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High energy asymptotics for eigenvalues of the Schrodinger
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Abstract. We consider a Schrodinger operator with a matrix potential defined in L5'(Q)
by the differential expression Lu = —Awu + Vu and the Neumann boundary condition,
where @ is a d-dimensional parallelepiped and V' a matrix potential, d > 2, m > 2. We
obtain the high energy asymptotics of arbitrary order for a rich set of eigenvalues.
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We consider the Schrédinger operator with a matrix potential V' (z) which is
defined by the differential expression

L=-A+V (1)

and the Neumann boundary condition

0P
o lag=10 (2)

in L5 (Q), where Q = [0,a1] x [0, az] X - - - X [0, aq], Q is the boundary of @, m > 2,
d > 2, A is a diagonal m X m matrix, its diagonal elements being the scalar Laplace
operators, V' is the operator of multiplication by a real valued symmetric matrix
V(z) = (vij(x)), i, = 1,2,...,m, vi;(z) € La(Q), VT (x) = V(x). We denote the
operator defined by (1) and (2) by L(V), the eigenvalues and the corresponding
eigenfunctions of L(V) by Ay and ¥y, respectively.

The eigenvalues of the operator L(0) which is defined by (1) when V' (2) = 0 and
the boundary condition (2) are | v |? and the corresponding eigenspaces are

E, = span{®,1(x), Py 2(2),..., Pym(2)},

where

T+0
ye = (T T TdTy nkEZ+U{O}7 k=1,2,....d},

2 a1’ ao ag

o, i(z) =(0,...,0,uy(x),0,...,0),j =1,2,...,m,
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Uy () = cos™E xlcos ”2”3:2 cosma:d,
uo(z) = 1 when v = (0,0,...,0). We note that the non-zero component u.(z) of
®., ;(z) stands in the jth component.

It can be easily calculated that the norm of u,(z), v = (v1,92,...,7%) € F%O in

Ly(Q) is 4/ & Q) " where 1(Q) is the measure of the d-dimensional parallelepiped @,

[Ay]2
Ay ={a=(,as,...,0q) € g Jag |=| 7 | k=1,2,...,d},
g = {(%,%,u',"::) cn, € Z,k =1,2,...,d} and | A, | is the number of

vectors in A,.
Since {U»Y(l')},yeﬂ is a complete system in Ly(Q), for any ¢(z) in L2(Q) we
2

have

W=y L‘E‘é)' (4,10 ) (), (3)

where (-, -) is the inner product in Ls(Q). Using decomposition (3) and the obvious
relations

Uy () = ua(z), (q(),uqy(x)) = (g ) o(7)), VOZGAW,

g: U Ay, (q(z) uqy (2 Z
,yerzo €A,

we have

T M
= |A7| 1 T), U\ T))UQ\T
_’Y;ﬂ) M(Q) |A’y|a§’y(q< )’ Ot( )) Oé( )

1

Thus one can write

= gyuy(2), (4)
€S
where ¢, = ﬁ@(q(ag), u(x)). Since decompositions (3) and (4) are equivalent, for
the sake of simplicity, we use decomposition (4).
So each matrix element v;;(z) € L2(Q) of the matrix V(z) can be written in its
Fourier series expansion

Vi () =Y Vijyuy ()
€S

fori,j =1,2,...,m where v;;, = (v;’(’g)”).
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We assume that the Fourier coefficients v;;,, of v;;(x) satisfy

D vy P+ 7)) < o0 ()
yeS
for each 7,5 =1,2,...,m, where [ > % + d + 3, which implies
viglz) = Y vy () +0(p7), (6)
YELHO(p=)

where Tt (p®) ={ye L :0<|v|<p*},p=1-d a< ﬁ, p is a large parameter
and O(p~P%) is a function in L2(Q) with norm of order p~P%. Furthermore, a
assumption (5) implies

Mij = [vijy |[< 00 (7)

r
YE€S

foralli,j =1,2,...,m.

Notice that, if a function ¢(z) is sufficiently smooth (g(z) € Wi(Q)) and the
support of gradg(z) = (aa—gfl, 6%‘12, ce, 88—9;1[1) is contained in the interior of the domain
@, then ¢(z) satisfies condition (5) ( see [7]). There is also another class of functions

q(x), such that ¢(x) € W1(Q),

which is periodic with respect to a lattice Q = {(mya1, maas,...,mgaq) : my, € Z,
k=1,2,...,d} and thus it also satisfies condition (5).

In this paper and in [3], we study how the eigenvalues | v |? of the unperturbed
operator L(0) are affected under perturbation, by using energy as a large parameter.
In [3], we obtain the asymptotic formulas for the eigenvalues of the operator L(V') in
an arbitrary dimension. In this paper, we improve the proof of the formulas obtained
in [3] so that we additionally obtain the high energy asymptotics of arbitrary order
for the eigenvalues of the operator L(V') in an arbitrary dimension. This is one of
the essential problems related to this operator L(V') that has been studied for a long
time.

For the scalar case, m = 1, a method was first introduced by O. Veliev in [15], [16]
and more recently in [17]-[19] to obtain the asymptotic formulas for the eigenvalues
of the periodic Schrodinger operator with quasiperiodic boundary conditions. By
some other methods, asymptotic formulas for quasiperiodic boundary conditions in
two- and three-dimensional cases are obtained in [4, 5, 10, 11] and [6]. When this
operator is considered with the Dirichlet boundary condition in a two-dimensional
rectangle, the asymptotic formulas for the eigenvalues are obtained in [7]. The
asymptotic formulas for the eigenvalues of the Schréodinger operator with Dirichlet
or Neumann boundary conditions in an arbitrary dimension are obtained in [1], [8]
and [9]. For the matrix case, asymptotic formulas for eigenvalues of the Schrodinger
operator with quasiperiodic boundary conditions are obtained in [12].
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As in [15]- [19], we divide R? into two domains: resonance and non-resonance
domains. In order to define these domains, let us introduce the following sets:
Let a < ﬁ, ar=3Fa, k=1,2,...,d—1 and

Vi(p™) = {e € RY: a2 = |a+b]2< p™),

B = | V™),
beT (pp)

U<p(’1,p) = Rd \ EI(PQ17P)7

where D(pp®) = {b € T : 0 <| b |< pp®}. The set U(p®,p) is said to be a non-
resonance domain, and the eigenvalue | 7 |2 is called a non-resonance eigenvalue if
v € U(p*,p). The domains V,(p®) for all b € T'(pp®) are called resonance domains,
and the eigenvalue | v |2 is a resonance eigenvalue if v € V;,(p™).

In this paper, we obtain the asymptotic formulas of arbitrary order for non-
resonance eigenvalues, which is a rich set of eigenvalues in the following sense: The
number of non-resonance eigenvalues is essentially greater than the number of
resonance eigenvalues. Namely, if N, (p) and N,.(p) denote the number of
v € UP*,p)N(R(2p) \ R(p)) and v € ) &J )Vb(P") M(R(2p) \ R(p)), respectively,

el(pp>
then

Nn(P)

for (d+ 1)a < 1, where R, = {z € R :| 2 |= p} (see Remark 1 in [1]).
To prove the asymptotic formulas for the eigenvalues Ay, we use the binding
formula

Tele) _ o planoty = o(1) 0

(AN— | Y |2) < \I/N,q)%j >=< \IIN,V@%J' > (9)

for the eigenvalue, eigenfunction pairs Ay, Un(z) and | v |2, @, ;(z) of the opera-
tors L(V) and L(0), respectively. Formula (9) can be obtained by multiplying the
equation L(V)W¥y(z) = APy (z) by @, ;(x) and by using the facts that L(0) is
self-adjoint and L(0)®, ;(x) =| v |* @, ;(z). Here < -, > denotes the inner product
in L7(Q).

We consider the eigenvalues | 7 |? of L(0) such that | v |~ p, where | v |~ p means
that | v | and p are asymptotically equal, that is, c1p <| v |< eap, ¢, 0 = 1,2,3,...
are positive real constants which do not depend on p and p is a large parameter,
p> 1

Now, we decompose V' (x)®., ; (x) with respect to the basis {‘1)7,714(3:)}7,6%1-:172
By definition of ®, ;(z), it is obvious that

V(@)@ (@) = (vij(@)uy (@), .o v (2)uy (2))- (10)

Substituting decomposition (6) of v;;(x) in (10), we get

V(@) () = ( Z V1t (@) (2), - Z UmjyrUns (T) U (7))

YIETTO(p) YIETTO(px)
+0(p™).
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Since v € U(p“*,p), v does not belong to the domains V¢, (p®*) where

er = (0,...,0, a0, 0) foreach k = 1,2,...,d, we may use the following equation
Yoo vhgg@uy @) =D Vit (@)
Y1ETFO(p) YIETTO(p)

which is proved in [8] (see equation (18) in [8]), and obtain

V(@)@ () = ( Z V1 (2), - Z Umjyrtiy (@) + O(p~ )

YETTO(p) YIETTO(p)
- Z Z Vijy Py rr,i () + O(p™"). (11)
i=1 /€D 0 (po)
Expressions (9) and (11) together imply that
<UN, VO >
(An—1771%)

- <UN,Dyyiq,,i > —pa
Z Z Vijy Ay |W77|12) +O0(p™7) (12)
i=1 3, €l (po)

<N, Py > =

for every vector 7/ € g, satisfying the condition
2 1 (5]
[ An— [ > 5o
If v € U(p*t,p) and Ay satisfies
1 (%
| Av=1[y Pl< 5p™, (13)
which is called the iterability condition, then
1 «
[An= [y +b P2 Ax= [y Pl = [l v+ b = [ PlI> 5p™, (14)

for all b € TF0(pp®) with b #£ 0.
Let v € U(p™, p) with | v |~ p. Now, we start the iteration by substituting (11)
into the binding formula (9) and obtain

(AN— | v |2> <Un, P, >= Z Z Vigjy < YN, Pygqyiy > +O(p7pa)'

i1=1~; €ET+0(pe)

Isolating the terms with the coefficient < ¥y, ®,; >, that is, 1 = 0, for each
1=1,2,...,m, we get

m
A= 7)) <ON, @, ; > = Z'Uijo < Uy, Py, >
=1

+ Z Z Viyjm < 5 (I)7+717i1 > +O(p_pa)'

i1=1~, €T +0(px)
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In the second summation of the above equation, if Ay satisfies (13), then since
v € U(p*t,p) and v, € TT0(p®) with 4, # 0, by (14), we can use (12) replacing ~y/
by v+ 71 and obtain

(AN_ | v |2) < \IIN7q)’Y:j > = Zvijo < \IjNv(b'y,i >
=1

m
+ Y S vt <UN, Pyiityin >
21J7Y1 Y2172 An— + 2
i1,92=1 1,72 €0 +0(pe) (Anv=ly+m )

+0(p).

Again, in the second summation of the above equation, isolating the terms with
the coefficient < Wy, ®,; >, that is, y1 +72 =0, 11 #0foreach i =1,2,...,m, we
get

(AN* |7 ?) < N, @5 > (15)

O Vi
= Zvljo <Upn, @y >+ Z > (ANi]riY rx 7 < Uy, Dy, >
i1,0=1 4, wZer+0<pa)

y1+v2=

- Viyjyy Vigi B
* Z Z v 5 < YN, Poyygmnin > +O(p7 7). (16)
i1,i2=1 1,72 €00 (p) (ANi | Y + 71 ‘ )

Writing this equation for j = 1,2,...,m and i = 1,2,...,m, after the first step
of the iteration we obtain the following system:

[(An— 17 ) = VoJA(N,7) = STA(N,7) + R + O(p™"),
where I is an m x m identity matrix, Vo = [ V(x)dz, which is again an m x m

matrix, A(N,~y) is the m x 1 vector
A(N7’Y) = (< \I]N7(b'y7l >, < \I]N7(b"/72 >, < \IjNa(I)V,m >)7

S = (s};) is an m x m matrix whose entries are

m

Vi1jv1 Vidive ..
= E E , Ji=12....m,
(Av=I|v+m[?)

11=1 ~1,72e0t0(px)
Y1+72=0

and R! = (rjl) is the vector whose components are

Viy jy1 Vigirye o
Z Z (AN— |")/—|—f>/1 |2) <\IJN7(I)’Y+’Y1+’Y2,2'2 > j7=12,...,m
i1,i2=1 1,72 €T+0(pe)

Now, we continue to iterate equation (15). In the third summation of equation
(15), if Ay satisfies (13), then since v € U(p®',p) and 71 + 72 € ['T0(2p*) with
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v1 + 72 # 0, by (14) we can use (12) replacing 4/, for this time, by v 4+ v1 + 72 and
obtain

(AN* v ?) < Un, @, >

Viyjyi Viirye
*ZUUO<\PN;(I>'}11>+Z Z — 5 <\IJN,<I>%Z'>
i1,0=1 ~q, 7261‘+0(p°‘) (AN | Ttm | )

Yy1+v2=

Uiy jyi Viginye Viginys
- <UN, Py vy 24303 >
Z 71272 An— |7+ P)YAn— 7+ +72 |2 YHy1+y2+8,18
13 173€F+0(P°‘)
+0(p~"%).

Isolating the terms with the coefficient < ¥, ®,; > foreach i =1,2,...,m, we get

(AN— v ]?) < Uy, @, >

Vi1 jv1 Vidaye
—ZUMO<‘IIN,(I)71>+ Z 3 ey < U P>

11,8=1 ~q, 7261“‘*'0(/)”)
Y1t+v2=

m
Vi jy1 Vigiiya Viioys
+ <Upn,P, ;>
) > Anv—T7+71 A= [v+m + 72 ?) o

11,82,8=1 ~1,72,73€0T0(p)
Y1+v2+v3=0

Viyjy1 Vigiaya Visinys
+ <Uny,P o >
Z 712;2 Av=1[7v+7 P)Av=[v+71+72?) IR
13 " yzert0(pa)
+O(p “).
Again, if we write this equation for j = 1,2,...,m and ¢ = 1,2,...,m, after the

second step of the iteration we obtain the following system:
[(An— [~ ) = VoJA(N,7) = (S' + S*)A(N,7) + R* + O(p™"?),
where this time S? = (531) is an m X m matrix whose entries are

zm: Z Uiy jy1 Vigiyye Vidavs
An—=[v+1 P)AN=[7v+7 +121?)]

11,82=1 ~v1,72,73€0T0(p®)
y1+v2+v3=0

j,i=1,2,...,mand R?> = (7“12) is an m x 1 vector whose components are
- v v v
2 11571 Vizi1y2 Yigiays
r;= <\I/N q>fy+»y 42+ ,i>
D D R TG [(Te R ey i

1.2,
ig=1 ~y3elt0(px)

i=1,2,....m
If we continue to iterate in this manner after the p;st step where p; = [p—;l] and
[-] is the integer function, we obtain the following system:

[(An— 17 [ = VlA ZS’C (N,7) + RP* + O(p™"®), (17)
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SH(AN) = (shi(AN)), k=12,....p1, ji=12...,m, (18)

Sk<AN) = E E Uilj'h %‘21‘172 e vii’“w“rl

7 o AN+ B) (A= v+ )
7 :’1 P VL Y2y Ye+1€T (p™)
k yit+y2+ o Fvp41=0

RPY = (rf"), j=1,2,...,m,

and

Tp § § : Y v, v N
1 U’ilj 1 v Uil’l 1ip1 p1+1 < N> 14y 1 1,4 141 >
15825005 Y1525 ( N |’Y 71 ‘ )( N | Y 71+"'+’7p1 | )

ipy+1=17p, +1€0F0(p®)

If Ay satisfies (13), then since v € U(p®*,p) and v1 + 2 + -+ - + v € [T0(kp?)
with v1 + 2+ -+ + v # 0, by (14) and (7),

|55 (An)|
- |Vingy |[iginye |[Viginys | - - - [Viiiyis |
< 11771 122172 1322731 " VU EYE+1
= 2 2 (An=|v+7n ) [(Av=[v+71 4+ 7% [?)

01,82, =1 v1,72,. 0 Y41 €0TO(p™)
yit+y2+ o +vEp 41 =0

1 m
< (Qpal)k Z Milj io%1 ¢ Miikv

11,82,y t =1

foreach k =1,2,...,p1,%,5=1,2,...,m. Thus

P1
S AN) = O(p ), Vk=1,2,....p = Y S =0(p""). (20)
k=1

Similarly,
Iyl < i Z [ivjnn |-+ 13 ripy vy e || <N Pty i 1 > |
J _1:1,1'2,_,_, V12 |(AN_ |’Y+*71 |2)|‘(AN— |'y—|—fyl++,yp1 |2)|
ip1+1:1 pr1+1er‘+0(pa)
1 m
S W Z MileiQil e MiP1+1iP1a
11,82, 0py +1=1
that is,

RP1 = O(p*plal). (21)

Note that, in order to obtain (20), we have only used the assumption that Ay
satisfies (13), that is, Ay € J where J = [|7]* — 1p**,|7|? + 3p™]. Hence we may
write

> Ska)=0(p~), Vael. (22)
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Similarly, (17) holds for Ay € J.

Note that, since we have chosen p; = [1’%1], we have the obvious inequalities
d+20)(d—1
P> g, piag >pa, p> % (23)

by definitions of «, aq, I and p.
For any Ay and a € J, using (21) and inequalities (23) in (17), we have

[D(An,7) = S(a, pr)]A(N,7) = O(p~"), (24)

P1
where D(Ayn,7) = (Ay — [4/2)I — Vo, S(a,p1) = Y. S*(a). We note that since V is
k=1

symmetric, Vy and S(a,p;) are symmetric real valued matrices, hence
D(An,7v) — S(a,p1) is a symmetric real valued matrix.

We denote the eigenvalues of Vj, counted with multiplicity, and the corresponding
orthonormal eigenvectors by A\; < Ay < --- < A\, and wy,wo,...,wn, respectively.
Thus

Vows = Awi,  w; - wj; = 0y,

where ” -7 denotes the inner product in R™.
We let 5; = 8;(An, 7, a) denote an eigenvalue of the matrix D(Ay,~y) — S(a,p1)
and f; = fi(An,7,a) its corresponding normalized eigenvector. That is,

[D(An,7) = S(a,p)lfi = Bifi, (25)
where fzf] 26,']*, i,j = 1,2,...,m.

Lemma 1. Let | v |? be a non-resonance eigenvalue of the operator L(0) with
| |~ p.

(a) Let 3; be an eigenvalue of the matriz D(An,v)—S(a,p1) and fi=(fi,,-.., fi,.)
its corresponding normalized eigenvector. Then there exists an integer N = N; such
that Ay satisfies (13) and

—(d—1)
| A(N,v) - fi|>c3p™ 2 . (26)

(b) Let Ay be an eigenvalue of the operator L(V') satisfying inequality (13). Then
there exists an eigenfunction ®. ;(x) of the operator L(0) such that

< @i Uy >[> cap 7 (27)
holds.

Proof. (a): We use a result from perturbation theory which states that the Nth
eigenvalue of the operator L(V) lies in the M-neighborhood of the Nth eigenvalue
of the operator L(0). Let the Nth eigenvalues of L(V) and L(0) be Ay and |~ |?,
respectively. Then there is an integer N such that | Ay— | v [2[< 2p°1.
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On the other hand, since L(V) is a self adjoint operator, the eigenfunctions
{Un(2)}3_; of L(V) form an orthonormal basis for L7*(Q). By Parseval’s relation,
we have

1D £y |17 = > <D fii®a, On [
=1

NiAn—h2l<ipe =1
m
2
+ > <D fi @y U > (28)
N:AN=|y[2[25p> =1

Now, we estimate the last expression in (28). By using the Cauchy-Schwarz
inequality and (9), we get

> <D iy, U >

N:|AN—"7‘2‘Z%PO‘1 Jj=1

= > 1Y fij < @y O >

N:AN—|7[2[>Fp1 =1

m m
< > D o1 i P I< Un, @0y >P7]
j=1

N:|ANn=|y[2[Z5p>1 5=1

> S lpertlt
Anv— 2|2
N3|AN—|7|2|Z%p‘¥1 j=1 | N | Yy | ‘
1 m
< (57 3 3 < Uy, VD, >

N
1 o
< (oY Ve, |
j=1
from which together with (7) we obtain
> 1< £ Py, Un >P= 0(p>).
NilAw-hP2dom 551

It follows from the last equation and (28) that

m

> <D fii®e, O > > | A(N,7) - fi |?

N:An=|y[2<gp>r =1 N:|An—|7y[2[<5p

=1-0(p7*™). (29)

On the other hand, if a ~ p, then the number of v € g satisfying || v |? —a® |[< 1 is
less than c5p?~!. Therefore, the number of eigenvalues of L(0) lying in (a?—1,a?+1)
is less than cgp?~!. By this result and the result of perturbation theory, the number
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of eigenvalues Ay of L(V) in the interval [| v [2 —3$p®,| v |? +3p™] is less than
c7p?~t. Thus

1-0(p~) = > | AN, y) - fi P<erp®™ AN ) - fi 2 (30)
NilAw—hl2I<}po

from which we get (26).
(b): Since L(0) is a self adjoint operator, the set of eigenfunctions

{(I"y,i(x)}yeg,i:1,2,...,m
of L(0) forms an orthonormal basis for L7'(Q). By Parseval’s relation, we have

RZT A DR I R 70 WP

Yl AN —|v[2[<Fp1 i=1
m
2
+ > Dol Uy, @y > (31)
AN =72 = 5 po1 =1

We estimate the last expression in (31). Hence for a fixed i = 1,2, ..., m, using (9)
together with (7) we get

m
Z Z|< \I/N,‘I)%i >|2
i AN —|v[2[Z 5 p01 =1
Z i < UN, VO, ; >|?
| Anv—1[v [?]?

VAN =722 5 p1 i=1

m

1 @\ —2 2
< (50™) > S < VI, @, >

AN =722 5 p1 =1

oo
< (50™) 2V |7, (32)

that is,
m
Z Z ‘< Uy, Py, >|2: O(piQal).
Yl AN —|v[2[2 §por =1

From the last equality and (31) we obtain

Z i |< \IJN,CI),M >|2: 1— O(piQal),

AN =|v[2|<gpo1 1=1

Arguing as in the proof of part(a) we get

m
1-0(p~*") = > D < UN, 0y >P< egpt < Uy, By >
AN =y < 5o i=1

from which (27) follows. O
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Theorem 1. Let | v |? be a non-resonance eigenvalue of the operator L(0) with
[ |~ p-

(a) For each eigenvalue \; of the matriz Vo, there exists an eigenvalue Ay of the
operator L(V) satisfying

An =72+ +O0(p). (33)

(b) For each eigenvalue An of the operator L(V') satisfying (13), there exists an
eigenvalue \; of the matriz Vo satisfying (33).

Proof. (a): By Lemma(la), there exists an eigenvalue Ay of the operator L(V)
satisfying (13), that is, Ay € J and (26) hold. Thus we consider equation (24) for
a = Ay, that is,

[D(An,7) = S(An,p1)]A(N,7v) = O(p~P?).

Let 3; be an eigenvalue of the matrix D(Ax,v) —S(An,p1) and f; its corresponding
normalized eigenvector. Multiplying both sides of the above equation by f;, we
obtain
BIA(N, %) - ] = O(p72).
Using inequality (26) in the above equation, we get
d—1

Bi = O(p~ =500, (34)

Since D(An,~) and S(Ayn,p1) are symmetric real valued matrices, by a well known
result in matrix theory (see [13]), |8 — (An— | v |* —=Xi)| < |IS(An, p1)]|, which
together with (22) implies that

Bi=An—17 " =Xi+O0(p ™). (35)

Hence, choosing p > %=1 + 1 and using (35) and (34), we get the result.

(b): By Lemma(1b), there exists ®, ;(x) satisfying (27) from which we have

—(d—1)
[AN I > cop™ 2. (36)
Now, we consider equation (24) for these (N,~y) pairs:

[(An— [~ [T = Vo]A(N,~) = S(An,p1)A(N,7) + O(p~%).

Applying m[(AN_ | v |?)I —Vp] ! to both sides of the above equation, taking

the norm of both sides, and using (36), we obtain

P1
_ _ (por_ =D
L Ax— 1y P = Vol Y S* I+ A= 1y )T = Vol HI[oGp~ P77 ].
k=1
By estimation (20), we get
]. d—1
S max o [0(p) + O )]

i=1,2,.m [Ay— |7 |2 =\
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. d—1 .
Choosing p > 5= + 1, we obtain

min . IAN— |7 > =Xi] < crop™,

i=1,2,...,

where the minimum is taken over all eigenvalues of the matrix V from which we
obtain the result. O

Now, we define the following m x m matrices:
F():Oa Flzsl(u’y,s)a F]:S(:LL’Y,9+||F]—1”7])7 jz2a (37)
where ji, s =| v |* ;5. Then we have

1]l = O(p™™) (38)

forall j = 1,2,....p— ¢, ¢ = [£1] + 1. Indeed, since Fy = 0, |[Fy|| = 0 and if

20

we assume that |[F;_i|| = O(p™ "), then since p s + [|Fj_1]| € J, by (22), we have
1]l = O(p™). 4
By (38), we have fi,s + [[Fj—1] + O(p™7*) € J. Thus substituting
a = fiys + ||Fj-1]| + O(p~7) into S(a,p1) in (24), we get
[D(AN, ) = Sy, + [ Fj—1]l + O(p™7), p1)]A(N, 7) = O(p77). (39)

Adding and subtracting the term F;A(N,v) = S(py,s + [|Fj—1ll,7)A(N, ) into the
left-hand side of equation (39), we obtain

[D(An,7) = F;]A(N, v) = E;A(N, ) = O(p™"%), (40)
where
Ej = [S(iy,s + | Fjall + O(p771), 5) = S(pay,s + |1 Fi—a s 5)]

(D S (s + 11+ O(p770)).

k=j+1

By (20), we have

P1 ) ‘

D7 (s + [IFjoall + O(p77)) = O(p T+, (41)

k=j+1
If we prove that
19Gtrs + IFs—1ll 4+ O(p9), ) = S(jay.s + [ Fyall )]l = O(p~G+00),  (42)

then it follows from (41) and (42) that

1Ej]| = O(p~UFDen). (43)
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Now, we prove (42). Since py s + ||[Fj—1]| + O(p™7**) € J and py s + ||Fj—1l| € J
satisfy (13), by (14), we have

s 1
ty,s FIIF—all +O(p ) = | v+ + -+ P | > 5

1
lys + 1 Fjoall= v +7 447 P> ST (44)

J
for all 7, € T(p®) and ¢t = 1,2,...,p;. By its definition, S(a,j) = Y. S¥(a). Thus
k=1

we first calculate the order of the first term of the summation in (45) To do this,
we consider each entry of this term, and use (44) and (7):

|13 (1,5 + 1Fj=1 [+ O(p77)) = 833 (10,s + | Fj-1])]

m
< Z Z |Uill“/1”vii172|0(p_]al)

11=1 ~1,72€rt0(p®)

71 +72=0
1
Nty + IE -+ O 7%0)— [+ 71 P (s + 1Ejall— |7+ P)]
< Cllp_(j+2)o‘1,
for each [, = 1,2,...,m which implies

15 (1.5 + 1 Ejmrll 4+ O(p79%1)) = 8 (g5 + | Ej-al) || = O(p~UHD),

If we consider each entry of the second term of the summation in (42), then again
by (44) and (7) we see

|7 (10,5 + [1F-1[l + O(p™7)) = 835 (14,5 + | Fj-1l])]

m
< Z Z |Ui1l’Yl||Ui2i172‘|U’ii273|0(p7jal)

11,82=1 ~v1,v2,73€0+0(p®)
Y1 +v2+v3=0

1
(@' +0(p=71 )= y+m )@ +0(p~7* )= [ y+m+72 )@= [ v+mn+72 7))
1
+ : ;
@+ )7+ PI@—T7 + 3 PY@ + 0o 7)1+ 71 + 3 Pl
< epgp” U,

<

for each 1,7 =1,2,...,m, where we use the notation a’ = p, s + || Fj_1] for the sake
of simplicity, which implies

152 (1,6 + 1 Ej—1 ]l + O(p77%1)) = 82 (pans + |1 )| = O(p~0FDe).
Therefore, by direct calculations, it can be easily seen that
15* (1,5 + 1l + Op77%%)) = 8% (pans + | FjalD]| = O(p~ 0+

from which we obtain (42).
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Theorem 2. Let | v |? be a non-resonance eigenvalue of the operator L(0) with
|7 |~ p.

(a) For any eigenvalue A;, i = 1,2,...,m of the matriz Vy, there exits an eigen-
value Ay of the operator L(V') satisfying the following formula:

AN = iy i + | Fe—a]| + O(p~For), (45)

where p; = |v1* + Ni, Fi—1 is given by (37), k=1,2,...,p—c.
(b) For any eigenvalue Ay of the operator L(V) satisfying (13), there is an
eigenvalue \; of the matriz Vy satisfying (45).

Proof. (a): By Lemma(la), there exist Ay and Uy (z) satisfying (13) and (26),
respectively. We prove the theorem by induction. For k& = 1, we obtain the result
by Theorem(la).

Now, assume that for k = j — 1 formula (45) is true, that is,

Ay = pyi + | Fiall + 0(p77). (46)

Let 3; be an eigenvalue of the matrix D(An, ) — Sty i + || Fj—1]| +O(p77%), p1). If
we multiply both sides of equation (39) by its corresponding normalized eigenvector
fi, and use (26), then we obtain

i = O(p~ =) (47)

On the other hand, the matrix D(An,v) — S(py,; + [|[Fj—1]l + O(p™721), p1) in (39)
is decomposed as follows

D(AN,7) = S, + | Ej—all + O(p™7%),p1) = D(An,7) — Fj — Ej.
Thus, by (43), (47) and a well known result in matrix theory,
5: = (A = )| < I+ O(p 00,

where 1 < j+ 1 < p— ¢, we get the proof of (45).

(b): Again we prove this part of the theorem by induction. For j = 1, we
obtain the result by Theorem (1b).
Now, assume that for kK = j — 1 formula (45) is true. To prove (45) for k = j, we use
equation (40). By using the definition of the matrix D(Ay,~) and (40), we have

[(An— |~ [’)I = D;]A(N,~) = E;A(N,y) + O(p~"*),

1
AN, )l
the above equation, taking the norm of both sides, and using estimations (36) and
(43), we obtain

where D; = Vi + F;. Applying [(AN— |7 |*)I — Dj]™* to both sides of

1< [(An— [y PI=D3] MO0~V 4 [[(Av— | 7 )T =Dy]H[[0(p~ )]

< max ——[O(p~ DY),
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or
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min | An— |7 [2 =X() |€ crgp™ 0D,

=1,2,...,

where the minimum is taken over all eigenvalues Xz (4) of the matrix Dj, 1 < j +
1 < p—c. By the last inequality and the well known result in matrix theory,
[A:(4) — Ai| < ||Fj||, we obtain the result. O
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