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Abstract. There are many different ways to subdivide the spectrum of a bounded linear
operator; some of them are motivated by applications to physics (in particular, quantum
mechanics). In a series of papers, B.E. Rhoades and M. Yildirim previously investigated the
spectra and fine spectra for factorable matrices, considered as bounded operators over vari-
ous sequence spaces. In the present paper, approximation point spectrum, defect spectrum
and compression spectrum of factorable matrices are investigated.
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1. Introduction

Let w; c0; c; `p; denote the set of all sequences; the space of all null sequences;
convergent sequences; sequences such that

∑
k | xk |p< ∞; respectively.

An infinite matrix A is said to be conservative if it is a selfmap of c, the space of
convergent sequences. Necessary and sufficient conditions for A to be conservative
are the well-known Kojima-Schur conditions; i.e.,

(i) ‖A‖ = supn

∑∞
k=0 |ank| < ∞,

(ii) limn ank = αk, exists for each k, and

(iii) t = limn

∑
ank exists.

Associated with each conservative matrix A is a function χ defined by χ(A) =
t−∑

αk. If χ(A) 6= 0, A is called coregular, and if χ(A) = 0, then A is called conull.
A matrix A = (ank) is said to be regular if limA x = lim x for each x ∈ c. If αk = 0
for each k and t = 1 in (iii), then the operator A is called regular.

A lower triangular matrix A is said to be factorable if ank = anbk for all 0 ≤ k ≤
n.

A triangle is a triangular matrix with nonzero main diagonal entries.
The choices an = 1/(n + 1) and each bk = 1, an = (n + 1)−p(p > 1) and each

bk = 1, an = an and each bk = 1, and an = Pn, bk = pk, where {pk} is a nonnegative
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sequence with p0 > 0, Pn :=
∑n

k=0 pk, generate C (the Cesáro matrix of order one),
the p-Cesáro matrices and terraced matrices defined by Rhaly, and the weighted
mean matrices, respectively.

In the past decades, B.E. Rhoades determined the fine spectra of certain classes
of weighted mean matrices, considered as bounded linear operators over c, c0, `p

and bv0 (see, e.g., [7, 19, 20, 21]). Some authors have considered spectral questions
for certain classes of Rhaly matrices (see, e.g. [13, 18, 24, 25, 26, 27, 28]). The
Spectrum of C, on various spaces, has been computed in [6, 10, 12, 15, 16, 17, 29].
B.E. Rhoades and M. Yildirim have calculated the spectrum and the fine spectrum
of factorable matrices on c and `p in [22, 23]. The spectrum of linear operators
defined by some particular limitation matrices over some sequence spaces has been
considered by many authors, for example, R.B. Wenger [29], M. Gonzalez [10], A.M.
Akhmedov and F. Başar [1], C. Coşkun [8], B. de Malafosse [14], and B. Altay and
F. Başar [2], etc.

Motivated by various applications from mathematical physics, the spectrum of
a bounded linear operator can be divided in very different ways, e.g. the point
spectrum, continuous spectrum and residual spectrum. Again, from Goldberg [11],
pp. 58–71), it follows that one can define the fine spectrum for a bounded operator
T on a Banach space X, based on the possible behaviors of R (T − λ) and (T − λ)−1

with λ ∈ C.
The above-mentioned articles, concerned with the decomposition of the spectrum

defined by Goldberg. However, in [9] and [4, 5] approximate point spectrum, defect
spectrum and compression spectrum of some limitation matrices over some sequence
spaces were determined.

2. The spectrum

Let X and Y be the Banach spaces, and L : X → Y also a bounded linear operator.
By R (L), we denote the range of L, i.e.,

R (L) = {y ∈ Y : y = Lx, x ∈ X} .

By B(X), we also denote the set of all bounded linear operators on X into itself. If
X is any Banach space and L ∈ B(X), then the adjoint L∗ of L is a bounded linear
operator on the dual X∗ of X defined by (L∗f) (x) = f (Lx) for all f ∈ X∗ and
x ∈ X.

Given an operator L ∈ B(X), the set

ρ(L) := {λ ∈ C : λI − L is a bijection} (1)

is called the resolvent set of L and its complement with respect to the complex plain

σ(L) := C\ρ(L) (2)

is called the spectrum of L. By the closed graph theorem, the inverse operator

R(λ; L) := (λI − L)−1 (λ ∈ ρ(L)) (3)

is always bounded; this operator is usually called a resolvent operator of L at λ.
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2.1. Subdivision of the spectrum

In this section, we mention from the parts point spectrum, continuous spectrum,
residual spectrum, approximate point spectrum, defect spectrum and compression
spectrum of the spectrum. There are many different ways to subdivide the spectrum
of a bounded linear operator. Some of them are motivated by applications to physics,
in particular, quantum mechanics.

2.1.1. The point spectrum, continuous spectrum and residual spectrum

Let X be a Banach space over C and L ∈ B(X). Recall that a number λ ∈ C is
called the eigenvalue of L if the equation

Lx = λx (4)

has a nontrivial solution x ∈ X. Any such x is then called the eigenvector, and the
set of all eigenvectors is a subspace of X called eigenspace.

Throughout the following, we will call the set of eigenvalues

σp(L) := {λ ∈ C : Lx = λx for some x 6= 0} (5)

We say that λ ∈ C belongs to the continuous spectrum σc(L) of L if the resolvent
operator (3) is defined on a dense subspace of X and if it is unbounded. Furthermore,
we say that λ ∈ C belongs to the residual spectrum σr(L) of L if the resolvent
operator (3) exists, but its domain of definition (i.e. the range R(λI−L) of (λI−L)
is not dense in X. In this case R(λ; L) may be bounded or unbounded. Together
with the point spectrum (5), these two subspectra form a disjoint subdivision

σ(L) = σp(L) ∪ σc(L) ∪ σr(L) (6)

of the spectrum of L.

2.1.2. The approximate point spectrum, defect spectrum and compres-
sion spectrum

In this subsection, following Appell et al. [3], we give the definitions of three more
subdivisions of the spectrum called the approximate point spectrum, defect spectrum
and compression spectrum.

Given a bounded linear operator L in a Banach space X, we call a sequence
(xk)k in X a Weyl sequence for L if ‖xk‖ = 1 and ‖Lxk‖ → 0 as k →∞.

In what follows, we call the set

σap(L) := {λ ∈ C : there exists aWeyl sequence for λI − L} (7)

the approximate point spectrum of L. Moreover, the subspectrum

σδ(L) := {λ ∈ C : λI − L is not surjective} (8)

is called the defect spectrum of L.
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The two subspectra (7) and (8) form a (not necessarily disjoint) subdivision

σ(L) = σap(L) ∪ σδ(L) (9)

of the spectrum. There is another subspectrum,

σco(L) = {λ ∈ C : R(λI − L) 6= X} (10)

which is often called the compression spectrum in the literature and which gives rise
to another (not necessarily disjoint) decomposition

σ(L) = σap(L) ∪ σco(L) (11)

of the spectrum. Clearly, σp(L) ⊆ σap(L) and σco(L) ⊆ σδ(L). Moreover, comparing
these subspectra with those in (6) we note that

σr(L) = σco(L)\σp(L) (12)

and

σc(L) = σ(L)\[σp(L) ∪ σco(L)] (13)

Sometimes it is useful to relate the spectrum of a bounded linear operator to
that of its adjoint. Building on classical existence and uniqueness results for linear
operator equations in Banach spaces and their adjoints.

Proposition 1 (see [3], Proposition 1.3). The spectra and subspectra of an operator
L ∈ B(X) and its adjoint L∗ ∈ B(X∗) are related by the following relations:

(a) σ(L∗) = σ(L).

(b) σc(L∗) ⊆ σap(L).

(c) σap(L∗) = σδ(L).

(d) σδ(L∗) = σap(L).

(e) σp(L∗) = σco(L).

(f) σco(L∗) ⊇ σp(L).

(g) σ(L) = σap(L) ∪ σp(L∗) = σp(L) ∪ σap(L∗).

2.1.3. Goldberg’s classification of spectrum

If X is a Banach space and T ∈ B(X), then there are three possibilities for R(T ),
the range of T :

(I) R(T ) = X

(II) R(T ) = X, but R(T ) 6= X,

(III) R(T ) 6= X
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and three possibilities for T−1:

(1) T−1 exists and is continuous,

(2) T−1 exists but is discontinuous,

(3) T−1 does not exist.

If these possibilities are combined in all possible ways, nine different states are
created. These are labelled by: I1, I2, I3, II1, II2, II3, III1, III2, III3. If an
operator is in state III2 for example, then R(T ) 6= X and T−1 exists but it is
discontinuous (see [11]).

If λ is a complex number such that T = λI − L ∈ I1 or T = λI − L ∈ II1, then
λ ∈ ρ(L,X). All scalar values of λ not in ρ(L,X) comprise the spectrum of L. A
further classification of σ(L,X) gives rise to the fine spectrum of L. That is, σ(L, X)
can be divided into the subsets I2σ(L, X) = ∅, I3σ(L, X), II2σ(L,X), II3σ(L,X),
III1σ(L,X), III2σ(L, X), III3σ(L,X). For example, if T = λI − L is in a given
state, III2 (say), then we write λ ∈ III2σ(L,X).

By the definitions given above, we can write the following table

1 2 3
R(λ; L) exists R(λ; L) exists R(λ; L)

and is bounded and is unbounded does not exists
λ ∈ σp(L)

I R(λI − L) = X λ ∈ ρ(L) – λ ∈ σap(L)

λ ∈ σc(L) λ ∈ σp(L)
II R(λI − L) = X λ ∈ ρ(L) λ ∈ σap(L) λ ∈ σap(L)

λ ∈ σδ(L) λ ∈ σδ(L)
λ ∈ σr(L) λ ∈ σr(L) λ ∈ σp(L)

III R(λI − L) 6= X λ ∈ σδ(L) λ ∈ σap(L) λ ∈ σap(L)
λ ∈ σδ(L) λ ∈ σδ(L)

λ ∈ σco(L) λ ∈ σco(L) λ ∈ σco(L)

Table 1.

3. The approximate point spectrum, defect spectrum and com-
pression spectrum of a factorable operator

For many of our results we shall consider factorable matrices which belong to F :
= {A : A is a factorable lower triangular matrix with nonnegative entries and 0 ≤
anbn ≤ 1 diagonal entries and with at most a finite number of zeros on the main
diagonal}. Define γ = lim anbn and cn := anbn.

3.1. Subdivision of the spectrum of A on c

Theorem 1. Let A ∈ F be regular. Then 1 ∈ III3σ(A, c).
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Proof. Since a0b0 = 1, (I −A) e = 0, I−A is not invertible where e = (1, 1, · · · ) ∈ c.
Therefore I −A ∈ 3. Let z ∈ c such that z0 6= 0. Then

‖(I −A)x− z‖ ≥ |z0| > |z0|
2

.

Hence z /∈ R (I −A); so R (I −A) 6= c, i.e, I −A ∈ III.

Theorem 2. Let A ∈ F be regular such that γ = lim cn exists and is less than 1
and cn ≥ γ for all n sufficiently large, then

(a)

σap(A, c) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ =
1− γ

2− γ

}
∪ E,

(b)

σδ(A, c) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ ≤
1− γ

2− γ

}
∪ S,

(c)

σco(A, c) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ <
1− γ

2− γ

}
∪ S,

whereE :=
{

λ = cn : 0 ≤ λ ≤ γ

2− γ
, n ≥ 0

}
and S := {cn : n ≥ 0}.

Proof. If A ∈ F is regular such that γ = lim cn exists and is less than 1 and cn ≥ γ
for all n sufficiently large, then I3σ(A, c) = ∅ and III2σ(A, c) = ∅ follow from [22]
Corollary 1, Corollary 4 and Theorems 5-7 and our result from Theorem 1.

(a) Since σap(A, c) = σ(A, c)\III1σ(A, c),

σap(A, c) =
[{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ ≤
1− γ

2− γ

}
∪ S

]

\
[({

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ <
1− γ

2− γ

}
\S

)

∪
{

λ = cn :
γ

2− γ
< λ < 1

}]

=
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ =
1− γ

2− γ

}
∪ E,

is obvious from [22] Corollary 1, Corollary 4 and Theorem 5.
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(b) Since σδ(A, c) = σ(A, c)\I3σ(A, c) and I3σ(A, c) = ∅, the equality

σδ(A, c) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ ≤
1− γ

2− γ

}
∪ S,

is true.
(c) From Table 1, σco(A, c) = III1σ(A, c) ∪ III2σ(A, c) ∪ III3σ(A, c). Since

III2σ(A, c) = ∅, then from [22] Corollary 1, Corollary 4 and Theorems 5-6 and our
result from Theorem 1, we get

σco(A, c) =
[{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ <
1− γ

2− γ

}
\S

]

∪
{

λ = cn :
γ

2− γ
< λ < 1

}
∪

{
λ = cn : 0 ≤ λ ≤ γ

2− γ

}

=
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ <
1− γ

2− γ

}
∪ S.

The following corollaries can be obtained by Proposition 1.

Corollary 1. The following equalities are true;

(a)

σap(A∗, `1) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ ≤
1− γ

2− γ

}
∪ S,

(b)

σδ(A∗, `1) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ =
1− γ

2− γ

}
∪ E,

(c)

σp(A∗, `1) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ <
1− γ

2− γ

}
∪ S,

whereA∗ denotes the adjoint of A, E :=
{

λ = cn : 0 ≤ λ ≤ γ

2− γ
, n ≥ 0

}
and S :=

{cn : n ≥ 0}.

3.2. Subdivision of the spectrum of A on `p (1 < p < ∞)

Theorem 3. Let A be a regular factorable matrix with θ = lim inf cn. If there exist
values of n such that 0 < cn ≤ θ/(2− θ), then λ = cn implies λ ∈ III3σ(A, `p).
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Proof. Let ck be any diagonal entry satisfying 0 < ck ≤ θ/(2 − θ). Let j be the
smallest integer such that cj = ck.

Let Tλ := λI − A. Consider the system T ∗λx = 0. Suppose that λ = amm for
some m. Then (T ∗λ )m+1x = 0 becomes

ammxm+1 −
∞∑

k=0

a∗m+1,kxk = 0,

ammxm+1 −
∞∑

k=0

ak,m+1xk = 0,

ammxm+1 − bm+1

∞∑

k=0

akxk = 0,

which implies that

ammxm+1

bm+1
=

∞∑

k=0

akxk.

Solving the system (T ∗λ )m+2x = 0 yields

ammxm+2 −
∞∑

k=0

a∗m+2,kxk = 0,

ammxm+2 −
∞∑

k=0

ak,m+2xk = 0,

ammxm+2 − bm+2

∞∑

k=0

akxk = 0,

which implies that

ammxm+2

bm+2
=

∞∑

k=0

akxk.

Thus we have

ammxm+2

bm+2
=

ammxm+1

bm+1
.

xm+2 =
bm+2xm+1

bm+1
, for each n > m

and hence

xn =
bnxm+1

bm+1
,

which, since x ∈ `p, forces xn = 0 for each n > m.
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Then the system (T ∗λ )rx = 0 becomes

ammxr −
∞∑

k=0

a∗rkxk = 0, r = 0, 1, . . . ,m,

which has nontrivial solutions. Thus Tcj
is not surjective, hence Tcj

∈ III.
If cj = θ/(2− θ), then clearly Tcj

∈ 3. Assume that 0 < cj < θ/(2− θ) and let r
denote the largest integer such that cr = ck. Solving Tcrx = 0 leads to the equality

xr+m = xr

[
m∏

i=1

(
ξi+r +

(
1− 1

arbr

)
ar+i−1br+i

)]−1

, (14)

where ξn =
an−1

an
− an−1

an
tn + tn−1.

For m ≥ n, from equality (14),

|xj+m+1|
|xm+j | =

1

ξm+1+j +
(
1− 1

cj

)
aj+m+1bj+m+1

→ 1

1 +
(
1− 1

cj

)
θ

< 1, as n →∞.

Consequently, {xn} ∈ `1, hence {xn} ∈ `p and Tcr is not injective. Therefore
λ ∈ III3σ(A, `p).

Suppose that A has a zero on the main diagonal and θ > 0. Let j denote the
smallest positive integer for which cj = 0. Let ej denote the coordinate sequence
with a 1 in the jth position and all other entries zero. Then Aej = 0, and Tcj = −A
is not 1-1. By setting x0 = 0, xn = 0 for n > j + 1, the system T ∗cj

x = 0 reduces to
a homogeneous linear system of j equations in j + 1 unknowns.

Remark 1. Theorem 4 of [21] is a special case of Theorem 3.

Theorem 4. Let A ∈ F be regular. Then 1 ∈ III3σ(A, `p).

Proof. Since a0b0 = 1, (I −A) e0 = 0, where e = (1, 0, 0, · · · ) ∈ `p, I − A is 1-
1. Therefore I − A ∈ 3. Also R (I −A) ⊆ `p\ {e0}. Hence R (I −A) 6= `p; i.e.,
I −A ∈ III.

Theorem 5. Let A ∈ F be regular such that γ = lim cn exists and is less than 1
and cn ≥ γ for all n sufficiently large, then

(a)

σap(A, `p) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ =
1− γ

2− γ

}
∪ E,

(b)

σδ(A, `p) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ ≤
1− γ

2− γ

}
∪ S,
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(c)

σco(A, `p) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ <
1− γ

2− γ

}
∪ S,

whereE :=
{

λ = cn : 0 ≤ λ ≤ γ

2− γ
, n ≥ 0

}
and S := {cn : n ≥ 0}.

Proof. If A ∈ F is regular such that γ = lim cn exists and is less than 1 and cn ≥ γ
for all n sufficiently large, then I3σ(A, `p) = ∅ and III2σ(A, `p) = ∅ are taken by
Corollary 1, Theorems 6-8 in [23] and our results from Theorems 3-4.

(a) Since σap(A, c) = σ(A, c)\III1σ(A, c), then from Corollary 1, Theorem 6 and
Theorem 8 in [23] we get the following equality;

σap(A, `p) =
[{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ ≤
1− γ

2− γ

}
∪ S

]

\
[({

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ <
1− γ

2− γ

}
\S

)

∪
{

λ = cn :
γ

2− γ
< λ < 1

}]

=
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ =
1− γ

2− γ

}
∪ E,

(b) Since σδ(A, `p) = σ(A, `p)\I3σ(A, `p) and σI3(A, `p) = ∅, we have

σδ(A, `p) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ ≤
1− γ

2− γ

}
∪ S,

(c) From Table 1, σco(A, `p) = III1σ(A, `p) ∪ III2σ(A, `p) ∪ III3σ(A, `p). Since
III2σ(A, `p) = ∅, then from [23] Corollary 1, Theorem 6, Theorem 8 and our results
from Theorems 3-4, we get

σco(A, `p) =
[{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ <
1− γ

2− γ

}
\S

]

∪
{

λ = cn :
γ

2− γ
< λ < 1

}
∪

{
λ = cn : 0 ≤ λ ≤ γ

2− γ

}

=
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ <
1− γ

2− γ

}
∪ S.

The following corollaries can be obtained by Proposition 1.

Corollary 2. The following equalities are true;
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(a)

σap(A∗, `q) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ ≤
1− γ

2− γ

}
∪ S,

(b)

σδ(A∗, `q) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ =
1− γ

2− γ

}
∪ E,

(c)

σp(A∗, `q) =
{

λ :
∣∣∣∣λ−

1
2− γ

∣∣∣∣ <
1− γ

2− γ

}
∪ S,

whereA∗ denotes the adjoint of A,
1
p
+

1
q

= 1, E :=
{

λ = cn : 0 ≤ λ ≤ γ

2− γ
, n ≥ 0

}

and S := {cn : n ≥ 0}.

4. Conclusion

There is wide literature related to the spectrum and fine spectrum of certain linear
operators represented by particular limitation matrices over some sequence spaces.
Although the fine spectrum with respect to the Goldberg’s classification of the fac-
torable operator over the sequence spaces c and `p with (1 < p < ∞) were studied
by B.E. Rhoades and M. Yildirim [22, 23], respectively, the present paper introduces
the concepts of the approximate point spectrum, defect spectrum and compression
spectrum, and gives the subdivisions of the spectrum of the factorable operator over
the sequence space `p as new subdivisions of spectrum. This is a new development
of the spectrum of an infinite matrix over a sequence space. Following the same way,
it is natural that one can derive some new results on subdivisions of the spectrum
of factorable matrices or other particular limitation matrices over the spaces which
are not considered here, from the known results via Table 1, in the usual sense.
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[4] F.Başar, N.Durna, M.Yildirim, Subdivisions of the spectra for generalized differ-
ence operator ∆ν on the sequence space `1, AIP Conference Proceedings 1309, (2010),
254–260
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