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Abstract. Let Sn denote the space of all n × n real symmetric matrices. Let n ≥ 2 and
let Φ : Sn → Sm be a map preserving adjacency, i.e. if A, B ∈ Sn and rank (A − B) = 1,
then rank (Φ(A)− Φ(B)) = 1. If Φ(0) = 0, we prove that either:
(i) Φ maps Sn into RB, where B is a rank one matrix, or
(ii) there exist c ∈ {−1, 1} and R ∈ Mm invertible (m ≥ n) such that for A ∈ Sn,

Φ(A) = cR

[
A 0
0 0

]
RT .

(If m = n, the zeros on the right-hand side are absent.)
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1. Introduction

Wen-Ling Huang and Peter Šemrl in [7] characterized adjacency preserving maps
from Hn to Hm, where Hn denotes the n × n hermitian matrices over C. They
improved the results going back to Hua ([4, 5]). See also [2, 3, 8, 9, 10, 13, 15, 17,
18, 19, 20, 21, 23, 24, 25, 26]. This article considers adjacency preserving mappings
from Sn to Sm, where Sn denotes the n×n symmetric matrices over R. The authors
of [7] suggested this problem in their article. It turns out that the ideas and methods
of their paper work in the real case as well (with modifications in some places).

The proof of the complex case uses results by Wen-Ling Huang, Roland Höfer
and Zhe-Xian Wan [6], which hold in the real case as well.

The main result of this paper is Theorem 1.

2. Notation

We will consider only matrices over the real number field R. Let Mn = Mn(R) be
the space of all n × n matrices over R. Let Sn denote the linear subspace of all
symmetric matrices in Mn, i.e. all A ∈ Mn such that A = AT , where AT is the
transpose of A. Let GL(n) denote the group of all invertible matrices in Mn. Let
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lin Z denote the real linear span of a set Z (in some vector space). We will often
look at matrices in Mn as linear operators on Rn. So for A ∈ Mn, Im A = ARn is
the image of A or the column space of A.

If we consider x, y ∈ Rn as n × 1 matrices, xyT = x ⊗ y is the rank one matrix
with the property (x⊗ y)z = 〈z, y〉x for z ∈ Rn.

If P ∈ Sn and P 2 = P = PT 6= 0, then we call P a projection, as it is the
orthogonal projection on Im P . Two projections P,Q are orthogonal, P⊥Q, iff
PQ = 0. If x is a unit vector, then x⊗ x is the projection on lin {x}.

Let e1, . . . en be the standard basis in Rn and let ei ⊗ ej = Eij be the matrix
unit, i.e. the matrix with 1 in place (i, j) and zeros elsewhere.

We know that for R, T ∈ Mn, Im (R+T ) ⊆ Im R+Im T and so rank (R + T )≤
rank R + rank T .

For A,B ∈ Sn let d(A,B) = rank (A − B). Then (Sn, d) is a metric space. We
will often use

Lemma 1. Let A,B, C ∈ Mn and A + B = C. Then rank A = rank B + rank C iff
Im A = Im B ⊕ Im C.

Two matrices A, B are adjacent if d(A,B) = 1, i.e. rank (A−B) = 1. If d(A,B) =
k, there is a sequence of consecutively adjacent matrices A0 = A, A1, . . . , Ak = B (see
Proposition 5.5 in [24]). Conversely, if there is such a sequence, it is straightforward
that d(A,B) ≤ k.

Let A,B ∈ Sn be adjacent. The line l(A,B) joining A and B is the set consisting
of A,B and all Y ∈ Sn, which are adjacent to both A and B. By Corollary 5.9 in
[24],

l(A,B) = {A + λ(B −A)|λ ∈ R} .

If P ∈ Sn is a projection, let PSnP = {PAP |A ∈ Sn} = {C ∈ Sn|PCP = C}.
Proposition 1. For A,B, S ∈ Sn, R ∈ GL(n), and c ∈ R\ {0} we have
d(A + S,B + S) = d(A,B) = d(RART , RBRT ) = d(cA, cB). Consequently, these
are equivalent:

i) A is adjacent to B;

ii) A + S is adjacent to B + S;

iii) RART is adjacent to RBRT ;

iv) cA is adjacent to cB.

Corollary 1. Let Φ : Sn → Sm be a map preserving adjacency, i.e. A is adjacent
to B implies Φ(A) is adjacent to Φ(B). Let Ψ(A) = Φ(A)−Φ(0) for A ∈ Sn. Then
Ψ is adjacency preserving and Ψ(0) = 0.

Theorem 1 (MAIN THEOREM). Let m, n be natural numbers, n ≥ 2. Let Φ :
Sn → Sm be a map preserving adjacency, with Φ(0) = 0. Then either:

i) There is a rank one matrix B ∈ Sm and a function f : Sn → R such that for
A ∈ Sn
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Φ(A) = f(A)B.

In this case we say Φ is a degenerate adjacency preserving map.

ii) We have c ∈ {−1, 1}, R ∈ GL(m) such that for A ∈ Sn,

Φ(A) = cR

[
A 0
0 0

]
RT .

In this case we say Φ is a standard map. (Obviously, in this case m ≥ n. If
m = n, the zeros on the right-hand side of the formula are absent.)

3. Preliminary results

We borrow Lemma 2.1. in [6]:

Lemma 2. Let G ∈ Sn and let l be a line in Sn. Then either:

i) There is k such that d(G,X) = k for all X ∈ l or

ii) There is a point K ∈ l such that d(G,X) = d(G, K)+1 for all X ∈ l, X 6= K.

Lemma 3. Let A ∈ Sn be adjacent to both R and λR, where R ∈ Sn has rank one
and λ 6= 1. Then A = µR for some µ ∈ R, µ 6= 1, λ.

Proof. Since λ 6= 1, R and λR are adjacent and A is contained in the line l(R, λR).
So A = R + µ′(R− λR) = µR and µ 6= λ, 1.

The following lemma is slightly more general than Lemma 2.3. in [7].

Lemma 4. Let P ∈ Mn be an idempotent and A, B ∈ Mn such that P = A+B and
rank P = rank A + rank B. Then A,B are idempotents and AB = BA = 0.

Proof. By Lemma 1, Im P = Im A⊕ Im B. So if Px = 0, Ax = Bx = 0 and thus
kerP ⊂ kerA. For y ∈ Im A ⊂ Im P , Py = y = Ay + By, hence y − Ay = By.
Since y − Ay ∈ Im A, we have By = 0. Thus BA = 0 and A2 = A. By symmetry,
AB = 0 and B2 = B.

Lemma 5. Let P1, P2, . . . , Pk ∈ Sn be mutually orthogonal rank one projections and
P = P1 + . . . + Pk. Let ξ(1), . . . , ξ(n) be an orthonormal system in Rn such that
Pi(ξ(i)) = ξ(i) for i = 1, . . . , k. Then Pi(ξ(j)) = δijξ(j). Let V be the orthogonal
matrix defined by V ei = ξ(i) for i = 1, . . . , n, so that ξ(i) is the i−th column of V .
Then V T PiV = Eii for i = 1, . . . , k. If A ∈ PSnP = {C ∈ Sn|PCP = C}, then

V T AV =
[

q(A) 0
0 0

]
,

where q(A) ∈ Sk. We have q(Pi) = Eii for i = 1, . . . , k and q(P ) = E11 + . . . + Ekk.
The mapping q : PSnP → Sk is linear, bijective, and q(AB) = q(A)q(B) for

A,B, AB ∈ PSnP . So q(A2) = q(A)2 and q is a Jordan isomorphism. It preserves
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the distance d and thus adjacency. Also q(ABA) = q(A)q(B)q(A) for all A,B ∈
PSnP . All these properties are shared by the mappings h : Sk → Sn and q−1 : Sk →
PSnP , where

h(B) =
[

B 0
0 0

]

and q−1(B) = V h(B)V T .

Lemma 6. Let k, n be natural numbers with 3 ≤ k ≤ n. Let λ1, . . . , λk be nonzero
real numbers and P1, . . . , Pk ∈ Sn mutually orthogonal rank one projections. Let
A =

∑k
j=1 λjPj. Let B ∈ Sn have rank B = rank A = k and let B be adjacent to

A− λiPi for all i. Assume that d(B, λiPi) = k − 1 for all i. Then B = A.

Proof. By Lemma 1, Im B = Im (λiPi)⊕ Im (B − λiPi). So Im Pi ⊂ Im B for all
i. If P = P1 + . . . + Pk, then Im P ⊂ Im B and rank P = k, so Im P = Im B and
consequently PB = B = BP . Thus A,B ∈ PSnP . Using notation from Lemma 5,
q(A), q(B) ∈ Sk and q(B) is adjacent to q(A) − λiq(Pi), d(q(B), λiq(Pi)) = k − 1.
Also, q(P ) = E11 + . . .+Ekk = Ik and q(A), q(B) have maximal rank as elements in
Sk. Thus we may assume that k = n and A,B are invertible in Sn, P1+ . . .+Pn = I.

Now 1 = rank (B−A+λiPi) = rank (A−1B−I+λiA
−1Pi). But A−1 =

∑
λ−1

i Pi,
so λiA

−1Pi = Pi. Let C = B−1A ∈ Mn. Then C ∈ GL(n) and 1 = rank (C−1 −
(I − Pi)) = rank (I − C(I − Pi)).

Now I = (I−C(I−Pi))+C(I−Pi) and rank C(I−Pi) = rank (I−Pi) = n−1.
By Lemma 4, C(I − Pi) is an idempotent.

Let f1, . . . , fn be an orthonormal basis of Rn such that Pifi = fi. Then for j 6= i,
(I − Pi)fj = fj , so Cfj = C(I − Pi)fj = C(I − Pi)C(I − Pi)fj = C(I − Pi)Cfj .
Since C is invertible,

(I − Pi)Cfj = fj for j 6= i.

Let Cfj =
∑n

m=1 amfm. Then (I − Pi)Cfj = Cfj − PiCfj = Cfj − aifi =∑
m 6=i amfm = fj . So am = 0 for m 6= i, j and aj = 1. Thus Cfj = fj + aifi. Since

n ≥ 3, there exists k, 1 ≤ k ≤ n, k 6= i, j. So Cfj = fj + akfk also. Thus Cfj = fj

for all j and C = I. This implies A = B.

Lemma 7. Let A, B ∈ Sm and let rank A = 1. If rank (A + λB) = 1 for every
λ ∈ R, then B = 0.

Proof. If rank B ≥ 2, then there exists a nonsingular 2 × 2 submatrix in B. For
λ 6= 0, we have rank (A + λB) = rank (B + 1

λA) ≥ 2 for λ large enough, since the
chosen submatrix of (B + 1

λA) will be nonsingular. Therefore, rank B ≤ 1.
If B 6= 0, then B is adjacent to 0. Also, A + B is adjacent to 0 and B, so

A + B ∈ l(B, 0). Thus A + B = µB and A + (1− µ)B = 0 – a contradiction.

Lemma 8. Let A,B ∈ Sn have rank n (n ≥ 2), with A 6= B. There exists a
natural number k and invertible matrices A = A0, A1, . . . , Ak = B such that the
neighbours in this sequence are adjacent and there is a matrix Cj ∈ l(Aj , Aj+1) with
rank Cj = n− 1 for j = 0, . . . , k − 1.

Proof. This is a consequence of Lemmas 2.5 and 2.6 in [6] and it is stated in the
proof of Lemma 3.1 in the same paper.
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Lemma 9. Let Φ : Sn → Sm be an adjacency preserving map. Let A,B ∈ Sn

be adjacent. Then Φ(l(A,B)) ⊂ l(Φ(A), Φ(B)). The restriction of Φ to l(A, B) is
injective.

Proof. If λ1 6= λ2 and Ci = A + λi(B −A) ∈ l(A,B) (i = 1, 2), then C1 is adjacent
to C2 and therefore Φ(C1) is adjacent to Φ(C2), thus Φ(C1) 6= Φ(C2).

Lemma 10. Let Φ : Sn → Sm (n ≥ 2) be a map preserving adjacency and Φ(0) = 0.
Let max {rank Φ(A)|A ∈ GL(n)} = k. If k ≥ 2 and for every singular A ∈ Sn we
have rank Φ(A) < k, then rank Φ(B) = k for every invertible B ∈ Sn.

Proof. Let A,B ∈ Sn ∩GL(n) with A 6= B and let rank Φ(A) = k. By Lemma 8,
there exists a natural number r and invertible matrices A = A0, A1, . . . , Ar = B
such that the neighbours in this sequence are adjacent and for j = 0, . . . , r− 1 there
is a matrix Cj ∈ l(Aj , Aj+1) with rank Cj = n − 1. Hence rank Φ(Cj) < k. Now
rank Φ(A) = k, rank Φ(A1) ≤ k, rank Φ(C0) < k. Lemma 2 (for G = 0) tells us
that Φ(C0) is the only point on the line l(Φ(A), Φ(A1)) with rank less than k. Since
C0 6= A1, Lemma 9 tells us that Φ(C0) 6= Φ(A1). So rank Φ(A1) = k. Proceeding
in this way we find rank Φ(Aj) = k for all j, so rank Φ(B) = k.

Lemma 11. Let Φ : Sn → Sm (n ≥ 2) be a map preserving adjacency. If there
are A,B ∈ Sn with d(Φ(A), Φ(B)) = n, then d(Φ(X), Φ(Y )) = d(X, Y ) for all
X,Y ∈ Sn and Φ is injective.

Proof. For n = m this was proved (in even greater generality) by Wen-ling Huang
(Corollary 3.1 in [9]).

We know that d(X,Y ) = k ≥ 1 implies the existence of a sequence X =
X0, X1, . . . , Xk = Y of consecutively adjacent matrices. If Ψ : Sn → Sm is ad-
jacency preserving, the neighbours in the sequence Ψ(X0),Ψ(X1), . . . , Ψ(Xk) are
also adjacent and therefore d(Ψ(X),Ψ(Y )) ≤ k. So

d(Ψ(X), Ψ(Y )) ≤ d(X, Y )

for any adjacency preserving map Ψ.
Now the map Ψ, defined by Ψ(X) = Φ(X + A)− Φ(A) for X ∈ Sn is adjacency

preserving by Proposition 1 and Ψ(0) = 0. We note that rank (Ψ(B − A)) =
d(Φ(B), Φ(A)) = n.

If Z ∈ Sn is singular, rank (Ψ(Z)) = d(Ψ(Z), Ψ(0)) ≤ d(Z, 0) = rank Z ≤ n− 1.
Lemma 10 tells us that rank (Ψ(X)) = n for every X ∈ Sn ∩GL(n). In particular,
if d(C,A) = n, i.e. rank (C − A) = n, then n = rank (Ψ(C − A)) = rank (Φ(C) −
Φ(A)) = d(Φ(C), Φ(A)).

Let X,Y ∈ Sn be such that d(X,Y ) = n. For λ large enough, d(λI, A) =
rank (λI−A) = n and d(λI, X) = n. If we set C = λI above, we see d(Φ(λI)Φ(A)) =
n. We may substitute λI for A, A for B in the previous argument and get
d(Φ(λI),Φ(X)) = n. Repeating this procedure we get d(Φ(X), Φ(Y )) = n.

We have proven that d(X, Y ) = n implies d(Φ(X), Φ(Y )) = n. Suppose now
d(Z, W ) = rank (Z − W ) = k < n, with k ≥ 1. There is U orthogonal such
that Z − W = U(λ1E11 + . . . + λkEkk)UT , with λ1, . . . , λk nonzero. Let G =
W − U(Ek+1,k+1 + . . . + Enn)UT . Then d(G,W ) = rank (G − W ) = n − k and
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(Z−W )+(W−G) = Z−G is invertible. Since Φ does not increase the metric d, n =
d(Z, G) = d(Z, W )+d(W,G) ≥ d(Φ(Z),Φ(W ))+d(Φ(W ), Φ(G)) ≥ d(Φ(Z), Φ(G)) =
n. So d(Z,W ) = d(Φ(Z), Φ(W )).

If Φ(X) = Φ(Y ) and X 6= Y , then d(X,Y ) ≥ 1, so d(Φ(X),Φ(Y )) ≥ 1 – a
contradiction.

Lemma 12. Let m > n ≥ 2 and let A1, B1 ∈ Sn with A1 6= B1. If A,B ∈ Sm are
such that

A =
[

A1 0
0 0

]
, B =

[
B1 0
0 0

]

and C is adjacent to both A and B, then there is C1 ∈ Sn such that

C =
[

C1 0
0 0

]
.

Proof. The matrices A−C and C−B have rank one. So A−B = (A−C)+(C−B)
has rank one or two. If A is adjacent to B, then C lies one the line l(A,B), so
C = A + λ(B −A) has the desired form.

If A−B has rank two, then Im (A−B) = Im (A−C)⊕ Im (C−B) by Lemma 1.
So Im (A− C) ⊂ Im (A−B) and C = A− (A− C) has the desired form.

Lemma 13. Let m > n ≥ 2 and let Φ : Sn → Sm be an adjacency preserving map
with Φ(0) = 0. Let

Φ(I) =
[

K 0
0 0

]

where K ∈ Sn has rank n. Then for all A ∈ Sn,

Φ(A) =
[

A1 0
0 0

]

where A1 ∈ Sn.

Proof. Since n = d(Φ(I),Φ(0)), Lemma 11 tells us that d preserves the distance.
Suppose P ∈ Sn is a projection of rank one. Then d(0, P ) = 1, d(I, P ) = n − 1, so
d(Φ(I),Φ(P )) = n− 1 and d(0, Φ(P )) = 1. Thus

n = rank Φ(I) = rank Φ(P ) + rank (Φ(I)− Φ(P )).

By Lemma 1, Im Φ(I) = Im Φ(P )⊕ Im (Φ(I)−Φ(P )), so Im Φ(P ) ⊂ Im Φ(I) and
Φ(P ) has the desired form.

If A = λP , then A lies on the line l(0, P ), so Φ(A) lies on the line l(0,Φ(P )), so
Φ(A) = µΦ(P ) has the desired form.

Now we use the induction on the rank of A. Suppose we have proved the lemma
for all matrices of rank k ≥ 1. Let rank A = k + 1. There is U orthogonal and
nonzero numbers λ1, . . . , λk+1 such that A = U(λ1E11 + . . . + λk+1Ek+1,k+1)UT .
The matrix A is adjacent to B = U(λ2E22 + . . . + λk+1Ek+1,k+1)UT and to C =
U(λ1E11 + . . . + λkEkk)UT . So Φ(A) is adjacent to

Φ(B) =
[

B1 0
0 0

]
and Φ(C) =

[
C1 0
0 0

]
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where B1, C1 ∈ Sn and B1 6= C1. By Lemma 11, Φ(B) 6= Φ(C). We use Lemma 12.

4. Adjacent matrices in S2

Lemma 14. Let Φ : S2 → S2 be a map such that A is adjacent to B iff Φ(A) is
adjacent to Φ(B). Then Φ is injective.

Proof. If there are A,B ∈ S2 such that d(Φ(A), Φ(B)) = 2, then, by Lemma 11, Φ
is injective.

Suppose now that d(Φ(X), Φ(Y )) ≤ 1 for all X,Y ∈ S2. We will show this
is impossible. Since E11 and E22 are not adjacent, Φ(E11) and Φ(E22) are not
adjacent. Therefore Φ(E11) = Φ(E22). Similarly, Φ(2E11) = Φ(E22) = Φ(E11). On
the other hand, E11 is adjacent to 2E11, so Φ(E11) is adjacent to Φ(2E11) = Φ(E11)
– a contradiction.

We denote by Q the quadratic form on Rn, defined by

Q(x) = x2
n − x2

1 − x2
2 − . . .− x2

n−1.

Then Q(x− y) is the Lorentz separation of x and y. A bijective linear trans-
formation L : Rn → Rn is a Lorentz transformation if Q(Lx) = Q(x) for all
x ∈ Rn. All Lorentz transformations on Rn form the Lorentz group. A map-
ping f : Rn → Rn is a Weyl transformation if there are: α ∈ R\ {0}, a Lorentz
transformation L and b ∈ Rn such that f(x) = αLx + b for all x ∈ Rn.

The following theorem is due to Alexandrov [1]. We quote it from Lester [11] p.
929, who rediscovered it.

Theorem 2. (cf. Theorem 3.1 in [7]). Let D be an open connected subset of
Rn (n ≥ 3) and let f : D → Rn be an injective mapping such that Q(x− y) = 0
iff Q(f(x)− f(y)) = 0. Then f is the restriction of a conformal mapping.

Any conformal mapping on Rn is a Weyl transformation (see [11], p. 929 or [14],
pp. 132-133) and that is all we will need:

Corollary 2. Let f : Rn → Rn (n ≥ 3) be an injective mapping such that
Q(x− y) = 0 iff Q(f(x)− f(y)) = 0.
Then f is a Weyl transformation.

We have the linear bijection T : R3 → S2, defined by

Tx =
[

x3 + x1 x2

x2 x3 − x1

]
.

Now det(Tx− Ty) = det(T (x− y)) = Q(x− y). Therefore:

Tx is adjacent to Ty iff x 6= y and Q(x− y) = 0. (1)

The following, including Propositions 2 and 3, is reconstructed from the book
[16] on Hyperbolic geometry by Ramsey and Richtmyer, pp. 246-250, and the book
[12] on the Lorentz group by Paërl, pp. 5-7.
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Let J = −E11 − E22 + E33. Then for x ∈ R3 and L ∈ M3 we have
Q(x) =< Jx, x > and Q(Lx) =< JLx,Lx >=< LT JLx, x >. So L is a Lorentz
transformation iff LT JL = J and this implies detL = ±1. A Lorentz matrix
L = [lij ] ∈ M3 maps the vector (0, 0, 1)T into (l13, l23, l33)T and so l233− l213− l223 = 1,
thus l233 ≥ 1. By definition, a Lorentz matrix L = [lij ] ∈ M3 is a restricted Lorentz
matrix if det L = 1 and l33 ≥ 1.

Proposition 2. If L ∈ M3 is a restricted Lorentz matrix, then there is a matrix
P1 ∈ M2 with detP1 = 1 such that

T (Lx) = P1(Tx)PT
1

for all x ∈ R3.

Proof. For b ∈ R we have the restricted Lorentz matrices

H(b) =




1 0 0
0 cosh b sinh b
0 sinh b cosh b




and

R(b) =




cos b − sin b 0
sin b cos b 0
0 0 1


 .

Let L = [lij ] be a restricted Lorentz matrix. We find b ∈ R such that l33 = cosh b.
So H(b)((0, 0, 1)T ) = (0, sinh b, cosh b)T . Since

(sinh b)2 = (cosh b)2 − 1 = l33
2 − 1 = l13

2 + l23
2,

there is α ∈ R such that

R(α)H(b)((0, 0, 1)T )) = (l13, l23, l33)T = L((0, 0, 1)T ).

If U = H(b)−1R(α)−1L, then U is a Lorentz matrix with det L=1 and U((0, 0, 1)T )=
(0, 0, 1)T . We claim that u31 = u32 = 0. In fact, since U((1, 0, 0)T ) = (u11, u21, u31)T ,
we have u31

2 − u21
2 − u11

2 = −1. But

U((1, 0, 1)T ) = U((1, 0, 0)T ) + U((0, 0, 1)T ) = (u11, u21, u31 + 1)T ,

so (u31 + 1)2 = u31
2 + 1 and thus u31 = 0. We observe that U , restricted to the

xy-plane, is a linear isometry. Since detU = 1, U = R(γ) for some γ. Thus

L = R(α)H(b)R(γ).

Let

W (t) =
(

cosh t sinh t
sinh t cosh t

)

and

V (s) =
(

cos s − sin s
sin s cos s

)
.

Then W (t)(Tx)W (t)T = T (H(2t)x) and V (s)(Tx)V (s)T = T (R(2s)x) for all x ∈
R3. If P1 = V (α

2 )W ( b
2 )V (γ

2 ), then T (Lx) = P1(Tx)PT
1 .
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Proposition 3. For any Lorentz matrix L ∈ M3 there is c1 ∈ {−1, 1} and a matrix
P ∈ M2 with |detP | = 1, such that

T (Lx) = c1P (Tx)PT

for all x ∈ R3.

Proof. We note that K = −E11 + E22 + E33 = K−1 is a Lorentz matrix with
detK = −1. For B = E12 +E21 ∈ S2 we have det B = −1 and T (Kx) = B(Tx)BT .

If L ∈ M3 is any Lorentz matrix and r ∈ {−1, 1}, then det(rL) = r3 det L =
r detL and det(rLK) = −r detL. Thus there is r ∈ {−1, 1} such that rL or rLK is
a restricted Lorentz matrix.

If rL is a restricted Lorentz matrix, then by Proposition 2 there is a matrix
P1 ∈ M2 with det P1 = 1 such that

rT (Lx) = T (rLx) = P1(Tx)PT
1 .

If rLK is a restricted Lorentz matrix, then by Proposition 2 there is a matrix
P1 ∈ M2 with det P1 = 1 such that

rT (Lx) = T (rLx) = T (rLK(Kx)) = P1(T (Kx))PT
1 = P1(B(Tx)BT )PT

1 ,

where det(P1B) = −1.

Corollary 3. Let Φ : S2 → S2 be a map such that A is adjacent to B iff Φ(A) is
adjacent to Φ(B). Then there exist c ∈ {−1, 1}, R ∈ GL(2) such that

Φ(A) = cRART + Φ(0) (A ∈ S2).

Proof. We consider the mapping f : R3 → R3, defined by

f(x) = T−1Φ(Tx),

where T : R3 → S2 is the linear bijection defined above. By Lemma 14, Φ is
injective and so f is injective. If x 6= y and Q(x− y) = 0, then by (1) Tx is adjacent
to Ty, so Φ(Tx) = Tf(x) is adjacent to Φ(Ty) = Tf(y). Since f(x) 6= f(y),
Q(f(x)− f(y)) = 0.

If f(x) 6= f(y) and Q(f(x)− f(y)) = 0, then by (1) Tf(x) = Φ(Tx) is adjacent
to Tf(y) = Φ(Ty) , so Tx is adjacent to Ty and Q(x− y) = 0. If f(x) = f(y), then
x = y.

We see that Q(x − y) = 0 iff Q(f(x) − f(y)) = 0. By Corollary 2, there exist
α ∈ R\ {0}, b ∈ R3 and a Lorentz matrix L ∈ GL(3) such that f(x) = αLx + b for
all x ∈ R3, hence

Φ(Tx) = Tf(x) = αT (Lx) + Tb.

By Proposition 3, there are c1 ∈ {−1, 1} and P ∈ GL(2) such that

Φ(Tx) = αc1P (Tx)PT + Tb,
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i.e.
Φ(A) = cRART + Φ(0)

for A ∈ S2, where c ∈ {−1, 1} and R ∈ GL(2).
(Alternatively, instead of using Proposition 3, we could assume Φ(0) = 0. Since

Φ(Tx) = Tf(x) = αT (Lx) is a linear map, we have a linear preserver problem and
we could use Theorem 2.2.1 in [26].)

Proposition 4. Let Φ : S2 → S2 be an adjacency preserving mapping. Suppose
d(Φ(G), Φ(H)) = 2 for some G,H ∈ S2. Then there are c ∈ {−1, 1}, R ∈ GL(2)
and S ∈ S2 such that

Φ(A) = cRART + Φ(0).

Proof. By Lemma 11, d(Φ(X),Φ(Y )) = d(X, Y ) for all X, Y ∈ S2. So Φ(X) is
adjacent to Φ(Y ) iff X is adjacent to Y . We use Corollary 3.

5. Proof of Theorem 1.4

Let n ≥ 2 and let Φ : Sn → Sm be a mapping preserving adjacency, Φ(0) = 0.
Theorem 1 claims that Φ is either a degenerate or a standard map.

Lemma 15. Theorem 1 is true if n = 2.

Proof. If m = 1, Φ is a degenerate map. Let m ≥ 2. We consider two cases.
Case I. Let d(Φ(A), Φ(B)) ≤ 1 for all A, B.
Then rank Φ(A) ≤ 1 for all A. Since E11 is adjacent to 0, Φ(E11) is adjacent

to Φ(0) = 0, so rank Φ(E11) = 1. Let A ∈ S2. Then d(Φ(A), Φ(E11)) ≤ 1. So
Φ(A) = Φ(E11) or Φ(A) is adjacent to Φ(E11). In the latter case, if Φ(A) 6= 0,
then Φ(A) is adjacent to 0, so Φ(A) ∈ l(0, Φ(E11)), thus Φ(A) = λΦ(E11). So
Φ(A) = λΦ(E11) in any case. Thus Φ is a degenerate map.

Case II. We have A,B ∈ S2 such that d(Φ(A), Φ(B)) = 2.
If m = 2, then Proposition 4 ends the proof. Let m > 2. By Lemma 11, Φ

preserves the distance and it is injective. So d(Φ(I), 0) = 2 = rank Φ(I). Since
Φ(I) ∈ Sm, there is U ∈ Mm orthogonal such that

UΦ(I)UT =
[

D 0
0 0

]
and D =

[
λ1 0
0 λ2

]
.

Let Ψ(A) = UΦ(A)UT for A ∈ S2. Then Ψ is distance preserving and Ψ(0) = 0. By
Lemma 13,

Ψ(A) =
[

Ψ1(A) 0
0 0

]
,

where Ψ1(A) ∈ S2 and Ψ1(0) = 0.
Obviously, d(Ψ(A), Ψ(B)) = d(Ψ1(A), Ψ1(B)) = d(A,B). By Corollary 3, there

are c ∈ {−1, 1} and R ∈ GL(2) such that Ψ1(A) = cRART . Let

W =
[

R 0
0 I

]
∈ GL(m).
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Then

Ψ(A) = cW

[
A 0
0 0

]
WT

and

Φ(A) = cUT W

[
A 0
0 0

]
(UT W )T .

Lemma 16. Let n ≥ 2 and let Φ : Sn → Sm be a map preserving adjacency, with
Φ(0) = 0. Let

Φ(I) =
[

In 0
0 0

]
∈ Sm

where In ∈ Mn is the identity matrix. Then we can find U ∈ Mn orthogonal such
that for all A ∈ Sn we have

Φ(A) =
[

UAUT 0
0 0

]
.

The proof is almost the same as the proof of Step 4.2 in [7].

Lemma 17. Let Φ : Sn → Sm (m,n ≥ 3) be an adjacency preserving map and
Φ(0) = 0. Suppose that for every projection P ∈ Sn with rank P = n− 1 there is a
rank one projection Q such that Φ(PSnP ) ⊂ RQ. Then Φ is a degenerate adjacency
preserving map.

The proof is almost the same as the proof of Step 4.3 in [7].

Lemma 18. Let Φ : Sn → Sm (m,n ≥ 3) be an adjacency preserving map with
Φ(0) = 0. Assume that for every projection P with rank P = n − 1 the restriction
of Φ to PSnP is a standard map. Then Φ is a standard adjacency preserving map.

The proof is practically the same as the proof of Step 4.4 in [7].

Lemma 19. The statement of Theorem 1 is true for n = 3.

Proof. Although the proof follows Step 4.5 in [7], in our case the calculation at
the end is simpler. Let P ∈ S3 be any projection of rank 2. By Lemma 15, the
mapping Φ restricted to PS3P is either standard or degenerate. If Φ restricted to
PS3P is degenerate for all projections P ∈ S3 of rank 2, Lemma 17 tells us that Φ
is degenerate. If Φ restricted to PS3P is standard for all such P , then Lemma 18
tells us that Φ is a standard map.

Suppose there exist two projections P and Q of rank 2 such that Φ restricted
to PS3P is degenerate and Φ restricted to QS3Q is standard. We will show this is
impossible. As in Step 4.5 in [7] we may assume that

• Q = E11 + E22 = E2;

• Φ is linear;
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• for A ∈ S2 we have

Φ
([

A 0
0 0

])
= A = h(A)

for m = 2 or

Φ
([

A 0
0 0

])
=

[
A 0
0 0

]
= h(A) ∈ Sm

for m ≥ 3;

• Φ(E33) = E22.

If P1 is a rank two projection in S3, then, by Lemma 15, Φ restricted to P1S3P1

is either standard or degenerate. Now Φ(E22 + E33) = 2E22, so Φ restricted to
(E22 + E33)S2(E22 + E33) cannot be standard and is therefore degenerate. So

Φ(E23 + E32) = αE22,

with α 6= 0.
Since Φ(E11 + E33) = E11 + E22 has rank two, the restriction of Φ to

(E11 + E33)S3(E11 + E33) is a standard map. As before, there are c1 ∈ {−1, 1}
and W1 ∈ GL(m) such that for A ∈ (E11 + E33)S3(E11 + E33) we have

Φ(A) = c1W1h(A)WT
1 .

But Φ(E11) = E11 and Φ(E33) = E22. So

c1W1(e1 ⊗ e1)WT
1 = c1(W1e1)⊗ (W1e1) = e1 ⊗ e1.

This implies c1 = 1 and We1 = ±e1. By exchanging W with −W if necessary we
may assume We1 = e1. Similarly, We3 = de2, where d ∈ {−1, 1}. This implies

Φ(E13+E31) = W (e1⊗e3+e3⊗e1)WT = We1⊗We3+We3⊗We1 = d(E12+E21).

Let A = [1, 1, 1]T [1, 1, 1] = E11+E22+E33+(E12+E21)+(E13+E31)+(E23+E32).
Since A has rank 1, A is adjacent to 0, so Φ(A) is adjacent to 0 and has rank one. We
calculate Φ(A) = E11+(2+α)E22+(1+d)(E12+E21) and detΦ(A) = 2+α−(1+d)2 =
α− 2d = 0, since d2 = 1. So Φ(E23 + E32) = αE22 = 2dE22.

Let now B = [0, d,−1]T [0, d,−1] = d2E22 + E33 − d(E23 + E32). Then B has
rank one and is adjacent to 0. But Φ(B) = (1− d2)E22 = 0 – a contradiction.

We can end the proof of Theorem 1 as in [7].
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[15] H.Radjavi, P. Šemrl, A short proof of Hua’s fundamental theorem of the geometry
of hermitian matrices, Expos. math. 21(2003), 83–93.

[16] A.Ramsey, R.D.Richtmyer, Introduction to hyperbolic geometry, Springer Verlag,
New York, 1995.
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