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Abstract. The aim of this research paper is to establish generalizations of classical Wat-
son’s theorem and Fox’s theorem by employing a generalized Gauss’s second summation
theorem obtained earlier by Lavoie, Grondin and Rathie. Several interesting special cases
are also given. The results established in this research paper are simple, interesting, easily
established and may be useful.
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1. Introduction

A generalized hypergeometric function with p numerator and ¢ denominator param-
eters is defined by [6]
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where (a), denotes the Pochhammer symbol (or the shifted factorial, since (1),
= n!) defined for any complex number a by

(a)n:{claé’(a+1)...(a+n1),§Zi1§{1,2,...} )

using the fundamental relation I'(a 4+ 1) = aI'(a), (@), can be written in the form

(@) = F‘Ii“(;‘)”) (neNU{0}), (3)

where I' is the well-known Gamma function.
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It is well known that whenever a generalized hypergeometric function reduces to
the Gamma function, the results are very important from the application point of
view. We mention here some of special cases of (1).

Gauss’s summation theorem [1, 2, 6]:

provided R(¢ —a —b) > 0.
Gauss’s second summation theorem [2]:

a, b . F(

1 1] _rdrdas o+ b
5(a+b+1)’2 I(

o Fy
a+$)0(3b+ 3)

Watson’s summation theorem [1, 2, 6]:

b
Ty Ci’ » 1 _ T(3)T(c+ 3)T(3a+ 3b+ $H)T(c— 3a— 3b+ 3)
Flat+b+1), 2¢" | T(za+3)L(5b+ 3)l(c—ga+3)l(c—3b+3)

provided R(2¢ —a — b) > —1.
On the other hand, Fox [3] established the following interesting result
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PL =M, P2, 5 Pq ;x]
_ T(p)T(pr —=m)L(p2) - T(pg) (7)
I(an)l(az)---T(ap)

m " m\T(ar +7)--- T(a, +7)
X;F(r—i—pl—m)(T)F(p1+r)~--I‘(pq+r)qu

where m is a positive integer.
Using (7) and (5), Fox [3] obtained the following summation theorem :
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where m is a positive integer.
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A

B;

—[(b+a+6)*—3(b—a+6)?
—3(b—a+6)(b+a+6)
—11(b+a+6)
+2(b—a+6)+20]

ib+a+1)(b+a—3)
21— at3)(b—a—3)

—3(Ba+b-2)
ib+a—1)

-1

ib+a—1)
2(3a+0b—2)

ib+a-3)(b+a+1)
“tb—a=3)(b—a+3)

[(b+a—4)?—1(b—a—4)?)
—t(b+a—4)(b—a—14)
+4(b+a—4)
~5(b—a—4)

[(b+a+6)2—(b—a+6)?
+ib—a+6)(b+a+6)
—17(b+ a + 6)
—1(b—a+6)+62]

—2(b+a-1)
3(8b+a—2)
-2
1
0
1
2
3(3b+a—2)
2(b+a—1)

[(b+a—4)2—1(b—a—4)?
+3(b—a—4)(b+a—4)
+8(b+a—4)
—1(b—a—4)+12]

Table 1. Table for A;, B;
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In 1996, Lavoie, Grondin and Rathie [5] generalized the Gauss’s second summa-
tion theorem (5) in the form

a, b
o

w\H

%(a+b+z+1)
(%) (za+3b+3i+ 3T (3a—3b— i+ 1) (©)
I(ia—3b+ 3+ 3li])

A; B;
X - % + i
{r@a TOT(Rb+ bi b - [4) TGl (b + ki [3) }
for i = 0,+1, +£2,+3, £4, £5.
As usual, [z] denotes the greatest integer less than or equal to z and its modulus
is denoted by |z|. The coefficients A; and B; are given in the table above [5, p. 298].

The aim of this research paper is to establish generalizations of classical Watson’s
theorem (6) and Fox’s theorem (8).

2. Generalization of Watson’s Theorem for 3F5(1)

In this section, the result to be proved is given in the following Theorem.

Theorem 1. For R(2c—a—b) > 4, R(a+b) > 4 and min{R(a),R(b)} > 0, we have

F> 1
. 5( a+b+i+1), 2 ]
_T(Ga+gb+5i+3)0(3) (50— 5b— 5i+3)
D(za—3b+ 5lil +3)
% i (%a)m(;a—ﬁ- %)m(%b)vn(%b‘F %)m
= (c+%)mm'

fori=0,4+1,+2 43 +4 45, and for R(a) # R(b). The coefficients Ai, and B,», can
be obtained from the tables of A; and B; by changing a to a 4+ 2m and b to b+ 2m,
respectively.

Proof. Denoting the left-hand side by £, we have

a, b, ¢
L=3F|1 i1
glatbriti) 2
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Expressing as a series,

- k(0)k(c)k
L= kzzo %a+b+z+1))k(2c)kk!'

We can write this in the form

LN (@) (D) 2*(c)i
= Glatb+i+1))25k | (2e) [

Using a result

ok TRt g | 2
o ;1| = )
ch} (2C)k
k n 1
= (a)r(b)k 27 22
Ezz : oIy il
1 ; k
k=0(2(a+b+z+1))k2 k! C+%

R (@kO)k(=5)m(=5 + $)m
L= kz:: z::O (Aa+b+i+1)k(c+ 2)m2%kim!

om
S a (@)
= = (Gla+ b+ i+ 1))22m R e+ 3)ml(k — 2m)

ZZBmk ii B(m, k + 2m),
=0m=0 k=0 m=0

we have

2= (a)k+2m(b)k+2m
L= .
Z Z 1 +b+z+1))k+2m2k+4m(c+%)mm'k'
Using the identity
(@)k+2m = (a)2m(a +2m),

we have
L= i (@)20m (b)2m i (a4 2m)k(b+2m)y
= (5lat+b+i+1))am(c+ g)m2imm! &= (5(a+b+i+ 14 4m))p2kk!

Summing up the inner series, we get

a+2m, b+2m

- (a')QM(b)%’n 1
L= . F| o
mZ:O (L(a+b+i+1)amlct 5)m2tmm!® ! S@+b+itl+dm) 2
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It is now easy to see that o F} can be summed by the known result (9) and after a

little algebra, we easily arrive at the right-hand side of Theorem 1. This completes
the proof of the Theorem 1. O

Corollary 1. The following summation formulas hold

a, b, c
F 1 ;1
0 §(a+b+2), 2¢
B 2000710 (Lo + L+ DI (c + $)T(c — La — 3b) (10)

(11)

provided R(2¢ —a — b) > 0.
The results (10) and (11) have been obtained in [3] by following a different
method. Similarly, other results can also be obtained.

Remark 1. In Theorem 1, if we put i = 0, we get, after a little simplification, the
classical Watson’s theorem (6), while if we take i =1 and i = —1, we arrive at (10)
and (11), respectively.

3. Generalization of Fox’s Theorem for ;F5(3)

In this section, generalization of Fox’s theorem (8) will be established in the form of
theorem.

Theorem 2. For positive integer m < R(a)—1, R(B—7) > —6 and min{R(5), R(v)}
> 0, we have

a, B, v
3Fs

N | =

)

1
o—m, §(ﬁ+’y+i+1)
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LT —mT(8+ 37+ 51+ 3)T(GB— 37— 3i +3)
L(38 =57+ 3lil + 3)

% i (m) (5)r(7)r Az/ '
S\ J2T(r+a—m) | D38+ 4r+ HT(3v+ 37+ 3i+ 5 — 1)

B;
T

fori=0,+1,+2, 43, +4, 45, and for R(B) # R(~).

+
T

The coefficients Ai/ and Bi, can be obtained from the table of A; and B; by
changing a to 0+ r and b to v + r, respectively.

Proof. If in Fox’s general result (7), we put p =3, ¢ =2, z = %, a1 = a, ag = [,

az =7, p1 =aand py = %(/6+fy+i+1), then for ¢ = 0, +£1, +2, 43, +4, £5 we have

a, B, 7 1
3Fy 1 . g
a—m, S(B+y+i+l) 2

_ D(a—m)T(38+ 37+ 3i+ 3)

L(B)T(v)
(™ L(B+r)T(y+7)
sz_;)(’r>2TF((X—|—7‘—m)F(éﬁ+éfY+éi+%_FT) (12)
B+r, y+r 1
x o Fy 3

1 ;
By +2r+itl)

o F) on the right-hand side of (12) can now be evaluated with the help of a generalized
Gauss’s second theorem (9) by taking a = 8+ r and b = v + r and after a little
simplification, we arrive at the right-hand side of Theorem 2. This completes the
proof of Theorem 2. O

Corollary 2. For all ®(a) > m > 0 we have the following summation fromulas

a, B, v 1
3fs 1 .

gg+3§r(;)r<a_m>r(;ﬁ+;V)g”o(’?)m (13

1 1
>< J—
{F(;ﬂJr;T)F(é’er%TJr%) F(;6+;r+;)F(§v+§T)}

provided R(5) # R(7).
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Note: Here we would like to mention that the right-hand side of (13) makes sense
when 3 — v — 07. The reason is given in Remark 2.

a B, v 1
E -
3142 a—m77(/6—|—’y)’2

1 1
X + .
{F(;ﬂ +ir+ Gy +Lir)  TEB+ 3Ty +3r+ 1) }

Remark 2. The right-hand side of the result (14) is valid because of the following
reason writing the right-hand side of (13) in the form

DT =mPGA+ 37+ DEGA = 37) o~ (m __ (B)r(1)r
RH.S = F(%ﬂ—%v-ﬁ-l) ;(T)?TF(T‘-FQ—?TL)

1
x{l“(éﬁ—k Iy + e Dy T+ Lr+ Dr(iy + ér)} (15)

Let us denote the positive quantity x :=

(ﬂ;v)’ Since otherwise T (ﬁgj) in (15) is

not defined, we can rewrite the right-hand side of (15) for x — 07 as:

RH.S ~T(y+1)T (;) (o — m)

m
m (V)r(V)r
" 16
;)<r>2TP<T+O‘—’">F2<%7+%r)Pz(éw;r+é) (16)
T(z+ iy +ir+ DTGy +3r) —T(@ + 4y + 4T3y + 4r + L
X{ ZRE AR 1L shd it (z+3v+5n)PGy+35r+ 2)}
T

By employing L’Hospital’s rule to (16), we have
1
RHS ~T(y+ 1T <2> I —m)

“(m (V)r()r
Xg ( r )27T(r+a—m)f‘(§7+ MT(3y+3r+13) (a7

r=0
D(gv+sr+3) TG
L(zv+ar+3) T
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R.H.S ~T(y+ 1)T (;) (o — m)

(™ Y)r (V)
szz:o ( r >2rr(7"+0¢—m)l_‘(é’y—|—ér)f‘(;fy+;r+é) (19)

1 1 1 1 1
Q) ()}
which is finite. Here ¢ = (lnF), denotes the digamma function. Obviously, the

right-hand side of Theorem 2 and the result (13) makes sense for 3 close to v, and
as a by-product, we obtain a new asymptotic formula for

a, B, v
3Fh

|~

1 ;

for B —~ —0T.

Remark 3. In Theorem 2, if we take i = 0, we get, after a little simplification,
Fox’s theorem (8) ; fori=1 and i = —1, we get (18) and (14), respectively.
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