, b and d are all odd and @ = (1 + a)* 11 + B3)P~ (1 + o + B)41(1 +
aiﬁzszm)a. Since 2m + 1 > 5, we have 2° > 16. Sou; =0, us = o, uz =0, ug =
102, us = 0, ug = €103, uy = 0 and ug = 28 + e20* + €352, where ¢, = 0 or
1(1<k<3).

The following argument is divided into two cases: (1) ug = a8 + e, (2)
ug = a2 + exa* + 2.

(1) us = a?B + e2a
Just as in Lemma 6, write b+ d = 2*. (odd) with 2% > 4.
(i) If 2% > 27" the characteristic ring of " contains the classes a, a?, 23, ---,
azﬂzp'fz, a252”/71 and 621’"
For 27 = 2, we have w1 = wy = wy = ws = wy = 0, w4:(
We = (2"?'2) a? and wg = (2m4+2) a* + B2. From Lemma 8, we know

27n2+2) 0427

oa(14y,2) = (;) 4 (7’ | 1) o1(y) + (;’) 01(2) + 0a(y) + 01 (y)o1(2) + 0(2)

(5)+



o2(l4+y,2) + (;) =a.

oa(x) + (g) Then 0/2(1 +y,2)

Let oy()
os(l+y,z

412

N S 5 S g ~
\UW — —~ = = —~ S —
= = = > ~ > = = o
= ~ L0 ~—
€ & & § = g =5 z 6
= N 5 8 B} & 5
' © | o | & | =» T | ° - B
~ Y (&) N PN
P N N NN ﬁl\n/.
+ + + + 1_ N B B
—~ — —~ —~ o o .
O C O RN
o~ " — <
€ & & £ 7 & + g *
N ~—~ —~ — — —
a2 26 s BT o3
g S~—
e § § im F & 5 E 2
— — = ~ ~
~
/nﬂ\Q ™ ((y\ro (w\m.//wu\
o
— 75_T4 \A_ﬂ S | o S | - IS
N RS N
((((MA//I\Q ™
s+ X - T e T -
|
M/ 3 \%)_3\) —
~ = —_ s =
N— - N = =

dm+2+8n+4+r, by

(05(2))27+ 1 (a4 (2))? 12 with degf

dm + 24+ 8n+4 < dimM

. Taking f(z)

a? 3+ 32

EOCHE D~
(\,5_4(2\ X © o =
S %) 2,23_1
PR S £ £
S . =~ =+ = T
w  n S N SRS o
E S S N 8 g 2 g
§ §-_ TP, &7
+ [ < | ™ | |-
TN N PN -S> + | &
S T = LN

Then aé(l—i—y,z)
8(2¢' +1) +2(2m +1-2)

Let
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Lemma 7 we have

(a26 + 62)2q'+1a2m+172
r

IT (1 +w:)

i=1

0= f(z)[M] =

[CP(2m+1) x HP(2n+1)] = 1,

which is a contradicition.
For 2P > 4, we have

2m + 2 . . ' 2m + 2 '41 ’
e ( i )al wair1 =0 (0 <i" <2PHN), wyy s = ( 9p/+1 )azp o
Ugir = 0l2ﬂi/71 + €i/042i/, Ugir 1 = 0, ugyr4o = %asﬂi et 5104% +17
U4/ +3 = 0 (2 S il S 21)/).
Using the above method, we get o,(z) and og(z) such that oy(1 + y,2) = «
and og(1 +y,2) = a?8. In the same way, adding a polynomial in ¢4(z) and o§(x)
to o12(z) to get of4(z) such that ol5(1 + y,2) = a?3?, adding a polynomial in

ah(x), of(x) and of4(z) to o16(x) to get olg(x) such that of4(1+y,2) = 263, -+,
adding a polynomial in 05(z), og(z), -+, 0,5 ,(T) 10 o2 () to get o7, (2)

such that o, ,(1 +y,2) = o?p% ~1 4+ 52" and taking
F(@) = (0412 (2))*T T (0 (2))* 172,
from Lemma 7 we get a contradiction.

(ii) If 4 < 2% < 27 writing 2n + 1 = 28 — 1 4 2], from Lemma 6 we know
that the characteristic ring of " contains the classes a, o2, o283, ---, a2ﬁ2k_2 and
a252k*1+52k, So gy = a26i’71+€;a2i’7 Ugirs1 = 0, Ugjrpn = ,Yz{a3ﬂi'71+5z(a2i'+l’
Ugir13 =0 (2 <i' <2F — 1) and ugri2 = a2/62k*1 + ﬂQk + €2k0[2k+1

Using the above method, we get a series of symmetric function of(x), o§(z),

oy Ohura_4(x) and oy, (x) such that oh(1+y,2) =, of(1+y,2) =a?B, ...,

U/2k+2_4(1 +y,2)= 04252’672 and U/2k+2(1 +y,2) = O‘Qﬂzkil + 62k~ Taking

(@) = (0hes2(2) 0hrsey(2)og () (oh(z))?m™ 4,

from Lemma 7 we get a contradiction. So ug = a3 + eza* does not occur.

(2) ug = B + exa* + (2
From Lemma 6, we need to consider the following cases:

(a) e=1and 2m +1 =2/ -1,
(b) 2¢° > 2t >4 and 2m + 1 > 2tt1 — 2, where b — d = 2¢(2f + 1) with 2! > 4,

(c) 2< 2 <2 and 2m +1 > 201 — 2,
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In the case (a), € =1 implies 2n+ 1 = 2?" — 1. By Proposition 2 we know that
every involution fixing CP(2m + 1) x HP(2n + 1) bounds.
2m + 2

7:/
Uz = Air(a2B + 527 a4 4 ey, where Ay and e are 0 or 1 (4 < i < 2t+1),
Ugirz = B2 + Ageir (0284 52)7 02 4 4egia?” . Let ob(z) and of(z) as in (1)-
(i). Then o4(1+y,2) = a and o§(1 +y,2) = a?3+ 3% We can add a polynomial in
o5(x) and og(x) to oge+2(x) to get 0h,.» () such that o, (1 +y,2) = 4%, Writing
2n +1=2" — 1+ 2% and taking

In the case (b), wey = ) o’ and wairy1 =0 (0 < 4" < 28+L),

F(@) = (0hesa (1)) (0h(2))¥ N oh(x))2m 1= =2)

from Lemma 7 we get a contradiction.
2m + 2
-/

In the case (¢), we have wq; = ( ;

) o waip1 =0 (0 < i’ < 2°° 1) and
p/ 2 2 p/ 1 ’
Wyp iz = 2 + ( ;Z’i—l >a2 ™. For 2¢' = 2 and r odd,
w(RP(W")) = (1+ a2 )2 (14 82 (14 o) +ug(1+¢)"  + .. +u
= 2’2034 (r¢™ 1+ (r = Duge™ 2

+ ...+ up—1) + terms with a smaller dimension.

Then
Wap+1.94416¢/+r—1 (RP(V")) = o 2934 (pm 4 (r = Vw2 upy)

is the top-dimensional class in w(RP(v")). Since w[0]z = uic+ (wa +uiwi +uz) = o
and

w[0]g = urc” 4 upc® + (uz + waur )® + (ug + woug)c* + (us + waup )
+(ug 4+ waug)e? + (ur + waus + waus + weur e + ug + wotlg

+wauyg + weu + Ws
2 2 2 2 2 2
:acﬁ+51a204+a2ﬁ+52a4+51< m )a4—|— < mt >a4—|— ( met >a4

2 3 4
2 2
+ <€1 + ( m2—|— )) a302,

we have

w[0]§p73w2p+1.2q+16q/+7._1(RP(VT'))w[O]g[RP(VT)]
=a® 1% (re" (1 — Dugd 2 + .+ up)w[0]s[RP(V7)]
— Ta2m+1ﬁ2n+1cr71[RP(yr)] =r,

which is a nonzero characteristic number. We know that RP(v") bounds, so this is
a contradiction.
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For 2¢ = 2 and r = 4h + 2, we have (5) =1 (mod 2), (T52) =0 (mod 2) and

w03 P wart1 291169 +r—2(RP(V"))w[0]sc[RP(v")]
=2 (e 4w, ae)[RP(VT)]
_ a2m+1ﬁ2n+1cr—1 [RP(UT‘)]
=10,

which is a contradiction.
For 27" = 2 and r = 4h, we have (}) =0 (mod 2), (";%) =1 (mod 2) and

w0]3" " waps1 2 16g 472 (RP(V7))w[0]s*[RP (V)]

=B (a4 upoc®) [RP(VT))]

_ a2m+152n+1cr—1[RP(Vr)]

=140,
which is also a contradiction.

For 27 > 4, we have u; = us = us = ur = 0, us = o, ug = €102, ug =

e102, ug = a?B+eaat+5?% and ugy = 5y (a?B+3%)7 b ~H 4 Al (4 < i <20 FL),
where 6;; and \;s are 0 or 1.

Using the method in (1), we get the symmetric functions o4(z), o§(x) and
)4 (2) such that o5(1 +y,2) = a, og(1+y,2) = a?S+ % and o, , (1 +y,2) =

6217/. Taking
f@) = (0442 ()% (Ué(f))zp/71(0’2(m))2m+1*(2p,+1*2),

from Lemma 7, we get a contradiction.
This completes the proof. ]

Proposition 4. Every involution fizing CP(3) x HP(2n + 1) bounds.

Proof. Ife =1, then 2n+1= 2P — 1. By Proposition 2, every involution bounds.
Thus we need only to consider the case € = 0, i.e. u = (14 a)*(1+ a2+ 8)(1+3)"".
/ p—
(1) 1f (b 5 1) =1 (mod 2), then ug = a3, ¥’ —1 =2 (mod 4) and b’ +1 =0
(mod 4). Let b’ +1 =2F(2f +1) (k > 2).

u=(14+a)1+ o+ B)(1 + 5)2"—1)](1 L ﬁ)b/_2k+1
(14 )1 + 32 4 Q2(1 + ﬁ)2k_1](1 N /32k+1)f
(1 + a)a(l + 0[2 + az/ﬁ' 4+ -4 a2,82k_1 + ﬂzk)(]_ —|—/82k+1)f.

If 2k > 27" the characteristic ring of " is generated by o, a3, o262, ---, a23%" !

and 521)/. Just as (1)-(i) in the proof of Proposition 3, taking

F(@) = (02 (@) oy ()12,
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from Lemma 7 we get a contradiction. If 28 < 27”,7 the characteristic ring of v" is
generated by a, o283, o252, -, a252k*2, a2ﬂ2k’1 + 62k and 2° . None of these
monomials can give a monomial a®32"*! so " bounds.

/
(2) It (b 9 1) = 0 (mod 2), we write b’ — 1 = 2(2f + 1). The characteristic

ring of " is generated by a, a8 + % and ﬁQk, where k = min(¢, p').

For 2 = 2 and r odd, we have (22:2) =1 (mod 2),

w(RP(v")) = (1+aM)(1+8)* P2 {1+)" +ur(14+¢)" ... +u,}
=1+ 4 (r— Dure" 2+ Fupy
+terms with a dimension smaller than r — 1}
=2 (r" P (r— Dure™ 2 4. Fupy)
+ terms with a dimension smaller than 8n 4+ 7 — 1,
B2 (re™ F (r = Dugc™ 2 4 U ),
= ujc+ (we +urwy + uz) = «,
= u1c” + uac® + (uz + wour)® + (ug + wous)c + (us + wauy)e

+(ug + wauz)c? + (ur + wous + wyus + weuy e

Wen+r—1 (RP(VTD

IcH
|

3

g
=)
[ed]

\

Fug + waug + Waty + Weuz + Ws

2 2 2 2
= ac6+51a204+a25+51< m2+ )a4—|— ( m3+ >a4

2m + 2 2m + 2
+< m4+ >a4+(51+(m2+ ))a3c2.

Let

2

s (M7 i+ (75 Yutog+ (7777wl
= a?p.

(w(0ls)’ = wl0]s + w[0]ac® + 1[0 + (e1 + (2”"‘ " 2)>w[01§c2

Then w[0]2(w|[0]s) wsnir—1(RP(7))[RP(v")] # 0, which is a contradiction.
For 2¢ = 2 and r = 4h + 2, we have (5) =1 (mod 2), (“;2) =0 (mod 2),

UJ(RP(VT)) — 6271[(;) cr72+ (7’; 1) U10r73+ <7’ ; 2) U,QCT74 IR UT—Z]

+ terms with a dimension smaller than 8n 4+ r — 2,
r r—1 r—2
w8n+r_2(RP(z/’“)) = ﬂ2n[<2) CT72+ ( 9 )U10T3+ < 9 >UQCT4+' <4 IU/T_Q],

’LU[O]Q = uic+ (’LUQ + uwy + Ug) = Q.
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Just as above, we also get (w[0]s) such that (w[0]s)" = a28. Then

w[0)a(w[0)s) Wsnr—2(RP(W"))e[RP(V")
—_ a362n+1(cr—1 4 ur_gc)[RP(VT)]
_ a3ﬁ2n+1cr—1[RP(Vr)] # 0,

which is a contradiction.
For 2 = 2 and r = 4h, we have (}) =0 (mod 2) and (";%) =1 (mod 2). Then

(w[0s) wsnr—2(RP( ) [RP(V")]
— a2/82n+1(acr74 R UT_Q)C?)[RP(I/T)}
— a3ﬂ2n+1CT71[RP(Z/T)} 7& 07

which is also a contradiction.
So for 2P = 2, there is no non-bounding involution fixing CP(3) x HP(2n + 1).
For 27 > 2, suppose that there exist some Z, § and Z such that

a” (028 + 7)Y 37 [CP(3) x HP(2n +1)] #0,

where 22" + 8y’ +2F+2. 2/ = 6 +8n + 4, i.e. o' + 4y + 251 . 2 =3+ 4n + 2. Then
x' is odd. Since 2/ < 3, ' =1 or 3. If 2’ = 3, then 2y + 2F . 2/ = 2n 4 1, which is
impossible. If ' = 1, then (yl/) =1 (mod 2),i.e. 3 isodd. Thus 14+2(y' —1)+2F.2' =
2n 41 =2 (2¢' + 1) — 1, which is also impossible. So #" bounds.

The proof is completed. O

Proposition 5. Every involution fizing CP(1) x HP(2n + 1) bounds.

Proof. In this case, a® = 0. From Theorem 1 and Lemma 5, we know that every
involution fixing CP(1) x HP(2n + 1) has the total Stiefel-Whitney class v = (1 +
a)(1+ B)b+4, where b and d are odd. So we cannot obtain any odd power of 3 from
u and w and every involution fixing C'P(1) x HP(2n + 1) bounds. O

Combining Propositions 1, 3, 4 and 5 together, we have Theorem 2.
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