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Abstract. In this paper, we investigated some properties of a daw — I — open set [6] and
a semi” — I — open set [6] in ideal topological spaces. Moreover, the relationships of other
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AMS subject classifications: Primary 54C08, 54C10; Secondary 54A05

Key words: ideal topological space, semi* —I—open set, da—I—open set, S™—continuous

1. Introduction and preliminaries

Ideals in topologial spaces have been considered since 1930. This topic has won
its importance by Vaidyanathaswamy [13]. In this paper, we investigated some
properties of a daw — I — open set [6] and a semi* — I — open set [6]. Moreover, the
relationships of other related classes of sets are investigated. A new decomposition of
continuous functions is obtained by using d — 3 — I — continuous and S* — continuous
functions.

Throughout this paper, spaces (X, 7) and (Y, o) (or simply X and Y), always
mean topological spaces on which no separation axiom is assumed. For a subset A
of a topological space (X, 1), Cl(A) and Int(A) will denote the closure and interior
of A in (X, 1), respectively.

A subset A of a space (X, 7) is said to be regular open (resp. regular closed)
[12] if A = Int(Cl(A)) (resp. A= Cl(Int(A))). A is called § — open [12] if for each
x € A there exists a regular open set G such that z € G C A. The complement of a
& — open set is called § — closed. A point x € X is called a § — cluster point of A
if Int(Cl(U)) N A # & for each open set U containing . The set of all § — cluster
points of 4 is called the § — closure of A and is denoted by Cls(A). The § —interior
of A is the union of all regular open sets of X contained in A and it is denoted by
Ints(A). Ais 6 — open if Ints(A) = A. § — open sets form a topology 7°.

An ideal I on a topological space (X, 7) is a nonempty collection of subsets of
X which satisfies: (i) A € I and B C A implies B € I, (ii) A€ [ and B € I
implies AU B € I. An ideal topological space is a topological space (X,7) with
an ideal I on X and if P(X) is the set of all subsets of X, a set operator (.)* :
P(X) — P(X) called a local function [10] of A with respect to 7 and I is defined
as follows: for A C X, A*(I) = {zr € X:UNA¢I for every U € 7(x)}, where
T(x) = {Uer:2e€U}. We simply write A* instead of A*(I,7). X* is often
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a proper subset of X. The hypothesis X = X™* [7] is equivalent to the hypothesis
7NI = @. For every ideal topological space, there exists a topology 7*(I) or briefly 7*,
finer than 7, generated by 3(I,7) ={U\1: U € 7 and I € I}, but in general 5(I, 1)
is not always a topology [8]. Additionally, C1*(A) = AU A* defines a Kuratowski
closure operator for 7*(I). If I is an ideal on X, then (X,7,I) is called an ideal
topological space. A subset A of an ideal topological space (X, 7,I) is said to be
Ry — open [14] if A = Int(Cl*(A)). A point z in an ideal space (X, 7,1) is called a
01 — cluster point of A if Int(Cl*(U)) N A # @ for each neighborhood U of z. The
set of all §; — cluster points of A is called the d; — closure of A and will be denoted
by dCIr(A). A is said to be d; — closed [14] if 6Cl;(A) = A. The complement of
a 07 — closed set is called a 6; — open set. &y — interior of A will be denoted by
SInt;(A). §; — open sets form a topology 7°!. Then 7° C 79 C 7 holds.

Lemma 1 (See [8]). Let (X,7,1) be an ideal topological space and A, B subsets of
X.

(1) If A C B, then A* C B*.
(2) If G € 7, then G N A* C (G A)*.
(3) A* = CI(A*) C CI(A).

Lemma 2 (See [9]). Let (X, 7,I) be an ideal topological space and A, B subsets of
X such that B C A. Then B*(114,1)4) = B*(1,1) N A.

Lemma 3 (See [6]). Let A be a subset of a space (X, 7,I). Then
(1) 6Cl;(A)NU C 6Cl (ANT), for any 65 — open set U in X,
(2) 6Int;(AUF) C 6Int;(A)UF, for any dr — closed set F in X.

Proof. (1) For every x € X, take x € 6Cl;(A) N U. Then, for every d; — open set
V containing x, x € VN U is 67 — open [14] and hence VN U N A # &. This shows
that © € §Cl;(ANU). Therefore we get the result.

(2) It follows from (1). O

Lemma 4 (See [6]). Let (X, 7,I) be an ideal space and A a subset of X.
(1) If A is open, then 6Cl(A) = Cl(A),
(2) If A is closed, then 6Int;(A) = Int(A).
Definition 1. A subset A of an ideal topological space (X, 7,1) is called
(1) a—open [1] if A C Int(Cl(Int(A))),
(2) preopen [2] if A C Int(Cl(A)),
(3) semiopen [11] if A C Cl(Int(A)),
(4) semi — I — open [5] if A C Cl*(Int(A)),
(5) semi* — I — open [6] if A C Cl(dInt;(A)),
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(6) semi* — I — closed if Int(6Cl;(A)) C A,
(7) pre* — I —open [3] if A C Int(6Cl;(A)),
(8) 681 — open [6] if A C Cl(Int(6Cl;(A))),
(9) 081 — closed if Int(Cl(dIntr(A))) C A,
(10) 6o — I — open [6] if A C Int(Cl(0Int;(A))),
(11) a —open [4] if A C Int(Cl(Ints(A))).

open ——— a-L-open semi-Z-open
\ \
pre-L-open B-T-open
Q-open semi-open
\ \
preopen B-open
dz-open ——— da-I-open semi” -I-open

Rzop\ \ T-open 6-Bz-open

reqular open —— §-open ————— A-0PeEN — > §-semiopen

Diagram

The family of all dae— I —open (resp. semi*—I—open, pre*—I—open, 631 —open)
sets of (X, 7,1) is denoted by dalO(X) (resp. S*IO(X), P*IO(X), 68I0(X)).
We denote the §; — boundary of A, é; — F,.(A) = §Cl;(A) — éInt;(A).

Theorem 1. A subset A of an ideal topological space (X, 7,1) is semi* — I — open
if and only if CI(A) = Cl(6Int;(A)).

Proof. Let A be semi* — I — open. Then we have A C Cl(6Int;(A)) and therefore
Cl(A) C Cl(6Int;(A)) and hence Cl(6Int;(A)) C CI(A) always hold. Then CI(A) =
Cl(0Int;(A)).

Conversely, by A C Cl(A) = Cl(6Int;(A)), A is semi* — I — open. O
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Theorem 2. A subset A of an ideal topological space (X, 7,1) is semi* — I — open
if and only if for every é; — open set U, U C A C Cl(U).

Proof. Necessity: suppose that A is semi* — I — open, i.e., A C Cl(6Int;(A)). If
we take U = §Intr(A), we have Cl(U) = Cl(§Int;(A)) and U C A. Thus we have
UcAcCClU).

Sufficiency: Suppose that U C A C Cl(U), for every é; — open set U. If we take
U = A, then A is semi* — I — open. O

Theorem 3. Let A be a subset of an ideal topological space (X, 7,I). The following
are equivalent;

(1) A is semi* — I — open,
(2) A is §8r — open and §Int;(6; — F.(A)) = @.
Proof. (1)==(2) Let A be semi* — I — open. Then we have
Int(6CI;(A)) C 6CI;(A) C Cl(6Intr(A)),
(by dInt;(A) is also an open set and Lemma 4). Thus

(SI’I’Lt[((SI — FT(A)) = (Slnt[((SCl](A) N (X — (SITLt[(A)))
= 6Int(5CI1(A)) — CL(5Int;(A))

and then 0Int;(6; — F.(A)) = 2.
(2)==(1) Let A be 68; — open and dInt;(é; — F-(A)) = &. Then

A C Cl(Int(0Cl1(A))) C Cl(6Intr(A)).
A is semi* — I — open. O
Theorem 4. Let (X, 7,1I) be an ideal topological space. Then
dalO(X) = S*IO(X)N P IO(X).

Proof. Let A € 6alO(X). Then A € S*IO(X) and A € P*IO(X).
Conversely, let A € S*IO(X)NP*IO(X). Then A € S*IO(X) and A € P*IO(X).
Since A € S*IO(X), by Theorem 3, §Int;(6; — F.(A)) = @. Since

0Intr(6; — Fr(A)) = 6Int;(6CI(A)) NdIntr (X — dInt;(A)),
then Int(6CI;(A)) C Cl(d0Int;(A)). Since A € P*IO(X), we have
A C Int(6C1;(A)) C Int(Cl(6Intr(A)))
and therefore, A € alO(X). O

Theorem 5 (see [6]). Let (X,7,1) be an ideal topological space. Then, the family
of ba — I — open sets is a topology for X.

We denote this topology with 7027,
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Theorem 6. Let A and B be subsets of an ideal topological space (X, 7,I). Then
the following statements hold;

(1) A€ 7% if and only if V.C A C Int(CI(V)), for every d; — open set V,
(2) If Ac 70! and A C B C Int(CI(A)), then B € 701,

Proof. (1) Straightforward.
(2) Since A € 797 we have

B C Int(Cl(A)) C Int(Cl(Int(Cl(6Int;(A)))))
C Int(Cl(6Intr(A))) C Int(Cl(6Int(B))).

Thus B € 7%/, O

Theorem 7. Let (X, 7,1) be an ideal topological space. If A is a semi* — I — open
and pre* — I — open set, then AN B is a 631 — open set.

Proof. Let A be semi* — I —open, i.e., A C Cl(6Int;(A)) and B be pre* —I —open,
ie., B C Int(6Cl;(B)). Then

AN B = Cl(8Int;(A)) N Int(5CL(B))
= Cl(Int(6Int;(A))) N Int(Int(5C1;(B)))
C Cl(Int(8Int;(A)) N Int(5CI;(B)))
C Cl(Int(5Intr(A) N 6ClL(B)))
C Cl(Int(5ClL (AN B)))

O

Theorem 8. Let (X, 7,1) be an ideal topological space. If A is a pre* — I — open
and B is a da — I — open set, then AN B is a pre* — I — open set.

Proof. Let A be pre* —I —open, i.e., A C Int(6Cl;(A)) and B da— I — open, i.e.,
B C Int(Cl(6Int;(B))). Then

AN B = Int(6CIl;(A)) N Int(Cl(6Int;(B)))
= Int(Int(6Cl;(A)) N Cl(dInt;(B)))
C Int(Cl(6CIl;(A)NdInt;(B)))
C Int(6C1;(6Cl (AN B))) = Int(6Cl; (AN B)).

O
Theorem 9. Let (X, 7, 1) be an ideal topological space. The following are equivalent;
(1) The 6; — closure of every d0; — open subset of X is §; — open,
(2) Cl(6Int;(A)) C Int(6Cli(A)) for every subset A of X,
(3) S*IO(X) C P*IO(X),
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(4) The 6; — closure of every 031 — open subset is 6 — open,
(5) 0BIO(X) C P*IO(X).

Proof. (1)==(2) Suppose that 6; — closure of every 6; — open subset of X is o7 —
open. Then the set Cl(6Int;(A)) is §; — open. Thus,

Cl(6Int;(A)) = Int(Cl(6Int;(A))) C Int(6CI; (A)).
(2)==(3) Let A € S*IO(X). By (2), we have
A C Cl(8Intr(A)) C Int(6CI(A)).

Thus, A € P*IO(X).

(3)=(4) Let A € 64IO(X). Then 6Cl;(A) is semi* —I —open. By (3), §Cl;(A)
is pre* — I —open. Hence §Cl;(A) C Int(6CI;(A)) and therefore 6Cl(A) is 67 —open.
(4)=(5) Let A € §BIO(X). By (4), 6Cl;(A) = Int(6Ci;(A)). Hence A C
0C1(A) = Int(6Cl;(A)) and therefore A is pre* — I — open.

(5 ):>( ) Let A be 6; — open. Then §CI;(A) is 51 — open. By (5), dCl1(A)
is pre* — I — open. Hence 6Cl;(A) C Int(6Cl;(A)) and therefore 6CIr(A) is 6y —
open. O

Definition 2. A subset A in an ideal topological space (X, 7,1) is called 07 — dense
if 6Cl;(A) = X.

Theorem 10. Let (X, 7,I) be an ideal topological space. The following are equiva-
lent;

(1) P*IO(X) C S*IO(X),

(2) Every é; — dense subset is semi* — I — open,
(8) 6Int;(A) is 05 — dense for every 05 — dense subset A,

(4) 6Int;(0r — F.(A)) = & for every subset A,

(5) 68I0(X) C S*IO(X),

(6) 6Int;(0r — F.(A)) = @ for every subset §; — dense subset A.

Proof. (1)=(2) It follows that every d; — dense set is pre* — I — open.
(2)=(3) Let A be a ¢; — dense set. Then A is semi* — I — open. Thus,
Cl(6Intr(A)) D 0CIl;(A) = X and hence 0Int;(A) is 1 — dense.
(3)=(4) Let A C X. We have

X = 501](/1) U (X - 60[1(14)) = 60[1(14) U(Slntl(X — A)

This implies that AU dInt;(X — A) is 67 — dense. Thus, §Int; (AU dInt; (X — A))
is 87 — dense.

SInt;(AUSInt;(X — A)) N éInt; (X — A) UsInt;(A)) = X — (57 — Fr(A)).
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Since X — (67 — F;.(A)) is an intersection of two d; — dense d; — open, then X —
(67 — F.(A)) is 0; — dense.

(4)==(6) Obvious.

(6)=>(3) Let A be 6; — dense. By (6),

5Int1(5[ — FT(A)) = 5Int1(X — 5Int1(A)) =X - Cl((;]?lt[(A)) =J.

Thus, §Int;(A) is é; — dense.
(4)==(5) Let A € §8I0(X) . By (4) and Theorem 3, A is semi* — I — open.
(5)==(1) Obvious. O

Theorem 11. Let (X, 7,1) be an ideal topological space. The following are equiva-
lent;

(1) PIO(X) € S*IO(X),
(2) Int(6Cl; (AN B)) = Int(6CIl;(A)) N Int(6Cl;(B)) for every A, B C X,
(8) Cl(6Int;(AUB)) = Cl(6Int;(A)) UCI(5Int;(B)) for every A,B C X.

Proof. (1)==(2) Let P*IO(X) C S*IO(X) and A,B C X. By Theorem 10,
0Int;(6r — F.(A)) = @ for every subset A. Since

5Int1(51 — FT(A)) = (5]7’%1(56’[[(14) N (X - 5Int1(A))
= 0Int;(6C1;(A)) — 6Cl(8Int;(A)),

0Intr(6CI(A)) C 6Clr(6Intr(A)) and therefore
5Int[(5Cl](A)) = 5Int1(6Clj(5Int1(A)))
This implies that

Int(6C1;(A)) N Int(8C1(B)) = Int(CU(5Int;(A)) N Int(5C1;(B)))
C Cl(SInt;(A)) N Int(5CL(B)).

On the other hand, we have

ClL(5Int;(A)) N Int(5CL(B)) C CL(SInt;(A) N Int(5CL (B)))
C Cl(8Intr(A) N6CL (B)) C 6CI (AN B).

Since Int(6CIl; (AN B)) C Int(6Cl;(A)) NInt(§Cl (B)), we have
Int(6Cl; (AN B)) = Int(6CI;(A)) N Int(6C1 (B)).
(2)=(1) Suppose that (2) holds. Then

(5Int1(61 — FT(A» = 5Int1(6Cl1(A) N 5CZI(X — A))
C Int(5C1;(A)) N Int(3CL (X — A))
— Int(3CL (AN (X — A))) = .

By Theorem 10, we have P*IO(X) C S*IO(X).
(2)<=(3) Take complement. O
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Theorem 12. Let (X, 7,1) be an ideal topological space. The following are equiva-
lent;

(1) P*IO(X) C S*IO(X) and the 61 — closure of every 6y — open subset of X is
or — open,

(2) Int(5C1;(A)) = Cl(5Int;(A)), for every subset A in X,

(3) CL(Int(5C1;(A))) = Int(Cl(5Int;(A))), for every subset A in X,
(4) 6BIO(X) C 6alO(X),

(5) S*IO(X) C 6aIO(X) and P*IO(X) C 5alO(X),

(6) P*IO(X) = S*IO(X),

(7) A is semi* — I — open if and only if 5C1;(A) is 6; — open.

Proof. (1)==(2) It follows from Theorems 9 and 10.

(2)=(3) Let A C X. Since Int(6Cl;(A)) = Cl(6Int;(A)) is é; — clopen (61 —
open and 07 — closed), then Cl(Int(6Cl;(A))) = Int(Cl(6Int;(A))).

(3)=(4) Let A € §8I0(X). Then we have

A C CU(Int(6C1;(A))) = Int(CL(6Int;(A))),

ie, A€ dalO(X).

(4)=(5) and (5)=-(6) Straightforward.

(6)==(7) Let A be semi* — I — open. Then we have §Ci;(A) is semi* — I —
open and therefore pre* — I — open. Thus §Cl;(A) C Int(6Cl;(A)) and 6C1;(A) is
01 — open. Conversely, let 6Cl;(A) be §1 — open. Therefore, we have A C 0CI;(A) =
Int(6Cl1(A)), i.e., Ais pre* — I — open and hence semi* — I — open.

(7)=(1) Let A be §; — open. Then §CI;(A) is 1 — open. Let A be a 6 — dense
set. Then dC1;(A) is ; — open. By hypothesis (7), A is semi* — I — open. Therefore,
by Theorem 10, P*IO(X) C S*IO(X). O

Theorem 13. Let A be a subset of an ideal topological space (X, 7,1). Then the
following are equivalent;

(1) A is regular open,
(2) Aisda— I — open and 631 — closed,
(8) A is pre* — I — open and semi* — I — closed.

Proof. (1)==(2) Straightforward.

(2)=(1) Let A be a da — I — open and 60; — closed. Then we have A =
Int(Cl(6Int;(A))). Hence A is regular open.

(1)<=(3) It follows from Theorem 2 in [6]. O

Lemma 5. Let (X, 7,1) be an ideal topological space and (U, 7y, i) a subspace of
(X, 7,1).
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(1) If Ais open in (U, 1y, i), then 0Clyy(A) = Cly(A), where §Clyy(A); o —
closure in (U, Ty, Ljr)-

(2) If A is closed in (U, Ty, L), then dInty(A) = Inty(A), where 6Intpy(A);
o1 — open in (U, Ty, Ljy)-

Proof. (1) Since every d; — open set in (U, 7y, I)7) is open in U, we have

Conversely, let # ¢ Cly(A). Then there exists an open set V' in (U, 77) containing
x such that VN A = @. Since A is open in (U, 7y7), we have AN Inty (Cly(V)) = @.
By the fact that Inty (Cl; (V) C Inty(Cly(V)), we obtain ANInty (Clf(V)) = @.
This implies that x ¢ §Cl;y(A). Thus 6Cl; iy (A) = Cly(A).

(2) This follows from (1). O

Theorem 14. If A € P*IO(X) and B € S*IO(X), then AN B € S*IO(A).

Proof. Let B € S*IO(X). By Theorem 2, there exists a G d; — open set in X such
that G C B C CI(G). From this it follows that ANG C AN B C ANCI(G). Since
A e P*IO(X), we have

ANG C ANB ¢ Int(5CILr(A) N CUG)
C CU(5CL(A)NG) C CU(CI(ANG)), (Lemma 3)
C 6CI(5C1(ANG))) = 5CL (AN G).

Hence
(ANG)NAC(ANB)NACOC(ANG)NA

implies that

ANG CANB C6Cla(ANG) =Cls(ANG), (Lemma 5)
Therefore, since ANG is 05 — open in A, AN B € S*IO(A). O
Theorem 15. If A € P*IO(X) and B € S*IO(X), then AN B € P*IO(B).
Proof.

BNAC BN Int(5CI(A)) = Intg(B N Int(6CI;(A)))
C Intg(CU(8Int;(B)) N Int(5C1 (A)))
C Intp(Cl(8Int;(B) N 6CI(A)))
C Intp(8C1(5CI(B N A))) = Intp(6C1 (B N A)).

So,

BNAC Intg(6Cl;(BNA))NB = Intg(6Cl;(BNA)N B)
= I’IlﬁB((SClﬂB(BﬂA))

This implies that AN B € P*IO(B). O
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Definition 3. A space (X, 7) is extremally disconnected [15] if the closure of every
open set in X is open.

Theorem 16. If a space (X, 1,1) is extremally disconnected and A, B € S*10(X),
then AN B € S*IO(X).

Proof. Let A, B € S*IO(X). Then AN B C Cl(dInt;(A)) N Cl(6Int;(B)).
Extremal disconnectedness of X implies openness of

Cl(0Int;(B)) = Cli(Int(6Int;(B))).
Hence

ANB ¢ Cl(SInt;(A)) N Cl(SInt;(B)) C CL(SInt;(A) N Cl(5Int;(B)))
C CU(CI(SInt (A) N Int;(B))) = Cl(6Int; (AN B).

So, AN B € $*I0(X). O

Remark 1. The extremally disconnected condition of Theorem 16 cannot be dropped
as shown in the following example.

Example 1. Let X = {a,b,c}, 7 = {X,2,{a},{b},{a,b}} and I = {@,{a}, {b},
{a,b}}. Then A = {a,c}, B = {b,c} € S*IO(X), but AN B = {c} ¢ S*IO(X)
because of (X, T,1I) is not an extremally disconnected space.

2. S*—sets in ideal topological spaces and decomposition of
continuity

Definition 4. A subset A in an ideal topological space (X, 7,1I) is called an S* — set
if A=U NV, where U is open and V is semi* — I — closed and

Int(6C1(V)) = CL(SIntr(V)).

The family of all S* — sets of an ideal topological space (X, 7,I) will be denoted
by S*(X).

Definition 5. (1) A subset V in an ideal topological space (X,7,I) is called a
strongly —t — I — set [3]if Int(5Cl; (V) = Int(V).

(2) A subset A in an ideal topological space (X, 7,1) is called a strongly B—I—set
3] if A=UNV, where U is open and V is a strongly —t — I — set.

Remark 2. The notions of a semi* — I — closed set and a strongly —t — I — setare
equivalent.

Remark 3. Every S* — set is a strongly B — I — set, but the converse is not true.

Example 2. Let X = {a,b,¢,d}, 7 = {X,2,{a},{c},{a,c},{b,c},{a,b,c}} and
I ={@}. Then {a} is a strongly B — I — set set, but it is not an S* — set since
Int(6Cl;({a})) # Cl(dInt;({a})).
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Theorem 17 (See [6]). Let A be a subset of an ideal space (X, 7,I). Then
s6C1r(A) = AU Int(6CIr(A)), (sdCl(A); a semi* — I — closure of A)

Theorem 18. Let (X, 7,I) be an ideal topological space and A C X. If A is an
S* — set, then A =U NsdCl(A) for some open set U.

Proof. Let A € S*(X). Then A = U NV, where U is open and V is semi* — I —
closed and Int(6Cl;(V)) = Cl(6Intr(V)). Since A C V, s6Clr(A) C s6Cl; (V) = V.
Therefore,

UNséCli(A) cUNV =AcCUnsiCl(A)

and hence the proof is completed. O

Definition 6. Let (X,7,1) be an ideal topological space and A C X. Then A is
called a 67, — set if 0Int;(A) is 1 — closed.

Theorem 19. Let (X,7,I) be an ideal topological space and A C X. If A is a
o7, — set and semi* — I — open, then it is 65 — open.

Proof. Let A be a §;, — set and semi* — I — open. Then A C Cl(6Int;(A)) =
0Int;(A) and hence A is §; — open. O

Theorem 20. The following are equivalent for a subset A of an ideal topological
space (X,7,1I).

(1) A is open,

(2) A is a —open and S* — set,

(3) A is preopen and S* — set,

(4) A is pre* — I — open and S* — set,
(5) A is §5r — open and S* — set.

Proof. We prove only (5)=-(1), other implications are obvious.

(5)=(1) Let A be a §3r—open and a S*—set. Then we have A C Cl(Int(6Cl;(A)))
and A = U NV, where U is open and V is semi* — I — closed and Int(6Cl;(V)) =
Cl(6Int;(V)). Therefore, we obtain

A=ANU C Cl(Int(6ClLr(A)) N U
= Cl(Int(5CL(UN V) NU
C Cl(Int(5C1(U))) N CL(Int(5CL (V) N U
= U N CUInt(5CL (V) = U N CUCUSInt(V)))
= UNCISInt; (V) = U N Int(5C1(V)) = U N Int(V)

and hence A is an open set. O

Definition 7. A function f: (X, 7,I) — (Y,0) is called
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(1) o — continuous [1] if f ~1(V) is o — open for each V € o,
(2) pre — continuous [2] if f ~1(V) is preopen for each V € o,
(3) pre* — I — continuous (3] if f ~1(V) is pre* — I — open for each V € o,
(4) 6 — B — I — continuous [6] if f ~*(V) is 631 — open for each V € o,
(5) S* — continuous if f ~1(V) is an S* — set for each V € o.
Now, we can give the decomposition of continuity.
Theorem 21. The following are equivalent for a function f: (X,7,I) — (Y,0);
(1) f is continuous,
(2) f is a — continuous and S* — continuous,
(3) f is pre — continuous and S* — continuous,
(4) [ is pre* — I — continuous and S* — continuous,
(5) fisd— B —I— continuous and S* — continuous.
Proof. It follows from Theorem 20. O

Remark 4. By the following examples § — 3 — I — continuity and S* — continuity
are independent notions.

Example 3. Let X = {a,b,¢,d}, 7 = {X,9,{a},{c},{a,c},{b,c},{a,b,c}} and
I ={o} and 0 = {@,X,{a}}. Define a function f : (X,7,I) — (Y,0) such that
f(x) = x. Then [ is 6 — 8 — I — continuous, but it is not S* — continuous since

{a} € 6BIO(X), but {a} ¢ S*(X).

Example 4. Let X = {a,b,c,d}, 7 = {X,9,{a},{c},{a,c},{b,c},{a,b,c}} and
I ={2} and 0 = {@,X,{d}}. Define a function f : (X,7,I) — (Y,0) such that
f(z) = x. Then f is S* — continuous, but it is not § — 3 — I — continuous since

{d} € S%(X), but {d} ¢ 5IO(X).
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