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Abstract. In this paper, we investigated some properties of a δα − I − open set [6] and
a semi∗ − I − open set [6] in ideal topological spaces. Moreover, the relationships of other
related classes of sets are investigated. Also, a new decomposition of continuous functions
is obtained by using δ − β − I−continuous and S∗ − continuous functions.
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1. Introduction and preliminaries

Ideals in topologial spaces have been considered since 1930. This topic has won
its importance by Vaidyanathaswamy [13]. In this paper, we investigated some
properties of a δα− I − open set [6] and a semi∗ − I − open set [6] . Moreover, the
relationships of other related classes of sets are investigated. A new decomposition of
continuous functions is obtained by using δ−β−I−continuous and S∗−continuous
functions.

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y ), always
mean topological spaces on which no separation axiom is assumed. For a subset A
of a topological space (X, τ), Cl(A) and Int(A) will denote the closure and interior
of A in (X, τ), respectively.

A subset A of a space (X, τ) is said to be regular open (resp. regular closed)
[12] if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A is called δ − open [12] if for each
x ∈ A there exists a regular open set G such that x ∈ G ⊂ A. The complement of a
δ − open set is called δ − closed. A point x ∈ X is called a δ − cluster point of A
if Int(Cl(U)) ∩ A 6= ∅ for each open set U containing x. The set of all δ − cluster
points of A is called the δ−closure of A and is denoted by Clδ(A). The δ− interior
of A is the union of all regular open sets of X contained in A and it is denoted by
Intδ(A). A is δ − open if Intδ(A) = A. δ − open sets form a topology τ δ.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of
X which satisfies: (i) A ∈ I and B ⊂ A implies B ∈ I, (ii) A ∈ I and B ∈ I
implies A ∪ B ∈ I. An ideal topological space is a topological space (X, τ) with
an ideal I on X and if P (X) is the set of all subsets of X, a set operator (.)∗ :
P (X) → P (X) called a local function [10] of A with respect to τ and I is defined
as follows: for A ⊂ X, A∗(I) = {x ∈ X : U ∩A /∈ I for every U ∈ τ(x)}, where
τ(x) = {U ∈ τ : x ∈ U} . We simply write A∗ instead of A∗(I, τ). X∗ is often
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a proper subset of X. The hypothesis X = X∗ [7] is equivalent to the hypothesis
τ∩I = ∅. For every ideal topological space, there exists a topology τ∗(I) or briefly τ∗,
finer than τ , generated by β(I, τ) = {U \ I : U ∈ τ and I ∈ I} , but in general β(I, τ)
is not always a topology [8] . Additionally, Cl∗(A) = A ∪ A∗ defines a Kuratowski
closure operator for τ∗(I). If I is an ideal on X, then (X, τ, I) is called an ideal
topological space. A subset A of an ideal topological space (X, τ, I) is said to be
RI − open [14] if A = Int(Cl∗(A)). A point x in an ideal space (X, τ, I) is called a
δI − cluster point of A if Int(Cl∗(U)) ∩A 6= ∅ for each neighborhood U of x. The
set of all δI − cluster points of A is called the δI − closure of A and will be denoted
by δClI(A). A is said to be δI − closed [14] if δClI(A) = A. The complement of
a δI − closed set is called a δI − open set. δI − interior of A will be denoted by
δIntI(A). δI − open sets form a topology τ δI . Then τ δ ⊂ τ δI ⊂ τ holds.

Lemma 1 (See [8]). Let (X, τ, I) be an ideal topological space and A,B subsets of
X.

(1) If A ⊂ B, then A∗ ⊂ B∗.

(2) If G ∈ τ , then G ∩A∗ ⊂ (G ∩A)∗.

(3) A∗ = Cl(A∗) ⊂ Cl(A).

Lemma 2 (See [9]). Let (X, τ, I) be an ideal topological space and A, B subsets of
X such that B ⊂ A. Then B∗(τ|A, I|A) = B∗(τ, I) ∩A.

Lemma 3 (See [6]). Let A be a subset of a space (X, τ, I). Then

(1) δClI(A) ∩ U ⊂ δClI(A ∩ U), for any δI − open set U in X,

(2) δIntI(A ∪ F ) ⊂ δIntI(A) ∪ F, for any δI − closed set F in X.

Proof. (1) For every x ∈ X, take x ∈ δClI(A) ∩ U. Then, for every δI − open set
V containing x, x ∈ V ∩ U is δI − open [14] and hence V ∩ U ∩ A 6= ∅. This shows
that x ∈ δClI(A ∩ U). Therefore we get the result.

(2) It follows from (1).

Lemma 4 (See [6]). Let (X, τ, I) be an ideal space and A a subset of X.

(1) If A is open, then δClI(A) = Cl(A),

(2) If A is closed, then δIntI(A) = Int(A).

Definition 1. A subset A of an ideal topological space (X, τ, I) is called

(1) α− open [1] if A ⊂ Int(Cl(Int(A))),

(2) preopen [2] if A ⊂ Int(Cl(A)),

(3) semiopen [11] if A ⊂ Cl(Int(A)),

(4) semi− I − open [5] if A ⊂ Cl∗(Int(A)),

(5) semi∗ − I − open [6] if A ⊂ Cl(δIntI(A)),
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(6) semi∗ − I − closed if Int(δClI(A)) ⊂ A,

(7) pre∗ − I − open [3] if A ⊂ Int(δClI(A)),

(8) δβI − open [6] if A ⊂ Cl(Int(δClI(A))),

(9) δβI − closed if Int(Cl(δIntI(A))) ⊂ A,

(10) δα− I − open [6] if A ⊂ Int(Cl(δIntI(A))),

(11) a− open [4] if A ⊂ Int(Cl(Intδ(A))).
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²²

''PPPPPPPPPPPP semi-I-open

²²

''OOOOOOOOOOO

pre-I-open //

²²
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''PPPPPPPPPPPPP
// semi-open

''OOOOOOOOOOO

preopen //

²²

β-open
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regular open
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__??????????????????
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Diagram

The family of all δα−I−open (resp. semi∗−I−open, pre∗−I−open, δβI−open)
sets of (X, τ, I) is denoted by δαIO(X) (resp. S∗IO(X), P ∗IO(X), δβIO(X)).

We denote the δI − boundary of A, δI − Fr(A) = δClI(A)− δIntI(A).

Theorem 1. A subset A of an ideal topological space (X, τ, I) is semi∗ − I − open
if and only if Cl(A) = Cl(δIntI(A)).

Proof. Let A be semi∗ − I − open. Then we have A ⊂ Cl(δIntI(A)) and therefore
Cl(A) ⊂ Cl(δIntI(A)) and hence Cl(δIntI(A)) ⊂ Cl(A) always hold. Then Cl(A) =
Cl(δIntI(A)).

Conversely, by A ⊂ Cl(A) = Cl(δIntI(A)), A is semi∗ − I − open.
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Theorem 2. A subset A of an ideal topological space (X, τ, I) is semi∗ − I − open
if and only if for every δI − open set U, U ⊂ A ⊂ Cl(U).

Proof. Necessity: suppose that A is semi∗ − I − open, i.e., A ⊂ Cl(δIntI(A)). If
we take U = δIntI(A), we have Cl(U) = Cl(δIntI(A)) and U ⊂ A. Thus we have
U ⊂ A ⊂ Cl(U).

Sufficiency: Suppose that U ⊂ A ⊂ Cl(U), for every δI − open set U. If we take
U = A, then A is semi∗ − I − open.

Theorem 3. Let A be a subset of an ideal topological space (X, τ, I). The following
are equivalent;

(1) A is semi∗ − I − open,

(2) A is δβI − open and δIntI(δI − Fr(A)) = ∅.

Proof. (1)=⇒(2) Let A be semi∗ − I − open. Then we have

Int(δClI(A)) ⊂ δClI(A) ⊂ Cl(δIntI(A)),

(by δIntI(A) is also an open set and Lemma 4). Thus

δIntI(δI − Fr(A)) = δIntI(δClI(A) ∩ (X − δIntI(A)))
= δIntI(δClI(A))− Cl(δIntI(A))

and then δIntI(δI − Fr(A)) = ∅.
(2)=⇒(1) Let A be δβI − open and δIntI(δI − Fr(A)) = ∅. Then

A ⊂ Cl(Int(δClI(A))) ⊂ Cl(δIntI(A)).

A is semi∗ − I − open.

Theorem 4. Let (X, τ, I) be an ideal topological space. Then

δαIO(X) = S∗IO(X) ∩ P ∗IO(X).

Proof. Let A ∈ δαIO(X). Then A ∈ S∗IO(X) and A ∈ P ∗IO(X).
Conversely, let A ∈ S∗IO(X)∩P ∗IO(X). Then A ∈ S∗IO(X) and A ∈ P ∗IO(X).

Since A ∈ S∗IO(X), by Theorem 3, δIntI(δI − Fr(A)) = ∅. Since

δIntI(δI − Fr(A)) = δIntI(δClI(A)) ∩ δIntI(X − δIntI(A)),

then Int(δClI(A)) ⊂ Cl(δIntI(A)). Since A ∈ P ∗IO(X), we have

A ⊂ Int(δClI(A)) ⊂ Int(Cl(δIntI(A)))

and therefore, A ∈ δαIO(X).

Theorem 5 (see [6]). Let (X, τ, I) be an ideal topological space. Then, the family
of δα− I − open sets is a topology for X.

We denote this topology with τ δαI .
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Theorem 6. Let A and B be subsets of an ideal topological space (X, τ, I). Then
the following statements hold;

(1) A ∈ τ δαI if and only if V ⊂ A ⊂ Int(Cl(V )), for every δI − open set V,

(2) If A ∈ τ δαI and A ⊂ B ⊂ Int(Cl(A)), then B ∈ τ δαI .

Proof. (1) Straightforward.
(2) Since A ∈ τ δαI , we have

B ⊂ Int(Cl(A)) ⊂ Int(Cl(Int(Cl(δIntI(A)))))
⊂ Int(Cl(δIntI(A))) ⊂ Int(Cl(δIntI(B))).

Thus B ∈ τ δαI .

Theorem 7. Let (X, τ, I) be an ideal topological space. If A is a semi∗ − I − open
and pre∗ − I − open set, then A ∩B is a δβI − open set.

Proof. Let A be semi∗−I−open, i.e., A ⊂ Cl(δIntI(A)) and B be pre∗−I−open,
i.e., B ⊂ Int(δClI(B)). Then

A ∩B = Cl(δIntI(A)) ∩ Int(δClI(B))
= Cl(Int(δIntI(A))) ∩ Int(Int(δClI(B)))
⊂ Cl(Int(δIntI(A)) ∩ Int(δClI(B)))
⊂ Cl(Int(δIntI(A) ∩ δClI(B)))
⊂ Cl(Int(δClI(A ∩B)))

Theorem 8. Let (X, τ, I) be an ideal topological space. If A is a pre∗ − I − open
and B is a δα− I − open set, then A ∩B is a pre∗ − I − open set.

Proof. Let A be pre∗− I − open, i.e., A ⊂ Int(δClI(A)) and B δα− I − open, i.e.,
B ⊂ Int(Cl(δIntI(B))). Then

A ∩B = Int(δClI(A)) ∩ Int(Cl(δIntI(B)))
= Int(Int(δClI(A)) ∩ Cl(δIntI(B)))
⊂ Int(Cl(δClI(A) ∩ δIntI(B)))
⊂ Int(δClI(δClI(A ∩B))) = Int(δClI(A ∩B)).

Theorem 9. Let (X, τ, I) be an ideal topological space. The following are equivalent;

(1) The δI − closure of every δI − open subset of X is δI − open,

(2) Cl(δIntI(A)) ⊂ Int(δClI(A)) for every subset A of X,

(3) S∗IO(X) ⊂ P ∗IO(X),



438 E.Hatir

(4) The δI − closure of every δβI − open subset is δI − open,

(5) δβIO(X) ⊂ P ∗IO(X).

Proof. (1)=⇒(2) Suppose that δI − closure of every δI − open subset of X is δI −
open. Then the set Cl(δIntI(A)) is δI − open. Thus,

Cl(δIntI(A)) = Int(Cl(δIntI(A))) ⊂ Int(δClI(A)).

(2)=⇒(3) Let A ∈ S∗IO(X). By (2), we have

A ⊂ Cl(δIntI(A)) ⊂ Int(δClI(A)).

Thus, A ∈ P ∗IO(X).
(3)=⇒(4) Let A ∈ δβIO(X). Then δClI(A) is semi∗−I−open. By (3), δClI(A)

is pre∗−I−open. Hence δClI(A) ⊂ Int(δClI(A)) and therefore δClI(A) is δI−open.
(4)=⇒(5) Let A ∈ δβIO(X). By (4), δClI(A) = Int(δClI(A)). Hence A ⊂

δClI(A) = Int(δClI(A)) and therefore A is pre∗ − I − open.
(5)=⇒(1) Let A be δI − open. Then δClI(A) is δβI − open. By (5), δClI(A)

is pre∗ − I − open. Hence δClI(A) ⊂ Int(δClI(A)) and therefore δClI(A) is δI −
open.

Definition 2. A subset A in an ideal topological space (X, τ, I) is called δI − dense
if δClI(A) = X.

Theorem 10. Let (X, τ, I) be an ideal topological space. The following are equiva-
lent;

(1) P ∗IO(X) ⊂ S∗IO(X),

(2) Every δI − dense subset is semi∗ − I − open,

(3) δIntI(A) is δI − dense for every δI − dense subset A,

(4) δIntI(δI − Fr(A)) = ∅ for every subset A,

(5) δβIO(X) ⊂ S∗IO(X),

(6) δIntI(δI − Fr(A)) = ∅ for every subset δI − dense subset A.

Proof. (1)=⇒(2) It follows that every δI − dense set is pre∗ − I − open.
(2)=⇒(3) Let A be a δI − dense set. Then A is semi∗ − I − open. Thus,

Cl(δIntI(A)) ⊃ δClI(A) = X and hence δIntI(A) is δI − dense.
(3)=⇒(4) Let A ⊂ X. We have

X = δClI(A) ∪ (X − δClI(A)) = δClI(A) ∪ δIntI(X −A).

This implies that A ∪ δIntI(X − A) is δI − dense. Thus, δIntI(A ∪ δIntI(X − A))
is δI − dense.

δIntI(A ∪ δIntI(X −A)) ∩ δIntI((X −A) ∪ δIntI(A)) = X − (δI − Fr(A)).
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Since X − (δI − Fr(A)) is an intersection of two δI − dense δI − open, then X −
(δI − Fr(A)) is δI − dense.

(4)=⇒(6) Obvious.
(6)=⇒(3) Let A be δI − dense. By (6),

δIntI(δI − Fr(A)) = δIntI(X − δIntI(A)) = X − Cl(δIntI(A)) = ∅.

Thus, δIntI(A) is δI − dense.
(4)=⇒(5) Let A ∈ δβIO(X) . By (4) and Theorem 3, A is semi∗ − I − open.
(5)=⇒(1) Obvious.

Theorem 11. Let (X, τ, I) be an ideal topological space. The following are equiva-
lent;

(1) P ∗IO(X) ⊂ S∗IO(X),

(2) Int(δClI(A ∩B)) = Int(δClI(A)) ∩ Int(δClI(B)) for every A,B ⊂ X,

(3) Cl(δIntI(A ∪B)) = Cl(δIntI(A)) ∪ Cl(δIntI(B)) for every A,B ⊂ X.

Proof. (1)=⇒(2) Let P ∗IO(X) ⊂ S∗IO(X) and A,B ⊂ X. By Theorem 10,
δIntI(δI − Fr(A)) = ∅ for every subset A. Since

δIntI(δI − Fr(A)) = δIntI(δClI(A) ∩ (X − δIntI(A))
= δIntI(δClI(A))− δClI(δIntI(A)),

δIntI(δClI(A)) ⊂ δClI(δIntI(A)) and therefore

δIntI(δClI(A)) = δIntI(δClI(δIntI(A))).

This implies that

Int(δClI(A)) ∩ Int(δClI(B)) = Int(Cl(δIntI(A)) ∩ Int(δClI(B)))
⊂ Cl(δIntI(A)) ∩ Int(δClI(B)).

On the other hand, we have

Cl(δIntI(A)) ∩ Int(δClI(B)) ⊂ Cl(δIntI(A) ∩ Int(δClI(B)))
⊂ Cl(δIntI(A) ∩ δClI(B)) ⊂ δClI(A ∩B).

Since Int(δClI(A ∩B)) ⊂ Int(δClI(A)) ∩ Int(δClI(B)), we have

Int(δClI(A ∩B)) = Int(δClI(A)) ∩ Int(δClI(B)).

(2)=⇒(1) Suppose that (2) holds. Then

δIntI(δI − Fr(A)) = δIntI(δClI(A) ∩ δClI(X −A))
⊂ Int(δClI(A)) ∩ Int(δClI(X −A))
= Int(δClI(A ∩ (X −A))) = ∅.

By Theorem 10, we have P ∗IO(X) ⊂ S∗IO(X).
(2)⇐⇒(3) Take complement.
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Theorem 12. Let (X, τ, I) be an ideal topological space. The following are equiva-
lent;

(1) P ∗IO(X) ⊂ S∗IO(X) and the δI − closure of every δI − open subset of X is
δI − open,

(2) Int(δClI(A)) = Cl(δIntI(A)), for every subset A in X,

(3) Cl(Int(δClI(A))) = Int(Cl(δIntI(A))), for every subset A in X,

(4) δβIO(X) ⊂ δαIO(X),

(5) S∗IO(X) ⊂ δαIO(X) and P ∗IO(X) ⊂ δαIO(X),

(6) P ∗IO(X) = S∗IO(X),

(7) A is semi∗ − I − open if and only if δClI(A) is δI − open.

Proof. (1)=⇒(2) It follows from Theorems 9 and 10.
(2)=⇒(3) Let A ⊂ X. Since Int(δClI(A)) = Cl(δIntI(A)) is δI − clopen (δI −

open and δI − closed), then Cl(Int(δClI(A))) = Int(Cl(δIntI(A))).
(3)=⇒(4) Let A ∈ δβIO(X). Then we have

A ⊂ Cl(Int(δClI(A))) = Int(Cl(δIntI(A))),

i.e, A ∈ δαIO(X).
(4)=⇒(5) and (5)=⇒(6) Straightforward.
(6)=⇒(7) Let A be semi∗ − I − open. Then we have δClI(A) is semi∗ − I −

open and therefore pre∗ − I − open. Thus δClI(A) ⊂ Int(δClI(A)) and δClI(A) is
δI − open. Conversely, let δClI(A) be δI − open. Therefore, we have A ⊂ δClI(A) =
Int(δClI(A)), i.e., A is pre∗ − I − open and hence semi∗ − I − open.

(7)=⇒(1) Let A be δI − open. Then δClI(A) is δI − open. Let A be a δI − dense
set. Then δClI(A) is δI−open. By hypothesis (7), A is semi∗−I−open. Therefore,
by Theorem 10, P ∗IO(X) ⊂ S∗IO(X).

Theorem 13. Let A be a subset of an ideal topological space (X, τ, I). Then the
following are equivalent;

(1) A is regular open,

(2) A is δα− I − open and δβI − closed,

(3) A is pre∗ − I − open and semi∗ − I − closed.

Proof. (1)=⇒(2) Straightforward.
(2)=⇒(1) Let A be a δα − I − open and δβI − closed. Then we have A =

Int(Cl(δIntI(A))). Hence A is regular open.
(1)⇐⇒(3) It follows from Theorem 2 in [6].

Lemma 5. Let (X, τ, I) be an ideal topological space and (U, τ|U , I|U ) a subspace of
(X, τ, I).
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(1) If A is open in (U, τ|U , I|U ), then δClI|U (A) = ClU (A), where δClI|U (A); δI −
closure in (U, τ|U , I|U ).

(2) If A is closed in (U, τ|U , I|U ), then δIntI|U (A) = IntU (A), where δIntI|U (A);
δI − open in (U, τ|U , I|U ).

Proof. (1) Since every δI − open set in (U, τ|U , I|U ) is open in U, we have

ClU (A) ⊂ δClI|U (A).

Conversely, let x /∈ ClU (A). Then there exists an open set V in (U, τ|U ) containing
x such that V ∩A = ∅. Since A is open in (U, τ|U ), we have A∩ IntU (ClU (V )) = ∅.
By the fact that IntU (Cl∗U (V )) ⊂ IntU (ClU (V )), we obtain A∩IntU (Cl∗U (V )) = ∅.
This implies that x /∈ δClI|U (A). Thus δClI|U (A) = ClU (A).

(2) This follows from (1).

Theorem 14. If A ∈ P ∗IO(X) and B ∈ S∗IO(X), then A ∩B ∈ S∗IO(A).

Proof. Let B ∈ S∗IO(X). By Theorem 2, there exists a G δI − open set in X such
that G ⊂ B ⊂ Cl(G). From this it follows that A ∩G ⊂ A ∩ B ⊂ A ∩ Cl(G). Since
A ∈ P ∗IO(X), we have

A ∩G ⊂ A ∩B ⊂ Int(δClI(A)) ∩ Cl(G)
⊂ Cl(δClI(A) ∩G) ⊂ Cl(δClI(A ∩G)), (Lemma 3)
⊂ δClI(δClI(A ∩G))) = δClI(A ∩G).

Hence
(A ∩G) ∩A ⊂ (A ∩B) ∩A ⊂ δClI(A ∩G) ∩A

implies that

A ∩G ⊂ A ∩B ⊂ δClI|A(A ∩G) = ClA(A ∩G), (Lemma 5)

Therefore, since A ∩G is δI − open in A,A ∩B ∈ S∗IO(A).

Theorem 15. If A ∈ P ∗IO(X) and B ∈ S∗IO(X), then A ∩B ∈ P ∗IO(B).

Proof.

B ∩A ⊂ B ∩ Int(δClI(A)) = IntB(B ∩ Int(δClI(A)))
⊂ IntB(Cl(δIntI(B)) ∩ Int(δClI(A)))
⊂ IntB(Cl(δIntI(B) ∩ δClI(A)))
⊂ IntB(δClI(δClI(B ∩A))) = IntB(δClI(B ∩A)).

So,

B ∩A ⊂ IntB(δClI(B ∩A)) ∩B = IntB(δClI(B ∩A) ∩B)
= IntB(δClI|B(B ∩A)).

This implies that A ∩B ∈ P ∗IO(B).
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Definition 3. A space (X, τ) is extremally disconnected [15] if the closure of every
open set in X is open.

Theorem 16. If a space (X, τ, I) is extremally disconnected and A,B ∈ S∗IO(X),
then A ∩B ∈ S∗IO(X).

Proof. Let A,B ∈ S∗IO(X). Then A ∩B ⊂ Cl(δIntI(A)) ∩ Cl(δIntI(B)).
Extremal disconnectedness of X implies openness of

Cl(δIntI(B)) = Cl(Int(δIntI(B))).

Hence

A ∩B ⊂ Cl(δIntI(A)) ∩ Cl(δIntI(B)) ⊂ Cl(δIntI(A) ∩ Cl(δIntI(B)))
⊂ Cl(Cl(δIntI(A) ∩ δIntI(B))) = Cl(δIntI(A ∩B).

So, A ∩B ∈ S∗IO(X).

Remark 1. The extremally disconnected condition of Theorem 16 cannot be dropped
as shown in the following example.

Example 1. Let X = {a, b, c} , τ = {X,∅, {a} , {b} , {a, b}} and I = {∅, {a} , {b} ,
{a, b}}. Then A = {a, c} , B = {b, c} ∈ S∗IO(X), but A ∩ B = {c} /∈ S∗IO(X)
because of (X, τ, I) is not an extremally disconnected space.

2. S∗−sets in ideal topological spaces and decomposition of
continuity

Definition 4. A subset A in an ideal topological space (X, τ, I) is called an S∗−set
if A = U ∩ V, where U is open and V is semi∗ − I − closed and

Int(δClI(V )) = Cl(δIntI(V )).

The family of all S∗− sets of an ideal topological space (X, τ, I) will be denoted
by S∗(X).

Definition 5. (1) A subset V in an ideal topological space (X, τ, I) is called a
strongly − t− I − set [3]if Int(δClI(V )) = Int(V ).

(2) A subset A in an ideal topological space (X, τ, I) is called a strongly B−I−set
[3] if A = U ∩ V, where U is open and V is a strongly − t− I − set.

Remark 2. The notions of a semi∗− I − closed set and a strongly− t− I − setare
equivalent.

Remark 3. Every S∗ − set is a strongly B − I − set, but the converse is not true.

Example 2. Let X = {a, b, c, d} , τ = {X,∅, {a} , {c} , {a, c} , {b, c} , {a, b, c}} and
I = {∅} . Then {a} is a strongly B − I − set set, but it is not an S∗ − set since
Int(δClI({a})) 6= Cl(δIntI({a})).
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Theorem 17 (See [6]). Let A be a subset of an ideal space (X, τ, I). Then

sδClI(A) = A ∪ Int(δClI(A)), (sδClI(A); a semi∗ − I − closure ofA)

Theorem 18. Let (X, τ, I) be an ideal topological space and A ⊂ X. If A is an
S∗ − set, then A = U ∩ sδClI(A) for some open set U.

Proof. Let A ∈ S∗(X). Then A = U ∩ V, where U is open and V is semi∗ − I −
closed and Int(δClI(V )) = Cl(δIntI(V )). Since A ⊂ V, sδClI(A) ⊂ sδClI(V ) = V.
Therefore,

U ∩ sδClI(A) ⊂ U ∩ V = A ⊂ U ∩ sδClI(A)

and hence the proof is completed.

Definition 6. Let (X, τ, I) be an ideal topological space and A ⊂ X. Then A is
called a δI∗ − set if δIntI(A) is δI − closed.

Theorem 19. Let (X, τ, I) be an ideal topological space and A ⊂ X. If A is a
δI∗ − set and semi∗ − I − open, then it is δI − open.

Proof. Let A be a δI∗ − set and semi∗ − I − open. Then A ⊂ Cl(δIntI(A)) =
δIntI(A) and hence A is δI − open.

Theorem 20. The following are equivalent for a subset A of an ideal topological
space (X, τ, I).

(1) A is open,

(2) A is α− open and S∗ − set,

(3) A is preopen and S∗ − set,

(4) A is pre∗ − I − open and S∗ − set,

(5) A is δβI − open and S∗ − set.

Proof. We prove only (5)⇒(1), other implications are obvious.
(5)⇒(1) Let A be a δβI−open and a S∗−set. Then we have A⊂Cl(Int(δClI(A)))

and A = U ∩ V, where U is open and V is semi∗ − I − closed and Int(δClI(V )) =
Cl(δIntI(V )). Therefore, we obtain

A = A ∩ U ⊂ Cl(Int(δClI(A))) ∩ U

= Cl(Int(δClI(U ∩ V ))) ∩ U

⊂ Cl(Int(δClI(U))) ∩ Cl(Int(δClI(V ))) ∩ U

= U ∩ Cl(Int(δClI(V ))) = U ∩ Cl(Cl(δIntI(V )))
= U ∩ Cl(δIntI(V )) = U ∩ Int(δClI(V )) = U ∩ Int(V )

and hence A is an open set.

Definition 7. A function f : (X, τ, I) → (Y, σ) is called
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(1) α− continuous [1] if f −1(V ) is α− open for each V ∈ σ,

(2) pre− continuous [2] if f −1(V ) is preopen for each V ∈ σ,

(3) pre∗ − I − continuous [3] if f −1(V ) is pre∗ − I − open for each V ∈ σ,

(4) δ − β − I − continuous [6] if f −1(V ) is δβI − open for each V ∈ σ,

(5) S∗ − continuous if f −1(V ) is an S∗ − set for each V ∈ σ.

Now, we can give the decomposition of continuity.

Theorem 21. The following are equivalent for a function f : (X, τ, I) → (Y, σ);

(1) f is continuous,

(2) f is α− continuous and S∗ − continuous,

(3) f is pre− continuous and S∗ − continuous,

(4) f is pre∗ − I − continuous and S∗ − continuous,

(5) f is δ − β − I − continuous and S∗ − continuous.

Proof. It follows from Theorem 20.

Remark 4. By the following examples δ − β − I − continuity and S∗ − continuity
are independent notions.

Example 3. Let X = {a, b, c, d} , τ = {X,∅, {a} , {c} , {a, c} , {b, c} , {a, b, c}} and
I = {∅} and σ = {∅, X, {a}} . Define a function f : (X, τ, I) → (Y, σ) such that
f(x) = x. Then f is δ − β − I − continuous, but it is not S∗ − continuous since
{a} ∈ δβIO(X), but {a} /∈ S∗(X).

Example 4. Let X = {a, b, c, d} , τ = {X,∅, {a} , {c} , {a, c} , {b, c} , {a, b, c}} and
I = {∅} and σ = {∅, X, {d}} . Define a function f : (X, τ, I) → (Y, σ) such that
f(x) = x. Then f is S∗ − continuous, but it is not δ − β − I − continuous since
{d} ∈ S∗(X), but {d} /∈ δβIO(X).
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