A note on $\delta \alpha - I - open \ sets$ and $semi^* - I - open \ sets$ ESREF HATIR^{1,*}

¹ Selcuk University, Education Faculty 42 090, Meram-Konya, Turkey

Received December 9, 2009; accepted January 3, 2011

Abstract. In this paper, we investigated some properties of a $\delta \alpha - I - open$ set [6] and a $semi^* - I - open$ set [6] in ideal topological spaces. Moreover, the relationships of other related classes of sets are investigated. Also, a new decomposition of continuous functions is obtained by using $\delta - \beta - I - continuous$ and $S^* - continuous$ functions.

AMS subject classifications: Primary 54C08, 54C10; Secondary 54A05

Key words: ideal topological space, $semi^*-I-open\ set$, $\delta\alpha-I-open\ set$, $S^*-continuous$

1. Introduction and preliminaries

Ideals in topologial spaces have been considered since 1930. This topic has won its importance by Vaidyanathaswamy [13]. In this paper, we investigated some properties of a $\delta\alpha-I-open$ set [6] and a $semi^*-I-open$ set [6]. Moreover, the relationships of other related classes of sets are investigated. A new decomposition of continuous functions is obtained by using $\delta-\beta-I-continuous$ and $S^*-continuous$ functions.

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y), always mean topological spaces on which no separation axiom is assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) will denote the closure and interior of A in (X, τ) , respectively.

A subset A of a space (X, τ) is said to be regular open (resp. regular closed) [12] if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A is called $\delta - open$ [12] if for each $x \in A$ there exists a regular open set G such that $x \in G \subset A$. The complement of a $\delta - open$ set is called $\delta - closed$. A point $x \in X$ is called a $\delta - closet$ point of A if $Int(Cl(U)) \cap A \neq \emptyset$ for each open set U containing x. The set of all $\delta - closet$ points of A is called the $\delta - closet$ of A and is denoted by $Cl_{\delta}(A)$. The $\delta - interior$ of A is the union of all regular open sets of X contained in A and it is denoted by $Int_{\delta}(A)$. A is $\delta - open$ if $Int_{\delta}(A) = A$. $\delta - open$ sets form a topology τ^{δ} .

An ideal I on a topological space (X,τ) is a nonempty collection of subsets of X which satisfies: (i) $A \in I$ and $B \subset A$ implies $B \in I$, (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X,τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator $(.)^*: P(X) \to P(X)$ called a local function [10] of A with respect to τ and I is defined as follows: for $A \subset X$, $A^*(I) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$. We simply write A^* instead of $A^*(I,\tau)$. X^* is often

^{*}Corresponding author. Email address: hatir10@yahoo.com (E. Hatir)

a proper subset of X. The hypothesis $X=X^*$ [7] is equivalent to the hypothesis $\tau\cap I=\varnothing$. For every ideal topological space, there exists a topology $\tau^*(I)$ or briefly τ^* , finer than τ , generated by $\beta(I,\tau)=\{U\setminus I:U\in\tau \text{ and }I\in I\}$, but in general $\beta(I,\tau)$ is not always a topology [8]. Additionally, $Cl^*(A)=A\cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$. If I is an ideal on X, then (X,τ,I) is called an ideal topological space. A subset A of an ideal topological space (X,τ,I) is said to be R_I-open [14] if $A=Int(Cl^*(A))$. A point x in an ideal space (X,τ,I) is called a $\delta_I-cluster$ point of A if $Int(Cl^*(U))\cap A\neq\varnothing$ for each neighborhood U of x. The set of all $\delta_I-cluster$ points of A is called the $\delta_I-closure$ of A and will be denoted by $\delta Cl_I(A)$. A is said to be $\delta_I-closed$ [14] if $\delta Cl_I(A)=A$. The complement of a $\delta_I-closed$ set is called a δ_I-open set. $\delta_I-interior$ of A will be denoted by $\delta Int_I(A)$. δ_I-open sets form a topology $\tau^{\delta I}$. Then $\tau^\delta\subset\tau^{\delta I}\subset\tau$ holds.

Lemma 1 (See [8]). Let (X, τ, I) be an ideal topological space and A, B subsets of X.

- (1) If $A \subset B$, then $A^* \subset B^*$.
- (2) If $G \in \tau$, then $G \cap A^* \subset (G \cap A)^*$.
- (3) $A^* = Cl(A^*) \subset Cl(A)$.

Lemma 2 (See [9]). Let (X, τ, I) be an ideal topological space and A, B subsets of X such that $B \subset A$. Then $B^*(\tau_{|A}, I_{|A}) = B^*(\tau, I) \cap A$.

Lemma 3 (See [6]). Let A be a subset of a space (X, τ, I) . Then

- (1) $\delta Cl_I(A) \cap U \subset \delta Cl_I(A \cap U)$, for any δ_I open set U in X,
- (2) $\delta Int_I(A \cup F) \subset \delta Int_I(A) \cup F$, for any δ_I closed set F in X.

Proof. (1) For every $x \in X$, take $x \in \delta Cl_I(A) \cap U$. Then, for every $\delta_I - open$ set V containing $x, x \in V \cap U$ is $\delta_I - open$ [14] and hence $V \cap U \cap A \neq \emptyset$. This shows that $x \in \delta Cl_I(A \cap U)$. Therefore we get the result.

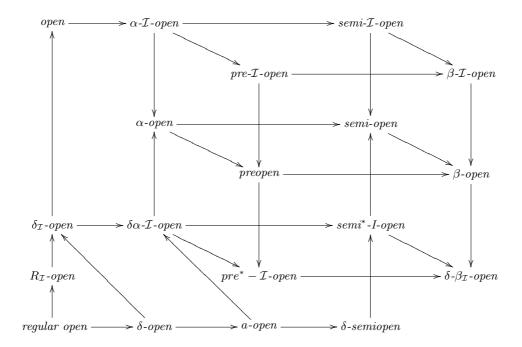
Lemma 4 (See [6]). Let (X, τ, I) be an ideal space and A a subset of X.

- (1) If A is open, then $\delta Cl_I(A) = Cl(A)$,
- (2) If A is closed, then $\delta Int_I(A) = Int(A)$.

Definition 1. A subset A of an ideal topological space (X, τ, I) is called

- (1) α open [1] if $A \subset Int(Cl(Int(A)))$,
- (2) preopen [2] if $A \subset Int(Cl(A))$,
- (3) semiopen [11] if $A \subset Cl(Int(A))$,
- (4) semi I open [5] if $A \subset Cl^*(Int(A))$,
- (5) $semi^* I open$ [6] if $A \subset Cl(\delta Int_I(A))$,

- (6) $semi^* I closed if Int(\delta Cl_I(A)) \subset A$,
- (7) $pre^* I open$ [3] if $A \subset Int(\delta Cl_I(A))$,
- (8) $\delta \beta_I open$ [6] if $A \subset Cl(Int(\delta Cl_I(A)))$,
- (9) $\delta \beta_I closed \ if \ Int(Cl(\delta Int_I(A))) \subset A$,
- (10) $\delta \alpha I open$ [6] if $A \subset Int(Cl(\delta Int_I(A)))$,
- (11) a open [4] if $A \subset Int(Cl(Int_{\delta}(A)))$.



Diagram

The family of all $\delta \alpha - I - open$ (resp. $semi^* - I - open$, $pre^* - I - open$, $\delta \beta_I - open$) sets of (X, τ, I) is denoted by $\delta \alpha IO(X)$ (resp. $S^*IO(X)$, $P^*IO(X)$, $\delta \beta IO(X)$). We denote the $\delta_I - boundary$ of A, $\delta_I - F_r(A) = \delta Cl_I(A) - \delta Int_I(A)$.

Theorem 1. A subset A of an ideal topological space (X, τ, I) is $semi^* - I - open$ if and only if $Cl(A) = Cl(\delta Int_I(A))$.

Proof. Let A be $semi^* - I - open$. Then we have $A \subset Cl(\delta Int_I(A))$ and therefore $Cl(A) \subset Cl(\delta Int_I(A))$ and hence $Cl(\delta Int_I(A)) \subset Cl(A)$ always hold. Then $Cl(A) = Cl(\delta Int_I(A))$.

Conversely, by $A \subset Cl(A) = Cl(\delta Int_I(A))$, A is $semi^* - I - open$.

Theorem 2. A subset A of an ideal topological space (X, τ, I) is $semi^* - I - open$ if and only if for every $\delta_I - open$ set $U, U \subset A \subset Cl(U)$.

Proof. Necessity: suppose that A is $semi^* - I - open$, i.e., $A \subset Cl(\delta Int_I(A))$. If we take $U = \delta Int_I(A)$, we have $Cl(U) = Cl(\delta Int_I(A))$ and $U \subset A$. Thus we have $U \subset A \subset Cl(U)$.

Sufficiency: Suppose that $U \subset A \subset Cl(U)$, for every $\delta_I - open$ set U. If we take U = A, then A is $semi^* - I - open$.

Theorem 3. Let A be a subset of an ideal topological space (X, τ, I) . The following are equivalent:

- (1) $A \text{ is } semi^* I open,$
- (2) A is $\delta \beta_I open$ and $\delta Int_I(\delta_I F_r(A)) = \emptyset$.

Proof. (1) \Longrightarrow (2) Let A be $semi^* - I - open$. Then we have

$$Int(\delta Cl_I(A)) \subset \delta Cl_I(A) \subset Cl(\delta Int_I(A)),$$

(by $\delta Int_I(A)$ is also an open set and Lemma 4). Thus

$$\delta Int_I(\delta_I - F_r(A)) = \delta Int_I(\delta Cl_I(A) \cap (X - \delta Int_I(A)))$$

= $\delta Int_I(\delta Cl_I(A)) - Cl(\delta Int_I(A))$

and then $\delta Int_I(\delta_I - F_r(A)) = \emptyset$.

(2)
$$\Longrightarrow$$
(1) Let A be $\delta\beta_I$ – open and $\delta Int_I(\delta_I - F_r(A)) = \emptyset$. Then

$$A \subset Cl(Int(\delta Cl_I(A))) \subset Cl(\delta Int_I(A)).$$

П

 $A \text{ is } semi^* - I - open.$

Theorem 4. Let (X, τ, I) be an ideal topological space. Then

$$\delta \alpha IO(X) = S^*IO(X) \cap P^*IO(X).$$

Proof. Let $A \in \delta \alpha IO(X)$. Then $A \in S^*IO(X)$ and $A \in P^*IO(X)$.

Conversely, let $A \in S^*IO(X) \cap P^*IO(X)$. Then $A \in S^*IO(X)$ and $A \in P^*IO(X)$. Since $A \in S^*IO(X)$, by Theorem 3, $\delta Int_I(\delta_I - F_r(A)) = \emptyset$. Since

$$\delta Int_I(\delta_I - F_r(A)) = \delta Int_I(\delta Cl_I(A)) \cap \delta Int_I(X - \delta Int_I(A)),$$

then $Int(\delta Cl_I(A)) \subset Cl(\delta Int_I(A))$. Since $A \in P^*IO(X)$, we have

$$A \subset Int(\delta Cl_I(A)) \subset Int(Cl(\delta Int_I(A)))$$

and therefore, $A \in \delta \alpha IO(X)$.

Theorem 5 (see [6]). Let (X, τ, I) be an ideal topological space. Then, the family of $\delta \alpha - I$ – open sets is a topology for X.

We denote this topology with $\tau^{\delta \alpha I}$.

Theorem 6. Let A and B be subsets of an ideal topological space (X, τ, I) . Then the following statements hold;

- (1) $A \in \tau^{\delta \alpha I}$ if and only if $V \subset A \subset Int(Cl(V))$, for every δ_I open set V,
- (2) If $A \in \tau^{\delta \alpha I}$ and $A \subset B \subset Int(Cl(A))$, then $B \in \tau^{\delta \alpha I}$.

Proof. (1) Straightforward.

(2) Since $A \in \tau^{\delta \alpha I}$, we have

$$B \subset Int(Cl(A)) \subset Int(Cl(Int(Cl(\delta Int_I(A)))))$$

$$\subset Int(Cl(\delta Int_I(A))) \subset Int(Cl(\delta Int_I(B))).$$

Thus $B \in \tau^{\delta \alpha I}$.

Theorem 7. Let (X, τ, I) be an ideal topological space. If A is a semi* -I – open and $pre^* - I$ – open set, then $A \cap B$ is a $\delta \beta_I$ – open set.

Proof. Let A be $semi^* - I - open$, i.e., $A \subset Cl(\delta Int_I(A))$ and B be $pre^* - I - open$, i.e., $B \subset Int(\delta Cl_I(B))$. Then

$$A \cap B = Cl(\delta Int_I(A)) \cap Int(\delta Cl_I(B))$$

$$= Cl(Int(\delta Int_I(A))) \cap Int(Int(\delta Cl_I(B)))$$

$$\subset Cl(Int(\delta Int_I(A)) \cap Int(\delta Cl_I(B)))$$

$$\subset Cl(Int(\delta Int_I(A) \cap \delta Cl_I(B)))$$

$$\subset Cl(Int(\delta Cl_I(A \cap B)))$$

Theorem 8. Let (X, τ, I) be an ideal topological space. If A is a $pre^* - I - open$ and B is a $\delta \alpha - I - open$ set, then $A \cap B$ is a $pre^* - I - open$ set.

Proof. Let A be $pre^* - I - open$, i.e., $A \subset Int(\delta Cl_I(A))$ and B $\delta \alpha - I - open$, i.e., $B \subset Int(Cl(\delta Int_I(B)))$. Then

$$A \cap B = Int(\delta Cl_I(A)) \cap Int(Cl(\delta Int_I(B)))$$

$$= Int(Int(\delta Cl_I(A)) \cap Cl(\delta Int_I(B)))$$

$$\subset Int(Cl(\delta Cl_I(A) \cap \delta Int_I(B)))$$

$$\subset Int(\delta Cl_I(\delta Cl_I(A \cap B))) = Int(\delta Cl_I(A \cap B)).$$

Theorem 9. Let (X, τ, I) be an ideal topological space. The following are equivalent;

- (1) The δ_I closure of every δ_I open subset of X is δ_I open,
- (2) $Cl(\delta Int_I(A)) \subset Int(\delta Cl_I(A))$ for every subset A of X,
- (3) $S^*IO(X) \subset P^*IO(X)$,

П

- (4) The δ_I closure of every $\delta\beta_I$ open subset is δ_I open,
- (5) $\delta\beta IO(X) \subset P^*IO(X)$.

Proof. (1) \Longrightarrow (2) Suppose that $\delta_I - closure$ of every $\delta_I - open$ subset of X is $\delta_I - open$. Then the set $Cl(\delta Int_I(A))$ is $\delta_I - open$. Thus,

$$Cl(\delta Int_I(A)) = Int(Cl(\delta Int_I(A))) \subset Int(\delta Cl_I(A)).$$

 $(2)\Longrightarrow(3)$ Let $A\in S^*IO(X)$. By (2), we have

$$A \subset Cl(\delta Int_I(A)) \subset Int(\delta Cl_I(A)).$$

Thus, $A \in P^*IO(X)$.

- (3) \Longrightarrow (4) Let $A \in \delta\beta IO(X)$. Then $\delta Cl_I(A)$ is $semi^* I open$. By (3), $\delta Cl_I(A)$ is $pre^* I open$. Hence $\delta Cl_I(A) \subset Int(\delta Cl_I(A))$ and therefore $\delta Cl_I(A)$ is $\delta_I open$.
- (4) \Longrightarrow (5) Let $A \in \delta\beta IO(X)$. By (4), $\delta Cl_I(A) = Int(\delta Cl_I(A))$. Hence $A \subset \delta Cl_I(A) = Int(\delta Cl_I(A))$ and therefore A is $pre^* I open$.
- (5) \Longrightarrow (1) Let A be $\delta_I open$. Then $\delta Cl_I(A)$ is $\delta \beta_I open$. By (5), $\delta Cl_I(A)$ is $pre^* I open$. Hence $\delta Cl_I(A) \subset Int(\delta Cl_I(A))$ and therefore $\delta Cl_I(A)$ is $\delta_I open$.

Definition 2. A subset A in an ideal topological space (X, τ, I) is called δ_I – dense if $\delta Cl_I(A) = X$.

Theorem 10. Let (X, τ, I) be an ideal topological space. The following are equivalent;

- (1) $P^*IO(X) \subset S^*IO(X)$,
- (2) Every δ_I dense subset is semi* I open,
- (3) $\delta Int_I(A)$ is $\delta_I dense$ for every $\delta_I dense$ subset A,
- (4) $\delta Int_I(\delta_I F_r(A)) = \emptyset$ for every subset A,
- (5) $\delta\beta IO(X) \subset S^*IO(X)$,
- (6) $\delta Int_I(\delta_I F_r(A)) = \emptyset$ for every subset $\delta_I dense$ subset A.

Proof. (1) \Longrightarrow (2) It follows that every $\delta_I - dense$ set is $pre^* - I - open$.

- (2) \Longrightarrow (3) Let A be a $\delta_I dense$ set. Then A is $semi^* I open$. Thus, $Cl(\delta Int_I(A)) \supset \delta Cl_I(A) = X$ and hence $\delta Int_I(A)$ is $\delta_I dense$.
 - $(3)\Longrightarrow (4)$ Let $A\subset X$. We have

$$X = \delta Cl_I(A) \cup (X - \delta Cl_I(A)) = \delta Cl_I(A) \cup \delta Int_I(X - A).$$

This implies that $A \cup \delta Int_I(X - A)$ is $\delta_I - dense$. Thus, $\delta Int_I(A \cup \delta Int_I(X - A))$ is $\delta_I - dense$.

$$\delta Int_I(A \cup \delta Int_I(X - A)) \cap \delta Int_I((X - A) \cup \delta Int_I(A)) = X - (\delta_I - F_r(A)).$$

Since $X - (\delta_I - F_r(A))$ is an intersection of two $\delta_I - dense \ \delta_I - open$, then $X - (\delta_I - F_r(A))$ is $\delta_I - dense$.

- $(4)\Longrightarrow(6)$ Obvious.
- $(6)\Longrightarrow(3)$ Let A be $\delta_I-dense$. By (6),

$$\delta Int_I(\delta_I - F_r(A)) = \delta Int_I(X - \delta Int_I(A)) = X - Cl(\delta Int_I(A)) = \varnothing.$$

Thus, $\delta Int_I(A)$ is $\delta_I - dense$.

- (4) \Longrightarrow (5) Let $A \in \delta \beta IO(X)$. By (4) and Theorem 3, A is $semi^* I open$.
- $(5)\Longrightarrow(1)$ Obvious.

Theorem 11. Let (X, τ, I) be an ideal topological space. The following are equivalent:

- (1) $P^*IO(X) \subset S^*IO(X)$,
- (2) $Int(\delta Cl_I(A \cap B)) = Int(\delta Cl_I(A)) \cap Int(\delta Cl_I(B))$ for every $A, B \subset X$,
- (3) $Cl(\delta Int_I(A \cup B)) = Cl(\delta Int_I(A)) \cup Cl(\delta Int_I(B))$ for every $A, B \subset X$.

Proof. (1) \Longrightarrow (2) Let $P^*IO(X) \subset S^*IO(X)$ and $A, B \subset X$. By Theorem 10, $\delta Int_I(\delta_I - F_r(A)) = \emptyset$ for every subset A. Since

$$\delta Int_I(\delta_I - F_r(A)) = \delta Int_I(\delta Cl_I(A) \cap (X - \delta Int_I(A)))$$

= $\delta Int_I(\delta Cl_I(A)) - \delta Cl_I(\delta Int_I(A)),$

 $\delta Int_I(\delta Cl_I(A)) \subset \delta Cl_I(\delta Int_I(A))$ and therefore

$$\delta Int_I(\delta Cl_I(A)) = \delta Int_I(\delta Cl_I(\delta Int_I(A))).$$

This implies that

$$Int(\delta Cl_I(A)) \cap Int(\delta Cl_I(B)) = Int(Cl(\delta Int_I(A)) \cap Int(\delta Cl_I(B)))$$

$$\subset Cl(\delta Int_I(A)) \cap Int(\delta Cl_I(B)).$$

On the other hand, we have

$$Cl(\delta Int_I(A)) \cap Int(\delta Cl_I(B)) \subset Cl(\delta Int_I(A) \cap Int(\delta Cl_I(B)))$$

 $\subset Cl(\delta Int_I(A) \cap \delta Cl_I(B)) \subset \delta Cl_I(A \cap B).$

Since $Int(\delta Cl_I(A \cap B)) \subset Int(\delta Cl_I(A)) \cap Int(\delta Cl_I(B))$, we have

$$Int(\delta Cl_I(A \cap B)) = Int(\delta Cl_I(A)) \cap Int(\delta Cl_I(B)).$$

 $(2) \Longrightarrow (1)$ Suppose that (2) holds. Then

$$\delta Int_I(\delta_I - F_r(A)) = \delta Int_I(\delta Cl_I(A) \cap \delta Cl_I(X - A))$$

$$\subset Int(\delta Cl_I(A)) \cap Int(\delta Cl_I(X - A))$$

$$= Int(\delta Cl_I(A \cap (X - A))) = \varnothing.$$

By Theorem 10, we have $P^*IO(X) \subset S^*IO(X)$.

 $(2) \iff (3)$ Take complement.

Theorem 12. Let (X, τ, I) be an ideal topological space. The following are equivalent:

- (1) $P^*IO(X) \subset S^*IO(X)$ and the δ_I closure of every δ_I open subset of X is δ_I open,
- (2) $Int(\delta Cl_I(A)) = Cl(\delta Int_I(A))$, for every subset A in X,
- (3) $Cl(Int(\delta Cl_I(A))) = Int(Cl(\delta Int_I(A)))$, for every subset A in X,
- (4) $\delta \beta IO(X) \subset \delta \alpha IO(X)$,
- (5) $S^*IO(X) \subset \delta\alpha IO(X)$ and $P^*IO(X) \subset \delta\alpha IO(X)$,
- (6) $P^*IO(X) = S^*IO(X)$,
- (7) A is $semi^* I open$ if and only if $\delta Cl_I(A)$ is $\delta_I open$.

Proof. $(1)\Longrightarrow(2)$ It follows from Theorems 9 and 10.

- (2) \Longrightarrow (3) Let $A \subset X$. Since $Int(\delta Cl_I(A)) = Cl(\delta Int_I(A))$ is $\delta_I clopen$ ($\delta_I open$ and $\delta_I closed$), then $Cl(Int(\delta Cl_I(A))) = Int(Cl(\delta Int_I(A)))$.
 - (3) \Longrightarrow (4) Let $A \in \delta \beta IO(X)$. Then we have

$$A \subset Cl(Int(\delta Cl_I(A))) = Int(Cl(\delta Int_I(A))),$$

i.e, $A \in \delta \alpha IO(X)$.

- $(4) \Longrightarrow (5)$ and $(5) \Longrightarrow (6)$ Straightforward.
- $(6)\Longrightarrow(7)$ Let A be $semi^*-I-open$. Then we have $\delta Cl_I(A)$ is $semi^*-I-open$ and therefore $pre^*-I-open$. Thus $\delta Cl_I(A)\subset Int(\delta Cl_I(A))$ and $\delta Cl_I(A)$ is δ_I-open . Conversely, let $\delta Cl_I(A)$ be δ_I-open . Therefore, we have $A\subset \delta Cl_I(A)=Int(\delta Cl_I(A))$, i.e., A is $pre^*-I-open$ and hence $semi^*-I-open$.
- $(7)\Longrightarrow(1)$ Let A be δ_I-open . Then $\delta Cl_I(A)$ is δ_I-open . Let A be a $\delta_I-dense$ set. Then $\delta Cl_I(A)$ is δ_I-open . By hypothesis (7), A is $semi^*-I-open$. Therefore, by Theorem 10, $P^*IO(X)\subset S^*IO(X)$.

Theorem 13. Let A be a subset of an ideal topological space (X, τ, I) . Then the following are equivalent;

- (1) A is regular open,
- (2) A is $\delta \alpha I open$ and $\delta \beta_I closed$,
- (3) A is $pre^* I open$ and $semi^* I closed$.

Proof. $(1) \Longrightarrow (2)$ Straightforward.

(2) \Longrightarrow (1) Let A be a $\delta \alpha - I - open$ and $\delta \beta_I - closed$. Then we have $A = Int(Cl(\delta Int_I(A)))$. Hence A is regular open.

 $(1) \iff (3)$ It follows from Theorem 2 in [6].

Lemma 5. Let (X, τ, I) be an ideal topological space and $(U, \tau_{|U}, I_{|U})$ a subspace of (X, τ, I) .

- (1) If A is open in $(U, \tau_{|U}, I_{|U})$, then $\delta Cl_{I|U}(A) = Cl_{U}(A)$, where $\delta Cl_{I|U}(A)$; $\delta_{I} closure$ in $(U, \tau_{|U}, I_{|U})$.
- (2) If A is closed in $(U, \tau_{|U}, I_{|U})$, then $\delta Int_{I|U}(A) = Int_{U}(A)$, where $\delta Int_{I|U}(A)$; $\delta_{I} open$ in $(U, \tau_{|U}, I_{|U})$.

Proof. (1) Since every $\delta_I - open$ set in $(U, \tau_{|U}, I_{|U})$ is open in U, we have

$$Cl_U(A) \subset \delta Cl_{I|U}(A)$$
.

Conversely, let $x \notin Cl_U(A)$. Then there exists an open set V in $(U, \tau_{|U})$ containing x such that $V \cap A = \emptyset$. Since A is open in $(U, \tau_{|U})$, we have $A \cap Int_U(Cl_U(V)) = \emptyset$. By the fact that $Int_U(Cl_U^*(V)) \subset Int_U(Cl_U(V))$, we obtain $A \cap Int_U(Cl_U^*(V)) = \emptyset$. This implies that $x \notin \delta Cl_{I|U}(A)$. Thus $\delta Cl_{I|U}(A) = Cl_U(A)$.

(2) This follows from (1). \Box

Theorem 14. If $A \in P^*IO(X)$ and $B \in S^*IO(X)$, then $A \cap B \in S^*IO(A)$.

Proof. Let $B \in S^*IO(X)$. By Theorem 2, there exists a G δ_I – open set in X such that $G \subset B \subset Cl(G)$. From this it follows that $A \cap G \subset A \cap B \subset A \cap Cl(G)$. Since $A \in P^*IO(X)$, we have

$$A \cap G \subset A \cap B \subset Int(\delta Cl_I(A)) \cap Cl(G)$$

$$\subset Cl(\delta Cl_I(A) \cap G) \subset Cl(\delta Cl_I(A \cap G)), \quad \text{(Lemma 3)}$$

$$\subset \delta Cl_I(\delta Cl_I(A \cap G))) = \delta Cl_I(A \cap G).$$

Hence

$$(A \cap G) \cap A \subset (A \cap B) \cap A \subset \delta Cl_I(A \cap G) \cap A$$

implies that

$$A \cap G \subset A \cap B \subset \delta Cl_{I|A}(A \cap G) = Cl_A(A \cap G),$$
 (Lemma 5)

Therefore, since $A \cap G$ is $\delta_I - open$ in $A, A \cap B \in S^*IO(A)$.

Theorem 15. If $A \in P^*IO(X)$ and $B \in S^*IO(X)$, then $A \cap B \in P^*IO(B)$.

Proof.

$$B \cap A \subset B \cap Int(\delta Cl_I(A)) = Int_B(B \cap Int(\delta Cl_I(A)))$$

$$\subset Int_B(Cl(\delta Int_I(B)) \cap Int(\delta Cl_I(A)))$$

$$\subset Int_B(Cl(\delta Int_I(B) \cap \delta Cl_I(A)))$$

$$\subset Int_B(\delta Cl_I(\delta Cl_I(B \cap A))) = Int_B(\delta Cl_I(B \cap A)).$$

So,

$$B \cap A \subset Int_B(\delta Cl_I(B \cap A)) \cap B = Int_B(\delta Cl_I(B \cap A) \cap B)$$

= $Int_B(\delta Cl_{I|B}(B \cap A)).$

This implies that $A \cap B \in P^*IO(B)$.

Definition 3. A space (X, τ) is extremally disconnected [15] if the closure of every open set in X is open.

Theorem 16. If a space (X, τ, I) is extremally disconnected and $A, B \in S^*IO(X)$, then $A \cap B \in S^*IO(X)$.

Proof. Let $A, B \in S^*IO(X)$. Then $A \cap B \subset Cl(\delta Int_I(A)) \cap Cl(\delta Int_I(B))$. Extremal disconnectedness of X implies openness of

$$Cl(\delta Int_I(B)) = Cl(Int(\delta Int_I(B))).$$

Hence

$$A \cap B \subset Cl(\delta Int_I(A)) \cap Cl(\delta Int_I(B)) \subset Cl(\delta Int_I(A) \cap Cl(\delta Int_I(B)))$$

 $\subset Cl(Cl(\delta Int_I(A) \cap \delta Int_I(B))) = Cl(\delta Int_I(A \cap B).$

So,
$$A \cap B \in S^*IO(X)$$
.

Remark 1. The extremally disconnected condition of Theorem 16 cannot be dropped as shown in the following example.

Example 1. Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a, c\}$, $B = \{b, c\} \in S^*IO(X)$, but $A \cap B = \{c\} \notin S^*IO(X)$ because of (X, τ, I) is not an extremally disconnected space.

2. S^* -sets in ideal topological spaces and decomposition of continuity

Definition 4. A subset A in an ideal topological space (X, τ, I) is called an S^* – set if $A = U \cap V$, where U is open and V is $semi^* - I - closed$ and

$$Int(\delta Cl_I(V)) = Cl(\delta Int_I(V)).$$

The family of all S^*-sets of an ideal topological space (X,τ,I) will be denoted by $S^*(X)$.

Definition 5. (1) A subset V in an ideal topological space (X, τ, I) is called a strongly - t - I - set [3] if $Int(\delta Cl_I(V)) = Int(V)$.

(2) A subset A in an ideal topological space (X, τ, I) is called a strongly B-I-set [3] if $A = U \cap V$, where U is open and V is a strongly -t - I - set.

Remark 2. The notions of a $semi^* - I - closed$ set and a strongly - t - I - set are equivalent.

Remark 3. Every S^* – set is a strongly B-I – set, but the converse is not true.

Example 2. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$ and $I = \{\emptyset\}$. Then $\{a\}$ is a strongly B - I - set set, but it is not an $S^* - set$ since $Int(\delta Cl_I(\{a\})) \neq Cl(\delta Int_I(\{a\}))$.

Theorem 17 (See [6]). Let A be a subset of an ideal space (X, τ, I) . Then

$$s\delta Cl_I(A) = A \cup Int(\delta Cl_I(A)), \quad (s\delta Cl_I(A); \ a \ semi^* - I - closure \ of A)$$

Theorem 18. Let (X, τ, I) be an ideal topological space and $A \subset X$. If A is an S^* – set, then $A = U \cap s\delta Cl_I(A)$ for some open set U.

Proof. Let $A \in S^*(X)$. Then $A = U \cap V$, where U is open and V is $semi^* - I - closed$ and $Int(\delta Cl_I(V)) = Cl(\delta Int_I(V))$. Since $A \subset V$, $s\delta Cl_I(A) \subset s\delta Cl_I(V) = V$. Therefore,

$$U \cap s\delta Cl_I(A) \subset U \cap V = A \subset U \cap s\delta Cl_I(A)$$

and hence the proof is completed.

Definition 6. Let (X, τ, I) be an ideal topological space and $A \subset X$. Then A is called a δ_{I_*} – set if $\delta Int_I(A)$ is δ_I – closed.

Theorem 19. Let (X, τ, I) be an ideal topological space and $A \subset X$. If A is a δ_{I_*} – set and $semi^* - I$ – open, then it is δ_I – open.

Proof. Let A be a
$$\delta_{I_*}$$
 – set and semi* – I – open. Then $A \subset Cl(\delta Int_I(A)) = \delta Int_I(A)$ and hence A is δ_I – open.

Theorem 20. The following are equivalent for a subset A of an ideal topological space (X, τ, I) .

- (1) A is open,
- (2) A is α open and S^* set,
- (3) A is preopen and S^* set,
- (4) A is $pre^* I open$ and $S^* set$,
- (5) A is $\delta \beta_I$ open and S^* set.

Proof. We prove only $(5)\Rightarrow(1)$, other implications are obvious.

 $(5)\Rightarrow(1)$ Let A be a $\delta\beta_I$ -open and a S^* -set. Then we have $A\subset Cl(Int(\delta Cl_I(A)))$ and $A=U\cap V$, where U is open and V is $semi^*-I-closed$ and $Int(\delta Cl_I(V))=Cl(\delta Int_I(V))$. Therefore, we obtain

$$A = A \cap U \subset Cl(Int(\delta Cl_I(A))) \cap U$$

$$= Cl(Int(\delta Cl_I(U \cap V))) \cap U$$

$$\subset Cl(Int(\delta Cl_I(U))) \cap Cl(Int(\delta Cl_I(V))) \cap U$$

$$= U \cap Cl(Int(\delta Cl_I(V))) = U \cap Cl(Cl(\delta Int_I(V)))$$

$$= U \cap Cl(\delta Int_I(V)) = U \cap Int(\delta Cl_I(V)) = U \cap Int(V)$$

and hence A is an *open* set.

Definition 7. A function $f:(X,\tau,I)\to (Y,\sigma)$ is called

- (1) α continuous [1] if $f^{-1}(V)$ is α open for each $V \in \sigma$,
- (2) pre continuous [2] if $f^{-1}(V)$ is preopen for each $V \in \sigma$,
- (3) $pre^* I continuous$ [3] if $f^{-1}(V)$ is $pre^* I open$ for each $V \in \sigma$,
- (4) $\delta \beta I continuous$ [6] if $f^{-1}(V)$ is $\delta \beta_I open$ for each $V \in \sigma$,
- (5) S^* continuous if $f^{-1}(V)$ is an S^* set for each $V \in \sigma$.

Now, we can give the decomposition of continuity.

Theorem 21. The following are equivalent for a function $f:(X,\tau,I)\to (Y,\sigma)$;

- (1) f is continuous,
- (2) f is α continuous and S^* continuous,
- (3) f is pre-continuous and $S^*-continuous$,
- (4) f is $pre^* I continuous$ and $S^* continuous$,
- (5) f is $\delta \beta I continuous$ and $S^* continuous$.

Proof. It follows from Theorem 20.

Remark 4. By the following examples $\delta - \beta - I - continuity$ and $S^* - continuity$ are independent notions.

Example 3. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset\}$ and $\sigma = \{\emptyset, X, \{a\}\}$. Define a function $f : (X, \tau, I) \to (Y, \sigma)$ such that f(x) = x. Then f is $\delta - \beta - I$ – continuous, but it is not S^* – continuous since $\{a\} \in \delta\beta IO(X)$, but $\{a\} \notin S^*(X)$.

Example 4. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$ and $I = \{\emptyset\}$ and $\sigma = \{\emptyset, X, \{d\}\}\}$. Define a function $f : (X, \tau, I) \to (Y, \sigma)$ such that f(x) = x. Then f is S^* – continuous, but it is not $\delta - \beta - I$ – continuous since $\{d\} \in S^*(X)$, but $\{d\} \notin \delta\beta IO(X)$.

Acknowledgement

The author would like to thank the referees for their helpful suggestions.

References

- [1] A. S. Mashhour, I. A. Hasanein, S. N.Q, El-Deeb, $\alpha-continuous$ and $\alpha-open$ mappings, Acta Math. Hungar. **41**(1983), 213–218.
- [2] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys Soc. Egypt **53**(1982), 47–53.
- [3] E. EKICI, T. NOIRI, On subsets and decompositions of continuity in ideal topological spaces, Arab. J. Sci. Eng. Sect. A Sci. 34(2009), 165–177.

- [4] E. EKICI, On a-open sets, A*-sets and decompositions of continuity and super continuity, submitted.
- [5] E. Hatir, T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar. 96(2002), 341–349.
- [6] E. Hatir, On decompositions of continuity and complete continuity in ideal topological spaces, submitted.
- [7] E. HAYASHI, Topologies defined by local properties, Math. Ann. 156(1964), 205-215.
- [8] D. Janković, T. R. Hamlett, New topologies from old via ideals, Amer. Math. Montly 97(1990), 295–310.
- [9] J. Dontchev, M. Ganster, T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japon. 49(1999), 395–401.
- [10] K. Kuratowski, Topology, Vol.1, Academic Press, New York, 1966.
- [11] N. LEVINE, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly **70**(1963), 36–41.
- [12] N. V. Velićko, H-closed topologicl spaces, Amer. Math. Soc. Transl. 78(1968), 103–118.
- [13] R. VAIDYANATHASWAMY, The localisation theory in set topology, Proc. Indian Acad. Sci. Math. Sci. 20(1945), 51–61.
- [14] S. Yuksel, A. Acikgöz, T. Noiri, On $\delta I continuous functions$, Turk. J. Math. **29**(2005), 39–51.
- [15] S. WILLARD, General Topology, Addison-Wesley Pub. Co., Massachusetts, 1970.