Operation approach to *β***-open sets and applications**

Sanjay Tahiliani¹,*[∗]*

¹ *Department of Mathematics, Delhi University, Delhi-110 007, India*

Received July 25, 2008; accepted March 14, 2011

Abstract. In this paper, we introduce the concept of an operation γ on a family of β -open sets denoted by $\beta O(X)$ in a topological space (X, τ) . Using the operation γ on $\beta O(X)$, we introduce the concept of β - γ -open sets, and investigate the related topological properties. We also introduce the notion of β - γ - T_i spaces ($i = 0, 1/2, 1, 2$) and study some topological properties on them. Further, we introduce β -(γ , b)-continuous maps and investigate basic properties. Finally, we investigate a general operation approach to *β*-closed graphs of mappings.

AMS subject classifications: Primary 54C08, 54D10

Key words: *β*-*γ*-open set, *β*-*γ*-closure, *βO*(*X*)_{*γ*}-closure, *β*-(*γ*, *b*)-continuous

1. Introduction

Throughout this paper, (X, τ) and (Y, σ) represent non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. The closure and interior of $A \subseteq X$ will be denoted by $Cl(A)$ and $Int(A)$, respectively. Kasahara [5] defined the concept of an operation on a topological space and introduced the concept of α -closed graphs of functions. Further, Monsef et al. [1] initiated the study of *β*-open sets and *β*-continuity in a topological space and Janković [4] defined the concept of an α -closed set and investigated the functions on α -closed graphs. Ogata [8] called the operation *α* (respectively, *α*-closed set) as a *γ*-operation (respectively *γ*-closed sets) and introduced the notion of *τ^γ* which is the collection of all *γ*-open sets in a topological space (X, τ) . Morever, he introduced the concept of γ -*T_i* (i = 0, 1/2, 1, 2) spaces and characterized γ -*T*_{*i*} spaces by the notion of γ-closed sets or *γ*-open sets.

The family of all β -open sets of *X* is denoted by $\beta O(X)$. In this paper, Section 2 is the introduction of the concept of the family $\beta O(X)_{\gamma}$ of all β -*γ*-open sets by using the operation γ on $\beta O(X)$ in (X, τ) . Further, we introduce the concept of β *γ*-closure, $βO(X)$ _γ-closure and study their relationships. In Section 3, we introduce the concept of β -*γ*-*T*_{*i*} (*i* = 0*,* 1/2*,* 1*,* 2) spaces and characterize β -*γ*-*T_i* spaces by the notion *β*-*γ*-closed or *β*-*γ*-open sets. In Section 4, we define a new class of maps called β -(γ , b)-continuous maps and study some of their properties. In Section 5, we investigate a general operation approach of *β*-closed graphs of mappings.

http://www.mathos.hr/mc *C* 2011 Department of Mathematics, University of Osijek

*[∗]*Corresponding author. *Email address:* sanjaytahiliani@yahoo.com (S. Tahiliani)

2. *β***-***γ***-open sets**

Definition 1. Let (X, τ) be a topological space. A subset A of space X will be called *β-open [1] if A ⊆ Cl*(*Int*(*Cl*(*A*)))*. The complement of a β-open set is said to be β-closed [1]. The intersection of all β-closed sets containing U, the subset of X, is known as a β-closure [3] of U and it is denoted by βCl*(*U*)*. It is obvious by definition that* $U \subseteq \beta Cl(U)$ *.*

Definition 2. An operation γ [4] on the topology τ is a mapping $\gamma : \tau \to P(X)$ *from* τ *to the power set* $P(X)$ *of* X *such that* $V \subseteq V^{\gamma}$ *for each* $V \in \tau$ *, where* V^{γ} *denotes the value of* γ *at V*.

Definition 3. *(i) A subset A of a topological space is called a γ-open set [8] of* (X, τ) *if for each* $x \in A$ *there exists an open set U such that* $x \in U$ *and* $U^{\gamma} \subseteq A$ *. The complement of a γ-open set is said to be γ-closed.*

(ii) The point $x \in X$ *is in the* γ -closure [4] of a set $A \subseteq X$ *if* $U^{\gamma} \cap A \neq \emptyset$ for *each open set U of x.* The γ -closure of a set *A is denoted by* $Cl_{\gamma}(A)$ *. Also* τ_{γ} -*Cl*(*A*) = $\bigcap \{F : A \subseteq F, X \setminus F \in \tau_{\gamma}\}$, where τ_{γ} denotes the set of all γ -open sets in (X, τ) .

Definition 4. An operation γ on $\beta O(X)$ is a mapping $\gamma : \beta O(X) \rightarrow P(X)$ from *βO*(*X*) *to the power set* $P(X)$ *of X such that* $V \subseteq V^{\gamma}$ *for each* $V \in \beta O(X)$ *and* V^{γ} *denotes the value of* γ *at* V *.*

Definition 5. Let (X, τ) be a topological space and γ an operation on $\beta O(X)$. Then *a subset A of X is said to be* β - γ -*open if for each* $x \in A$ *, there exists a* β -*open set U* such that $x \in U$ and $U^{\gamma} \subseteq A$ *. Also* $\beta O(X)_{\gamma}$ denotes the family of β - γ -open sets *in X.*

The following is an example:

Example 1. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and γ be an operation on $\beta O(X)$ such that $A^{\gamma} = A$, if $b \in A$; $A^{\gamma} = Cl(A)$ if $b \notin A$. Then $\beta O(X)_{\gamma} =$ *{∅, X, {a, c}, {b, c}, {b}, {a, b}}.*

Theorem 1. Let γ be an operation on $\beta O(X)$. Then the following statements hold:

- *(i) Every* β - γ -open set of (X, τ) *is* β -open in (X, τ) *, i.e,* $\beta O(X)_{\gamma} \subseteq \beta O(X)$ *.*
- *(ii) Every* γ -open set of (X, τ) *is* β - γ -open.
- *(iii) Let* $\{A_{\alpha}\}_{{\alpha \in J}}$ *be a collection of* β *-* γ *-open sets in* (X, τ) *.*

Then $\bigcup \{A_\alpha : \alpha \in J\}$ *is also a* β *-γ-open set in* (X, τ) *.*

Proof. (i): Let $A \in \beta O(X)_{\gamma}$. Let $x \in A$. Then there exists a β -open set *U* such that $x \in U \subseteq U^{\gamma} \subseteq A$. As *U* is a *β*-open set, this implies that $x \in U \subseteq Cl(Int(ClU))) \subseteq$ $Cl(int(Cl(A)))$. Thus we show that $A \subseteq Cl(int(Cl(A)))$ and hence $A \in \beta O(X)$. Therefore $\beta O(X)_{\gamma} \subseteq \beta O(X)$.

(ii): Let *A* be a *γ*-open set in (X, τ) and $x \in A$. There exists an open set *U* such that $x \in U \subseteq U^{\gamma} \subseteq A$. Since every open set is β -open, this implies that *A* is a *β*-*γ*-open set.

(iii): If $x \in \bigcup \{A_\alpha : \alpha \in J\}$, then $x \in A_\alpha$ for some $\alpha \in J$. Since A_α is a β - γ -open set, so there exists a *β*-open set *U* such that $U^{\gamma} \subseteq A_{\alpha} \subseteq \bigcup \{A_{\alpha} : \alpha \in J\}$. Therefore, $\bigcup \{A_\alpha : \alpha \in J\}$ is also a β -*γ*-open set in (X, τ) .

Remark 1. *(i) The converse of (i) and (ii) of the above theorem is not true. Let* $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}\$. Let γ be the operation on $\beta O(X)$ such that $A^{\gamma} = A$ if $b \in A$; $A^{\gamma} = Cl(A)$ if $b \notin A$. Then $\{a\}$ is a β -open but not a β - γ -open *set.*

(ii) Consider Example 1. $\{a, c\}$ *is a* β *-* γ -*open set but not a* γ -*open set.*

(iii) In general, the intersection of two β-γ-open sets need not be a β-γ-open set. Consider Example 1. The sets $A = \{a, c\}$ *and* $B = \{b, c\}$ *are* β - γ -open sets in (X, τ) . *but* $A \cap B = \{c\}$ *is not a* β *-* γ *-open set in* (X, τ) *.*

Definition 6. *(i)* A space (X, τ) is said to be a β - γ -regular space if for each $x \in X$ *and for each* β -*open set* V *containing* x *, there exists a* β -*open set* U *containing* x *such that* $U^{\gamma} \subseteq V$ *.*

(ii) Let γ be an operation on $\beta O(X)$. Then γ is said to be β -regular if for each $x \in X$ *and for every pair of* β *-open sets U and V containing x, there exists* a β *-open set W such that* $x \in W$ *and* $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$ *.*

Theorem 2. *Let* (X, τ) *be a topological space and* γ *an operation on* $\beta O(X)$ *. Then the following statements are equivalent:*

- (1) $\beta O(X) = \beta O(X)_{\gamma}$.
- *(2)* (*X, τ*) *is a β-γ-regular space.*
- *(3)* For every $x \in X$ and every β-open set U of $(X, τ)$ containing x there exists a β - γ -open set W of (X, τ) such that $x \in W$ and $W \subseteq U$.

Proof. (1) \Rightarrow (2): Let $x \in X$ and let *V* be a *β*-open set containing *x*. Then by assumption, *V* is a β - γ -open set. This implies that for each $x \in V$, there exists a *β*-*γ*-open set *U* such that $U^{\gamma} \subseteq V$. Therefore (X, τ) is a *β*-*γ*-regular space.

(2) \Rightarrow (3): Let $x \in X$ and let *U* be a β -open set containing *x*. Then by (2), there is a *β*-open set *W* containing *x* and $W \subseteq W^\gamma \subseteq U$. Applying (2) to set *W* shows that *W* is β - γ -open. Hence *W* is a β - γ -open set containing *x* such that $W \subseteq U$.

(3)*⇒*(1): By (3) and Theorem 1 (iii), it follows that every *β*-open set is *β*-*γ*-open, i.e., $\beta O(X) \subseteq \beta O(X)_{\gamma}$. Also from Theorem 1 (i), $\beta O(X)_{\gamma} \subseteq \beta O(X)$. Hence we have the result.

Theorem 3. Let γ be a β -regular operation on $\beta O(X)$. Then the following state*ments hold:*

- *(i) If A* and *B* are β - γ -open sets in (X, τ) , then $A \cap B$ is also a β - γ -open set in (X, τ) .
- *(ii)* $\beta O(X)_{\gamma}$ *forms a topology on* X.

Proof. (i): Let $x \in A \cap B$. Since *A* and *B* are β - γ -open sets, there exist β -open sets *U* and *V* such that $x \in U, V$ and $U^{\gamma} \subseteq A$ and $V^{\gamma} \subseteq B$. By β -regularity of γ , there exists a β -open set *W* containing *x* such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma} \subseteq A \cap B$. Therefore $A \cap B$ is a β - γ -open set.

(ii): It follows by (i) above and Theorem 1 (iii). \Box

Definition 7. Let γ be an operation on $\beta O(X)$. The set A is said to be β - γ -closed $if X \setminus A$ *is* β - γ -open.

Definition 8. Let γ be an operation on $\beta O(X)$. The point $x \in X$ is said to be β - γ -closure of the set A if $U^{\gamma} \cap A \neq \emptyset$ for each β -open set U containing x. $\beta Cl_{\gamma}(A)$ *denotes the β-γ-closure of a set A.*

Definition 9. Let γ be an operation on $\beta O(X)$. Then $\beta O(X)_{\gamma}$ -Cl(A) is defined as *the intersection of all β-γ-closed sets containing A.*

Theorem 4. Let (X, τ) be a topological space and A a subset of X. Let γ be an *operation on* $\beta O(X)$ *. Then for each point* $y \in X, y \in \beta O(X)_{\gamma}$ *-Cl(A) if and only if* $V \cap A \neq \emptyset$ *for every* $V \in \beta O(X)_{\gamma}$ *such that* $y \in V$ *.*

Proof. Let $E = \{y \in X | (V \cap A) \neq \emptyset \text{ for every } V \in \beta O(X)_{\gamma} \text{ and } y \in V\}$. To prove the theorem, it is enough to show that $E = \beta O(X)_{\gamma}$ -*Cl*(*A*). Let $x \notin E$. Then there exists a $V \in \beta O(X)_{\gamma}$ such that $V \cap A = \emptyset$. This implies that $X \setminus V$ is $\beta_{\gamma} \sim$ closed and $A \subseteq X \backslash V$. Hence $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq X \backslash V$. It follows that $x \notin \beta O(X)_{\gamma}$ - $Cl(A)$. Thus $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq E$. Conversely, let $x \notin \beta O(X)_{\gamma}$ - $Cl(A)$. Then there exists a β - γ closed set *F* such that $A \subseteq F$ and $x \notin F$. Then we have $x \in X \setminus F$, $X \setminus F \in \beta O(X)_{\gamma}$ and $(X \setminus F) \cap A = \emptyset$. This implies that $x \notin E$. Hence $E \subseteq \beta O(X)_{\gamma}$ -Cl(A).

Theorem 5. Let (X, τ) be a topological space, A and B subsets of X and γ and *operation on βO*(*X*)*. Then the following relations holds:*

- *(i) The set* $\beta O(X)_{\gamma}$ *-Cl*(*A*) *is* β *-* γ *-closed and* $A \subseteq \beta O(X)_{\gamma}$ *-Cl*(*A*)*.*
- *(ii) A is* β - γ -closed *if* and only *if* $A = \beta O(X)_{\gamma}$ -Cl(*A*).
- *(iii) If* $A \subseteq B$ *, then* $\beta O(X)_{\gamma}$ *-Cl*(*A*) $\subseteq \beta O(X)_{\gamma}$ *-Cl*(*B*)*.*
- (iv) $(\beta O(X)_{\gamma} Cl(A)) \cup (\beta O(X)_{\gamma} Cl(B)) \subseteq (\beta O(X)_{\gamma} Cl(A \cup B)).$
- (v) If γ is β -regular, then $(\beta O(X)_{\gamma} Cl(A)) \cup (\beta O(X)_{\gamma} Cl(B)) = (\beta O(X)_{\gamma} Cl(A)$ *B*))*.*
- (*vi*) $(\beta O(X)_{\gamma} Cl(A \cap B)) \subseteq (\beta O(X)_{\gamma} Cl(A)) \cap (\beta O(X)_{\gamma} Cl(B)).$
- (vii) $(\beta O(X)_{\gamma}$ - $Cl(\beta O(X)_{\gamma}$ - $Cl(A)) = \beta O(X)_{\gamma}$ - $Cl(A))$.

Proof. (i): It is obvious from Theorem 1 (iii), Definitions 7 and 9.

- (ii): It is clear from (i), Definitions 7, 9.
- (iii): It is obvious from Definition 9.
- (iv), (vi): These proofs are obvious from (iii).

(v): Let $x \notin (\beta O(X)_{\gamma} - Cl(A)) \cup (\beta O(X)_{\gamma} - Cl(B))$. Then there exists two β - γ open sets *U* and *V* containing *x* such that $U \cap A = \emptyset$ and $V \cap B = \emptyset$. By Theorem 3

(i), it is proved that $U \cap V$ is β - γ -open in (X, τ) such that $(U \cap V) \cap (A \cup B) = \emptyset$. Thus we have $x \notin (\beta O(X)_{\gamma}$ - $Cl(A \cup B))$ and hence $\beta O(X)_{\gamma}$ - $Cl(A \cup B) \cup (\beta O(X)_{\gamma}$ - $Cl(A) \subseteq (\beta O(X)_{\gamma}$ - $Cl(B)$). Using (iv), we have the equality.

(vii): From (i), we have $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq \beta O(X)_{\gamma}$ - $Cl(\beta O(X)_{\gamma}$ - $Cl(A))$. For $\beta O(X)_{\gamma}$ -Cl($\beta O(X)_{\gamma}$ -Cl(A)) $\subseteq \beta O(X)_{\gamma}$ -Cl(A), let $x \in \beta O(X)_{\gamma}$ -Cl($\beta O(X)_{\gamma}$ -Cl(A)) and *V* be any β - γ -open set containing *x*. We claim that $V \cap A \neq \emptyset$. Indeed, by Theorem 4, $V \cap (\beta O(X)_{\gamma}$ - $Cl(A)) \neq \emptyset$ and so there exists a point *z* such that $z \in V$ and $z \in \beta O(X)_{\gamma}$ - $Cl(A)$. Moreover, by Theorem 4, for a point *z*, it is shown that $V \cap A \neq \emptyset$. Thus, we have that for any point $x \in V, V \cap A \neq \emptyset$ and so $x \in A$ $\beta O(X)_{\gamma}$ -*Cl*(*A*). Hence we conclude that $\beta O(X)_{\gamma}$ -*Cl*($\beta O(X)_{\gamma}$ -*Cl*(*A*)) $\subseteq \beta O(X)_{\gamma}$ -*Cl*(*A*). Hence we have $\beta O(X)_{\gamma}$ -*Cl*($\beta O(X)_{\gamma}$ -*Cl*(*A*)) = $\beta O(X)_{\gamma}$ -*Cl*(*A*).

Theorem 6. Let γ : $\beta O(X) \rightarrow P(X)$ be an operation on $\beta O(X)$ and A and B *subsets of X. Then the following relations hold:*

- *(i)* $\beta Cl_{\gamma}(A)$ *is a* β *-closed set in* (X, τ) *and* $A \subseteq \beta Cl_{\gamma}(A)$ *.*
- *(ii) A is* β - γ -closed *in* (X, τ) *if and only if* $A = \beta Cl_{\gamma}(A)$ *holds.*
- *(iii) If* (X, τ) *is* β - γ -regular, then $\beta Cl_{\gamma}(A) = \beta Cl(A)$ *.*
- *(iv) If* $A \subseteq B$ *, then* $\beta Cl_{\gamma}(A) \subseteq \beta Cl_{\gamma}(B)$ *.*
- *(v)* $\beta Cl_{\gamma}(A) \cup \beta Cl_{\gamma}(B) \subseteq \beta Cl_{\gamma}(A \cup B)$ *holds for any subsets A and B of X.*
- *(vi) Let* γ *be a* β *-regular operation on* $\beta O(X)$ *, then* $\beta Cl_{\gamma}(A \cup B) = \beta Cl_{\gamma}(A) \cup$ $\beta Cl_{\gamma}(B)$ *holds for any subsets A and B of X.*
- *(vii) βClγ*(*A ∩ B*) *⊆ βClγ*(*A*) *∩ βClγ*(*B*) *holds.*

(viii) If γ is β -open, then $\beta Cl_{\gamma}(A) = \beta O(X)_{\gamma}$ -Cl(A) and $\beta Cl_{\gamma}(\beta Cl_{\gamma}(A)) = \beta Cl_{\gamma}(A)$.

Proof. (i): Let $x \in \beta Cl(\beta Cl_{\gamma}(A))$. Then $U \cap \beta Cl_{\gamma}(A) \neq \emptyset$ for every β -open set *U* containing *x*. Let $y \in U \cap \beta Cl_{\gamma}(A)$. Then $y \in U$ and $y \in \beta Cl_{\gamma}(A)$. Since *U* is a *β*-open set containing *y*, this implies $U^{\gamma} \cap A \neq \emptyset$. Thus, $x \in \beta Cl_{\gamma}(A)$. Hence $\beta Cl(\beta Cl_{\gamma}(A)) \subseteq \beta Cl_{\gamma}(A)$. This implies that $\beta Cl_{\gamma}(A)$ is a β -closed set (from Definition 2.1). Also, $A \subseteq \beta Cl_{\gamma}(A)$ is clear by Definition 8.

(ii) (Necessity): Suppose that $X \setminus A$ is β - γ -open in (X, τ) . We claim that $\beta Cl_{\gamma}(A) \subseteq A$. Let $x \notin A$. There exists a β -open set *U* containing *x* such that $U^{\gamma} \subseteq X \setminus A$, i.e., $U^{\gamma} \cap A = \emptyset$. Hence using Definition 8, we have that $x \notin \beta Cl_{\gamma}(A)$ and so $\beta Cl_{\gamma}(A) \subseteq A$. So by (i), it is proved that $A = \beta Cl_{\gamma}(A)$.

(ii) (Sufficiency): Suppose that $A = \beta Cl_{\gamma}(A)$. Let $x \in X \setminus A$. Since $x \notin \beta Cl_{\gamma}(A)$, there exists a β -open set *U* containing *x* such that $U^{\gamma} \cap A = \emptyset$, i.e., $U^{\gamma} \subseteq X \setminus A$, namely $X \setminus A$ is β - γ -open in (X, τ) and so A is β - γ -closed.

(iii): By Definition 8, we have $\beta Cl(A) \subseteq \beta Cl_{\gamma}(A)$. Let $x \notin \beta Cl(A)$. Then, there exists a β -open set *U* containing *x* such that $U \cap A = \emptyset$. Using β - γ -regularity of (X, τ) , there exist a *β*-open set *V* containing *x* such that $V^{\gamma} \subseteq U$ and so $V^{\gamma} \cap A = \emptyset$. Thus we have that $x \notin \beta Cl_{\gamma}(A)$. Therefore we have that $\beta Cl_{\gamma}(A) \subseteq \beta Cl(A)$.

(iv): It is obvious by Definition 8.

(v): It is obvious from (iv).

(vi): It is enough to show that $\beta Cl_{\gamma}(A \cup B) \subseteq \beta Cl_{\gamma}(A) \cup \beta Cl_{\gamma}(B)$. Let $x \notin$ β *Cl_γ*(*A*) \cup β *Cl_γ*(*B*). Then, there exist β -open sets *U* and *V* such that $x \in U, x \in$ $V, U^{\gamma} \cap A = \emptyset$ and $V^{\gamma} \cap B = \emptyset$. Since γ is β -regular, by Definition 6, there exists a *β*-open set *W* containing *x* such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$. Thus we have $W^{\gamma} \cap (A \cup B) \subseteq$ $(U^{\gamma} \cap V^{\gamma}) \cap (A \cup B) \subseteq (U^{\gamma} \cap A) \cup (V^{\gamma} \cap B) = \emptyset$, i.e., $W^{\gamma} \cap (A \cup B) = \emptyset$. Hence $x \notin \beta Cl_{\gamma}(A \cup B)$ and so $\beta Cl_{\gamma}(A \cup B) \subseteq \beta Cl_{\gamma}(A) \cup \beta Cl_{\gamma}(B)$.

(vii): It is obvious by Definition 8.

(viii): By Theorem 5 (i), we have $\beta Cl_{\gamma}(A) \subseteq \beta O(X)_{\gamma}$ - $Cl(A)$. Now we prove that $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq \beta Cl_{\gamma}(A)$. Let $x \notin \beta Cl_{\gamma}(A)$. Then, there exists a β -open set *U* containing *x* such that $U^{\gamma} \cap A = \emptyset$. Since γ is β -open, there exists a β - γ -open set *S* such that $x \in S \subseteq U^{\gamma}$. Therefore $S \cap A = \emptyset$. This implies that $x \notin \beta O(X)_{\gamma}$ -*Cl*(*A*) and so $\beta O(X)_{\gamma}$ - $Cl(A) = \beta Cl_{\gamma}(A)$. Since $\beta O(X)_{\gamma}$ - $Cl(\beta O(X)_{\gamma}$ - $Cl(A)) = \beta O(X)_{\gamma}$ -*Cl*(*A*) (Theorem 5 (vii)). Hence we have that $βCl_γ(βCl_γ(A)) = βCl_γ(A)$.

Remark 2. We cannot remove the assumption of β -regularity of γ in Theorem 6 *(vi). Consider Example 1 and let* γ : $\beta O(X) \rightarrow P(X)$ *be an operation defined by* $\gamma(A) := Cl(A)$ for any $A \in \beta O(X)$. Now $\beta O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\},\$ $\{b,c\}\$ and $\beta O(X)_{\gamma} = \{\emptyset, X, \{b,c\}, \{a,c\}\}\$. Let $A = \{a\}$ and $B = \{b\}$. Then, $\beta Cl_{\gamma}(A\cup B) = X;\beta Cl_{\gamma}(A) = \{a\};\beta Cl_{\gamma}(B) = \{b\}.$ The operation γ is not β -regular.

Theorem 7. *For any subset A of a topological space* (X, τ) *and any operation* γ : $\beta O(X) \rightarrow P(X)$, the following inclusions hold.

- *(i)* $\beta Cl(A) \subseteq \beta Cl_{\gamma}(A) \subseteq \beta O(X)_{\gamma}$ *-Cl*(*A*) ⊆ *τ*_{γ}-*Cl*(*A*)*.*
- $f(i)$ $\beta Cl(A) \subseteq Cl(A) \subseteq Cl_{\gamma}(A) \subseteq \tau_{\gamma} \cdot Cl(A)$.

Proof. (i): The implication $\beta Cl(A) \subseteq \beta Cl_{\gamma}(A)$ is obtained by Definitions 2 and 8. The implication $\beta Cl_{\gamma}(A) \subseteq \beta O(X)_{\gamma}$ - $Cl(A)$ is obtained from Definitions 5, 8 and 9. The implication $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq \tau_{\gamma}$ - $Cl(A)$ is obtained from Definition 9.

(ii): The implication $\beta Cl(A) \subseteq Cl(A)$ is trivial, the implication $Cl(A) \subseteq Cl_{\gamma}(A)$ is obtained by Definition 3. The implication $Cl_{\gamma}(A) \subseteq \tau_{\gamma}$ - $Cl(A)$ is obtained from Definitions 3 and 9.

Theorem 8. Let (X, τ) be a topological space, A a subset of X and γ an operation *on βO*(*X*)*. Then the following are equivalent.*

- *(1) A is β-γ-open.*
- *(2)* $βCl_γ(X \setminus A) = X \setminus A$.
- *(3)* $βO(X)_{γ}$ *-Cl*(*X* \setminus *A*) = *X* \setminus *A.*
- (4) *X* \setminus *A is* β - γ -closed.
- **Proof**. (1) \Leftrightarrow (2): It is obtained by Theorem 6(ii). (3)*⇔*(4): It is proved by Theorem 5 (ii).
	- (4) \Leftrightarrow (1): It is proved by Definitions 9 and 7. $□$

3. *β***-***γ***-***Tⁱ* **Spaces**

Definition 10. *(i)* A space (X, τ) is called β - γ - T_0 if for any two distinct points $x, y \in X$, there exists a *β*-open set *U* such that either $x \in U$ and $y \notin U^{\gamma}$ or $y \in U$ *and* $x \notin U^{\gamma}$.

(*ii*) *A* space (X, τ) *is called a* β - γ - T'_{0} *if for any two distinct points* $x, y \in X$ *, there exists* β - γ -open set *U* such that either $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$.

Definition 11. *(i).* A space (X, τ) is called β - γ - T_1 if for any two distinct points $x, y \in X$ *, there exist two* β -open sets *U* and *V* containing *x* and *y*, respectively, such *that* $y \notin U^{\gamma}$ *and* $x \notin V^{\gamma}$ *.*

(*ii*) *A* space (X, τ) *is called* $\beta \neg \gamma \neg T_1'$ *if for any two distinct points* $x, y \in X$ *, there exists two* β - γ -open sets *U* and *V* containing *x*, *y* respectively such that $y \notin U$ and $x \notin V$.

Definition 12. *(i)* A space (X, τ) is called β - γ - T_2 if for any two distinct points $x, y \in X$, there exists β -open set U, V such that $x \in U, y \in V$ and $U^{\gamma} \cap V^{\gamma} = \emptyset$. *(ii) A* space (X, τ) *is called* β - γ - T'_{2} *if for any two distinct points* $x, y \in X$ *, there exist* β - γ -open sets *U, V* such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 13. Let γ be an operation on $\beta O(X)$. Then γ is said to be β -open if *for each point* $x \in X$ *and for every open set U containing x, there exists* a β - γ -*open set V such that* $x \in V$ *and* $V \subseteq U^{\gamma}$.

Theorem 9.

- (i) *A* space (X, τ) *is a* β - γ - T'_{0} space if and only if, for every pair $x, y \in X$ with $x \neq y$, $\beta O(X)_{\gamma}$ - $Cl(x) \neq \beta O(X)_{\gamma}$ - $Cl(y)$.
- *(ii)* Let γ be a β -open operation. A space (X, τ) is a β - γ - T_0 space if and only if, *for every pair* $x, y \in X$ *with* $x \neq y$, $\beta Cl_{\gamma}(\lbrace x \rbrace) \neq \beta Cl_{\gamma}(\lbrace y \rbrace)$.
- *(iii)* Let γ be a β -open operation. A space (X, τ) is β - γ - T_0 if and only if it is *β-*γ*-T*^{*l*}₀.

Proof. (i) (Necessity): Let *x* and *y* be any two distinct points of a β - γ - T'_0 space (X, τ) . Then, by definition, we assume that there exists a β - γ -open set *U* such that *x* ∈ *U* and *y* ∉ *U*. Hence *y* ∈ *X* \ *U*. Because *X* \ *U* is a *β*-*γ*-closed set, we have $\beta O(X)_{\gamma}$ -Cl({y}) $\subseteq X \setminus U$ and so $\beta O(X)_{\gamma}$ -Cl({x}) $\neq \beta O(X)_{\gamma}$ -Cl({y}).

(i) (Sufficiency): Suppose that for any $x, y \in X, x \neq y$. Thus we have $\beta O(X)_{\gamma}$ - $Cl({x}) \neq \beta O(X)_{\gamma}$ - $Cl({y})$. Thus we assume that there exists $z \in \beta O(X)_{\gamma}$ - $Cl({x})$ such that $z \notin \beta O(X)_{\gamma}$ - $Cl({y})$. We shall prove that $x \notin \beta O(X)_{\gamma}$ - $Cl({y})$. Indeed if $x \in \beta O(X)_{\gamma}$ -Cl({y}), then we get $\beta O(X)_{\gamma}$ -Cl({x}) $\subseteq \beta O(X)_{\gamma}$ -Cl({y}) (by Definition and Theorem 5 (iii)). This contradiction shows that $X \setminus (\beta O(X)_{\gamma} - Cl({y})$ is a β - γ -open set containing *x* but not *y*. Hence (X, τ) is a β - γ - T'_0 space.

(ii) (Necessity): Let *x* and *y* be any two distinct points of a β - γ - T'_{0} space (X, τ) . Then by definition, we assume that there exists a β -open set *U* such that $x \in U$ and $y \notin U^{\gamma}$. It follows from the assumption that there exists a *β*-*γ*-open set *S* such that $x \in S$ and $S \subseteq U^{\gamma}$. Hence $y \in X \setminus U^{\gamma} \subseteq X \setminus S$. Because $X \setminus S$ is a β - γ -closed set, we obtain that $\beta Cl_{\gamma}(\{y\}) \subseteq X \setminus S$ and so $\beta Cl_{\gamma}(\{x\}) \neq \beta Cl_{\gamma}(\{y\}).$

(ii) (Sufficiency): Suppose that $x \neq y$ for any $x, y \in X$. Then we have that $\beta Cl_{\gamma}(\lbrace x \rbrace) \neq \beta Cl_{\gamma}(\lbrace y \rbrace)$. Thus we assume that there exists $z \in \beta Cl_{\gamma}(\lbrace x \rbrace)$ but $z \notin$ $\beta Cl_{\gamma}(\{y\})$. If $x \in \beta Cl_{\gamma}(\{y\})$, then we get $\beta Cl_{\gamma}(\{x\}) \subseteq \beta Cl_{\gamma}(\{y\})$ (Theorem 5 (iii)). This implies that $z \in \beta Cl_{\gamma}(\{y\})$. This contradiction shows that $x \notin \beta Cl_{\gamma}(\{y\})$. So by Definition 8, there exists a β -open set *W* such that $x \in W$ and $W^{\gamma} \cap \{y\} = \emptyset$. Thus, we have that $x \in W$ and $y \notin W^{\gamma}$. Hence (X, τ) is β - γ - T_0 .

(iii): This follows from (i), (ii) and the fact that, for any subset *A* of (X, τ) , $\beta O(X)_{\gamma}$ -*Cl*(*A*) = $\beta Cl_{\gamma}(A)$ holds under the assumption that γ is β -open (Theorem 6) (iii)).

Definition 14. *A space* (X, τ) *is said to be* β - γ - $T_{1/2}$ *if every* β - γ -g.closed set of (X, τ) *is* β - γ -closed.

Theorem 10. *Let* (X, τ) *be a topological space and* γ *be an operation on* $\beta O(X)$ *. Then the following statements are equivalent:*

- *(1) A is* $β$ *-*γ*-g.closed in* $(X, τ)$ *.*
- *(2)* $(\beta O(X)_{\gamma}$ *-Cl*(*x*)) \cap *A* $\neq \emptyset$ *for every* $x \in \beta Cl_{\gamma}(A)$ *.*
- (3) $\beta Cl_{\gamma}(A) \subseteq \beta O(X)_{\gamma}$ -Ker(A) holds, where $\beta O(X)_{\gamma}$ -Ker(E) = $\cap \{V | E \subseteq V, V \in$ $\beta O(X)_{\gamma}$ *} for any subset E of* (X, τ) *.*

Proof*.* (1) \Rightarrow (2): Let *A* be a *β*-*γ*-g.closed set of (X, τ) . Suppose that there exists $a x \in \beta Cl_{\gamma}(A)$ such that $(\beta O(X)_{\gamma}$ - $Cl({x}) \cap A = \emptyset$. By Theorem 5 (i), $\beta O(X)_{\gamma}$ -*Cl*($\{x\}$) is *β*-*γ*-closed. Since $A \subseteq X \setminus (\beta O(X)_{\gamma}$ - $Cl(\{x\})$) and *A* is *β*-*γ*-g.closed, we have that $\beta Cl_{\gamma}(A) \subseteq X \setminus (\beta O(X)_{\gamma}Cl(\lbrace x \rbrace))$ and hence $x \notin \beta Cl_{\gamma}(A)$. This is a contradiction. Therefore, $(\beta O(X)_{\gamma}$ - $Cl({x})$) \cap *A* \neq *Ø*.

 $(2) \Rightarrow (3)$: Let $x \in \beta Cl_{\gamma}(A)$. By (2), there exists a point *z* such that $z \in \beta O(X)_{\gamma}$ - $Cl({x})$ and $z \in A$. Let $U \in \beta O(X)_{\gamma}$ be a subset of *X* such that $A \subseteq U$. Since $z \in U$ and $z \in \beta O(X)_{\gamma}$ - $Cl({x})$, we have that $U \cap {x} \neq \emptyset$. Hence we show that $x \in \beta O(X)_{\gamma}$ -*Ker*(*A*). Therefore $\beta Cl_{\gamma}(A) \subseteq (\beta O(X)_{\gamma}$ -*Ker*(*A*)).

(3)⇒(1): Let *U* be any β - γ -open set such that $A ⊆ U$. Let *x* be a point such that $x \in \beta Cl_{\gamma}(A)$. By (3), $x \in \beta O(X)_{\gamma}$ -Ker(A) holds. So we have $x \in U$ because *A* ⊆ *U* and $U \in \beta O(X)_{\gamma}$.

Theorem 11. *Let* (X, τ) *be a topological space and* γ *an operation on* $\beta O(X)$ *. If a subset A of X is* β - γ -*g.closed, then* $\beta Cl_{\gamma}(A) \setminus A$ *does not contain any non-empty β-γ-closed set.*

Proof*.* Suppose that there exists a non-empty β - γ -closed set *F* such that $F \subseteq$ $\beta Cl_{\gamma}(A) \setminus A$. Then we have $A \subseteq X \setminus F$ and $X \setminus F$ is β - γ -open. It follows from the assumption that $\beta Cl_{\gamma}(A) \subseteq X \setminus F$ and so $F \subseteq (\beta Cl_{\gamma}(A) \setminus A) \cap (X \setminus \beta Cl_{\gamma}(A)).$ Therefore, we have $F = \emptyset$.

Remark 3. *In the above theorem, if γ is a β-open operation, then the converse of the above theorem is true.*

Proof. Let *U* be a β - γ -open set such that $A \subseteq U$. Since γ is a β -open operation, it follows from Theorem 6 (iii) that $\beta Cl(A)$ is β - γ -closed in (X, τ) . Thus by Theorem 6 (iii) and Definition 7, we have $\beta Cl(A) \cap (X \setminus U) = F$ is β - γ -closed in (X, τ) . Since $X \setminus U \subseteq X \setminus A, F \subset \beta Cl(A) \setminus A$. Using the assumptions of the converse of Theorem 11 above, $F = \emptyset$ and hence $\beta Cl_{\gamma}(A) \subseteq U$.

Theorem 12. Let (X, γ) be a topological space and γ an operation on $\beta O(X)$. Then for each $x \in X, \{x\}$ is $\beta-\gamma$ -closed or $X \setminus \{x\}$ is $\beta-\gamma$ -g.closed in (X, τ) .

Proof*.* Suppose that $\{x\}$ is not β -*γ*-closed, then $X \setminus \{x\}$ is not β -*γ*-open. Let *U* be any β - γ -open set such that $X \setminus \{x\} \subseteq U$. Then $U = X$. Hence, $\beta Cl_{\gamma}(X \setminus \{x\}) \subseteq U$. Therefore, $X \setminus \{x\}$ is a β - γ -g.closed set.

Theorem 13. Let (X, τ) be a topological space and γ an operation on $\beta O(X)$. Then, *the following properties are equivalent.*

- *(1) A space* (X, τ) *is* β *-* γ *-T*_{1/2}*.*
- *(2) For each* $x \in X$ *,* $\{x\}$ *is* β *-* γ *-closed or* β *-* γ *-open.*

Proof*.* (1) \Rightarrow (2): Suppose $\{x\}$ is not β - γ -closed in (X, τ) . Then, $X \setminus \{x\}$ is β - γ g.closed by Theorem 12. Since (X, τ) is a β - γ - $T_{1/2}$ space, so by definition, $X \setminus \{x\}$ is β - γ -closed and so $\{x\}$ is β - γ -open.

(2)*⇒*(1): Let *F* be a *β*-*γ*-g.closed set in (*X, τ*). We shall prove that *βClγ*(*F*) = *F* (from Theorem 6 (ii)). It is sufficient to show that $\beta Cl_{\gamma}(F) \subseteq F$. Assume that there exists a point *x* such that $x \in \beta Cl_{\gamma}(F) \setminus F$. Then by assumption, $\{x\}$ is β - γ -closed or *β*-*γ*-open.

Case 1. $\{x\}$ is a *β*- γ -closed set: for this case, we have a *β*- γ -closed set $\{x\}$ such that $\{x\} \subset \beta Cl_{\gamma}(F) \setminus F$. This is a contradiction to Theorem 11.

Case 2. $\{x\}$ is a β - γ -open set: we have $x \in \beta O(X)_{\gamma}$ - $Cl(F)$. Since $\{x\}$ is β - γ open, it implies that $\{x\} \cap F \neq \emptyset$ by Theorem 4. This is a contradiction. Thus we have $\beta Cl_{\gamma}(F) = F$ and so by Theorem 6 (ii), *F* is β - γ -closed.

Theorem 14. For a topological space (X, τ) , let γ be an operation on $\beta O(X)$.

- *(i) Then, the following properties are equivalent.*
	- *(1)* (X, τ) *is* $\beta \gamma T_1$.
	- *(2)* For every point $x \in X, \{x\}$ is a β - γ -closed set.
	- *(3)* (X, τ) *is* $\beta-\gamma$ *-T*[']₁.
- *(ii) Every* $\beta \neg \gamma \neg T_i'$ *space is* $\beta \neg \gamma \neg T_i$ *, where* $i \in \{2, 0\}$ *.*
- (iii) *Every* β - γ - T_2 *space is* β - γ - T_1 *.*
- *(iv) Every* β *-* γ *-T*₁ *space is* β *-* γ *-T*_{1/2}*.*
- *(v) Every* β - γ - $T_{1/2}$ *space is* β - γ - T'_{0} *.*
- (vi) Every $\beta-\gamma$ -T'_i space is $\beta-\gamma$ -T'_{i-1}, where $i \in \{2, 1\}$.

Proof. (i) (1) \Rightarrow (2): Let $x \in X$ be a point. For each point $y \in X \setminus \{x\}$, there exists a β -open set V_y such that $y \in V_y$ and $x \notin (V_y)^\gamma$. Then $X \setminus \{x\} = \bigcup \{(V_y)^\gamma | y \in X \setminus \{x\} \}.$ It is shown that $X \setminus \{x\}$ is β - γ -open in (X, τ) .

(2)⇒(3): Let *x* and *y* be two distinct points of *X*. By (2), $X \setminus \{x\}$ and $X \setminus \{y\}$ are required β - γ -open sets such that $y \in X \setminus \{x\}$, $x \notin X \setminus \{x\}$ and $x \in X \setminus \{y\}$, $x \notin X \setminus \{y\}$.

(3)⇒(1): It is shown that if $x \in U$, where $U \in \beta O(X)_{\gamma}$, then there exists a *β*-open set *V* such that $x \in V \subseteq V^{\gamma} \subseteq U$. Using (3), we have that (X, τ) is β - γ - T' .

(ii), (iii), (vi): These proofs are obvious by definition. (iv): This follows from (i) above and Theorem 13.

(v): This follows from Theorem 13 and Definition 10 (ii).

Remark 4. *By Theorems 13 and 14 we have the following diagram of implications:*

$$
\begin{array}{ccc}\n\beta - \gamma - T_2' \Rightarrow \beta - \gamma - T_1' & \Rightarrow & \beta - \gamma - T_0' \\
\Downarrow & \Downarrow & \Downarrow & \Downarrow \\
\beta - \gamma - T_2 \Rightarrow \beta - \gamma - T_1 & \beta - \gamma - T_0 \\
\searrow & & \beta - \gamma - T_{1/2}\n\end{array}
$$

Remark 5. *None of the above reverse implications (except* $\beta \sim T_2' \Rightarrow \beta \sim T_2$ *and* β - γ - $T_1' \Rightarrow \beta$ - γ - T_1) are true as shown in examples below.

(i) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}\$. Define an operation γ on $\beta O(X)$ such that $A^{\gamma} = A$ if $b \in A$; $A^{\gamma} = Cl(A)$ if $b \notin A$. Then (X, τ) is $\beta - \gamma - T_0$ but not *β-γ-T*1*/*2*.*

(ii) Consider Example 1. There (X, τ) *is* β - γ - $T_{1/2}$ *but not* β - γ - T_1 *.*

(iii) Let $X = \{a, b, c\}, \tau = P(X)$, the power set on X. Define an operation γ on $\beta O(X)$ such that $A^{\gamma} = A \cup \{c\}$ if $A = \{a\}$ or $\{b\}; A^{\gamma} = A \cup \{a\}$ if $A = \{c\}; A^{\gamma} = A$ if $A \neq \{a\}, \{b\}, \{c\}$. Then (X, τ) is $\beta-\gamma$ - T_1 but not $\beta-\gamma$ - T_2 . Also, (X, τ) is $\beta-\gamma$ - T_1' *(Theorem 14 (i)) but not* β *-* γ *-* T_2' *.*

(iv) Consider *(i)* above. Define the operation γ on $\beta O(X)$ such that $A^{\gamma} = A$ for every set A such that $A \neq \{a\}$; $A^{\gamma} = \{a,b\}$ if $A = \{a\}$. Then (X, τ) is $\beta \neg \gamma \neg T'_0$ but *not* β - γ - T_1' .

(v) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\$. Define an operation γ on $\beta O(X)$ such that $\{a\}^{\gamma} = \{a, c\}, \{b\}^{\gamma} = \{a, b\}, \{a, b\}^{\gamma} = \{a, b\}, \{b, c\}^{\gamma} = \{a, b\}, \{a, c\}^{\gamma}$ $=\{a,b\},\emptyset^{\gamma} = \emptyset, X^{\gamma} = X$. Now the β - γ -open sets are $\{\emptyset, X, \{a,b\}\}\$ and γ is not β -open. Then (X, τ) is not $\beta \neg \neg T_0'$. Indeed for every $\beta \neg \gamma$ -open set V_a containing a, *we have* $b \in V_a$ *, for every* β - γ -open set V_b containing b *, we have* $a \in V_b$ *. Hence by Definition 1 (ii),* (X, τ) *is not* $\beta-\gamma$ - T'_0 *. Moreover,* (X, τ) *is* $\beta-\gamma$ - T_0 *.*

Remark 6. *In Remark 5, Example (v) shows that β-openness of γ in Theorem 9 (iii) cannot be dropped.*

4. β **-**(γ , *b*)**-continuous maps**

Throughout Sections 4 and 5, let γ : $\beta O(X) \rightarrow P(X)$ and $b : \beta O(Y) \rightarrow P(Y)$ be operations on $\beta O(X)$ and $\beta O(Y)$, respectively.

Definition 15. *A mapping* $f : (X, \tau) \to (Y, \sigma)$ *is said to be* β -(γ , *b*)*-continuous if for each* $x \in X$ *and each* β *-open set* V *containing* $f(x)$ *, there exists a* β *-open set* U *such that* $x \in U$ *and* $f(U^{\gamma}) \subseteq V^b$.

Theorem 15. *Let* $f : (X, \tau) \to (Y, \sigma)$ *be a* β *-*(γ *,b*)*-continuous mapping. Then,*

- *(i)* $f(\beta Cl_{\gamma}(A))$ ⊆ $\beta Cl_b(f(A))$ *holds for every subset A of* (X, τ) *,*
- *(ii) for every* β *-b-open set B of* (Y, σ) *,* $f^{-1}(B)$ *is* β *-* γ *-open, that is for any* $B \in$ $\beta O(Y)_b$, $f^{-1}(B) \subseteq \beta O(X)_\gamma$.

Proof*.* (i): Let $y \in f(\beta Cl_{\gamma}(A))$ and let *V* be any *β*-open set containing *y*. Then, there exists a point $x \in \beta Cl_{\gamma}(A)$ and a β -open set *U* containing *x* such that $f(x) = y$ and $f(U^{\gamma}) \subseteq V^b$. We have $U^{\gamma} \cap A \neq \emptyset$. Therefore, $\emptyset \neq f(U^{\gamma} \cap A) \subseteq f(U^{\gamma}) \cap f(A) \subseteq$ $V^b \cap f(A)$ and so $y \in \beta Cl_b(f(A))$.

(ii): Let *B* be a β -*b*-closed set. Then using (i) we have that $f(\beta Cl_{\gamma}(f^{-1}(B)) \subseteq$ $\beta Cl_b(f(f^{-1}(B)) \subseteq \beta Cl_b(B) = B$. Thus, $\beta Cl_{\gamma}(f^{-1}(B)) \subseteq f^{-1}(B)$ and hence $(f^{-1}(B)) = \beta Cl_{\gamma}(f^{-1}(B))$. This implies that $f^{-1}(B)$ is β - γ -closed in (X, τ) . □

Remark 7. *In Theorem 15, the properties of β-*(*γ, b*)*-continuity of f, (i) and (ii) are equivalent to each other if one of the following conditions (a) and (b) is satisfied:*

- *(a)* (*Y, σ*) *is a β-b-regular space,*
- *(b) b is a β-open operation.*

Proof*.* It follows from the proof of Theorem 15 that we know the following implications: " β -(γ , b)-continuity of $f'' \Rightarrow$ (i) \Rightarrow (ii). Thus, under condition (a), we first show the implication: (ii) $\Rightarrow \beta$ -(γ , b)-continuity of *f*. Let $x \in X$ and let *V* be a *β*-open set containing $f(x)$. Since $(Y, σ)$ is a *β*-*b*-regular space, $V \in \beta O(Y)$ *b*. Then, by (ii) of Theorem 15, *x* ∈ *f*^{$−1$}(*V*) ∈ *βO*(*X*)_γ. So, by the definition of *β*-*b*-openness of $f^{-1}(V)$, there exists a β -open set *U* containing *x* such that $U^{\gamma} \subseteq f^{-1}(V)$ and so $f(U^{\gamma}) \subseteq V \subseteq V^b$. Therefore, *f* is β -(γ , *b*)-continuous.

Finally, under condition (b), we prove the implication: (ii) $\Rightarrow \beta$ -(γ , b)-continuity of *f*. Let $x \in X$ and let *V* be a β -open set containing $f(x)$. Since *b* is β -open, there exists a β -*b*-open set *U* containing $f(x)$ such that $U \subseteq V^b$. By (ii) of Theorem 15, $x \in f^{-1}(U) \in \beta O(X)_{\gamma}$ and so by definition of β - γ -openness of $f^{-1}(U)$, there exists a β -open set *W* containing *x* such that $W^{\gamma} \subseteq f^{-1}(U) \subseteq f^{-1}(V^b)$. Therefore, we have $f(W^{\gamma}) \subseteq V^b$ and so *f* is β -(γ , b)-continuous.

Definition 16. *A mapping* $f:(X, \tau) \rightarrow (Y, \sigma)$ *is said to be*

- *(i) β-*(*γ, b*)*-closed, if for every β-γ-closed set A of* (*X, τ*)*, f*(*A*) *is β-b-closed in* (Y, σ) ,
- (iii) β ^{*-*(*id, b*)*-closed, if* $f(F)$ *is* β *-b-closed in* (Y, σ) *for every* β *-closed set* F *of*} (X, τ) .

Theorem 16. *Suppose f is* β -(γ , *b*)*-continuous and f is* β -(*id, b*)*-closed. Then, the following properties hold.*

588 S. Tahiliani

(i) For every β - γ -g.closed set A of (X, τ) , the image $f(A)$ is β -b-g.closed.

(ii) For every β *-b-g.closed set* B *of* (Y, σ) *,* $f^{-1}(B)$ *is* β - γ *- g.closed.*

Proof. (i): Let *V* be a β -*b*-open set in (Y, σ) such that $f(A) \subseteq V$. Then by Theorem 15 (ii), $f^{-1}(V)$ is β - γ -open. Since *A* is β - γ -g.closed and $A \subseteq f^{-1}(V)$, $\beta Cl_{\gamma}(A) \subseteq f^{-1}(V)$ holds and so $f(\beta Cl_{\gamma}(A)) \subseteq V$. Thus, $f(\beta Cl_{\gamma}(A))$ is β -*b*-closed as $\beta Cl_{\gamma}(A)$ is β -closed by Theorem 6 (i) and the assumption that *f* is β -(*id, b*)closed. Therefore $\beta Cl_b(f(A)) \subseteq \beta Cl_b(f(\beta Cl_{\gamma}(A))) = f(\beta Cl_{\gamma}(A)) \subseteq V$. Hence, $f(A)$ is β -*b*-g.closed.

(ii): Let *U* be a β - γ -open set in (X, τ) such that $f^{-1}(B) \subseteq U$. Let $F =$ $\beta Cl_{\gamma}(f^{-1}(B)) \cap (X \setminus U)$. Then by Theorem 6 (i), *F* is β -closed in (X, τ) . Since *f* is β -(*id*, *b*)-closed, $f(F)$ is β -*b*-closed in (Y, σ) and $f(F) \subseteq f(\beta Cl_{\gamma}(f^{-1}(B)) \cap (X \setminus U)) \subseteq$ $\beta Cl\gamma(B) \setminus B$. By Theorem 11, $f(F) = \emptyset$ and so $F = \emptyset$. Hence $\beta Cl_{\gamma}(f^{-1}(B)) \subseteq U$. Therefore, $f^{-1}(B)$ is *β*-γ-g.closed in $(X, τ)$. $□$

Theorem 17. *Suppose that* $f : (X, \tau) \to (Y, \sigma)$ *is* β - (γ, b) *-continuous and* β - (id, b) *closed. Then the following properties hold.*

- (i) If f is injective and (Y, σ) is β -b- $T_{1/2}$, then (X, τ) is β - γ - $T_{1/2}$.
- (ii) If f is surjective and (X, τ) is $\beta-\gamma$ - $T_{1/2}$, then (Y, σ) is β -b- $T_{1/2}$.

Proof*.* (i): Let *A* be a β - γ -g.closed set of (X, τ) . Then by Theorem 16 (i), $f(A)$ is *β*-*b*-g.closed. Since $(X, τ)$ is $β$ - $γ$ - T ₁/₂, $f(A)$ is *β*-*b*-closed. By Theorem 16 (ii), $A = f^{-1}(f(A))$ is *β*- γ -closed. This implies *A* is *β*- γ -closed. Hence, (X, τ) is β - γ - $T_{1/2}$ space.

(ii): Let *B* is a β -*b*-g.closed set in (Y, σ) . By Theorem 16 (ii), $f^{-1}(B)$ is β - γ g.closed. Since (X, τ) is β - γ - $T_{1/2}$, so $f^{-1}(B)$ is β - γ -closed. Therefore $B = f(f^{-1}(B))$ is *β*-*b*-closed in $(Y, σ)$. Hence, $(Y, σ)$ is *β*-*b*-*T*_{1/2} space. $□$

Definition 17. *Let* $f : (X, \tau) \to (Y, \sigma)$ *be a function. Then f is said to be* β *-*(γ *, b*)*homeomorphic, if f is bijective,* β ^{*-*}(γ *, b*)*-continuous and* f^{-1} *is* β *-*(b *,* γ)*-continuous.*

Theorem 18. *Suppose that a mapping* $f : (X, \tau) \to (Y, \sigma)$ *is* β - (γ, b) *-homeomorphic. If* (X, τ) *is* β - γ - $T_{1/2}$ *, then* (Y, σ) *is* β -*b*- $T_{1/2}$ *.*

Proof*.* Let $\{y\}$ be a singleton set of (Y, σ) . Then there exists a point $x \in X$ such that $y = f(x)$. By Theorem 13, $\{x\}$ is β - γ -open or β - γ -closed. Therefore by Theorem 15, ${y}$ is *β*-*b*-closed or *β*-*b*-open. Hence, $(Y, σ)$ is *β*-*b-T*_{1/2}.

Theorem 19. *Let* $f : (X, \tau) \to (Y, \sigma)$ *be a* β - (γ, b) *-continuous injection. If* (Y, σ) is β -b-T₂ (resp. β -b-T₁), then (X, τ) is β - γ -T₂ (resp. β - γ -T₁).

Proof*.* Suppose that (Y, σ) is β -*b-T*₂. Let *x* and *y* be distinct points of *X*. Then, there exist two β -open sets *V* and *W* of *Y* such that $f(x) \in V$, $f(y) \in W$ and $V^b \cap W^b = \emptyset$. Since *f* is β -(*γ, b*)-continuous, for *V* and *W* there exist two β -open sets *U* and *S* such that $x \in U, y \in S$, $f(U^{\gamma}) \subseteq V^b$ and $f(S^{\gamma}) \subseteq W^b$. Therefore, we have $U^{\gamma} \cap S^{\gamma} = \emptyset$ and hence (X, τ) is β - γ - T_2 . Similarly, we can prove the case of *β*-*γ*-*T*1.

5. *β***-closed graphs of mappings**

In this section, we further investigate general operator approaches of closed graphs of mappings. Let $(X \times Y, \tau \times \sigma)$ be the product space of topological spaces (X, τ) and (Y, σ) and let $\rho : \beta O(X \times Y) \to P(X \times Y)$ be an operation on $\beta O(X \times Y)$.
Some tenelogical properties on $\beta O(\Pi^n Y)$ are investigated in [9] and [7] J am

Some topological properties on $\beta O(\prod_{i=1}^n X_i)$ are investigated in [2] and [7, Lemma 3.1], where $\{X_i | i \in \nabla\}$ is any family of topological spaces with an index set ∇ . For subsets $A \subseteq X$ and $B \subseteq Y, A \in \beta O(X)$ and $B \in \beta O(Y)$ if and only if $A \times B \in \beta O(X \times Y)$ hold. It is easily shown that $\beta O(X \times Y) \neq \beta O(X) \times \beta O(Y)$ similar to [6, Remark 8, Example 7]. Some properties of product functions involving *b*-closure and product spaces are studied in [2].

Definition 18. Let (X, τ) , (Y, σ) be two topological spaces and b an operation on $\beta O(Y)$ *. We say that the graph* $G(f)$ *of* $f : X \rightarrow Y$ *is* β *-b-closed if for each* $(x, y) \in$ $(X \times Y) \setminus G(f)$, there exists a β -open set U in X and V in Y contains x and y, *respectively, such that* $(U \times V^b) \cap G(f) = \emptyset$ *.*

Example 2. *Let* $X = Y = \{x, y, z\}$ *and* $\tau = \sigma = \{\emptyset, X, \{x\}, \{x, y\}\};$ *then* $\beta O(X) = \beta O(Y) = \{ \emptyset, X, \{x\}, \{x, y\}, \{x, z\} \}$ hold. Let $f : (X, \tau) \to (Y, \sigma)$ be a map*ping defined by* $f(a) = z$ *for every point* $a \in X$ *. Define an operation b on* $\beta O(Y)$ *such* that $A^b = A$ if $y \in A$ and $A^b = Cl(A)$ if $y \notin A$. Then, $G(f) = \{(x, z), (y, z), (z, z)\}\$ *and* $G(f)$ *is* β *-b-closed.*

Definition 19. An operation ρ : $\beta O(X \times Y) \rightarrow P(X \times Y)$ is said to be β -associated with γ and b, if $(U \times V)^{\rho} = U^{\gamma} \times V^b$ holds for each set $U \in \beta O(X)$ and $V \in \beta O(Y)$.

Example 3. *(i)* Let $X = Y = \{x, y, z\}$ and $\tau = \sigma = \{\emptyset, X, \{x\}, \{x, y\}\}\$. Define an operation γ on $\beta O(X)$ such that $A^{\gamma} = A$ if $y \in A$ and $A^{\gamma} = Cl(A)$ if $y \notin A$. *Let b be the closure operation on* $\beta O(Y)$ *, i.e.,* $A^b = Cl(A)$ *for every* $A \in \beta O(Y)$ *. Let ρ be the operation on* $\beta O(X \times Y)$ *defined as* $(A \times B)^{\rho} = A \times B$ *if* $(x, y) \in$ $A \times B$ *and* $(A \times B)^{\rho} = Cl(A \times B)$ *if* $(x, y) \notin A \times B$ *. Then, this operation* ρ *is not* β -associated with γ and b. Indeed, for β -open subsets $U = \{x\} \in \beta O(X)$ and $V = \{x, y\} \in \beta O(Y)$, we have $(U \times V)^{\rho} = U \times V \neq X \times Y$ and $U^{\gamma} = Cl(U) = X$ *and* $V^b = Cl(V) = Y$.

(ii) In general, for subsets $A \subseteq X$ and $B \subseteq Y$, $A \times B \subseteq Cl(A \times B)$ and $Cl(A \times B) =$ $Cl(A) \times Cl(B)$ *holds; especially, for subsets* $A \in \beta O(X)$ *and* $B \in \beta O(Y)$ *,* $A \times B \subseteq$ $Cl(Int(Cl(A \times B)))$ and $Cl(Int(Cl(A \times B))) = Cl(Int(Cl(A))) \times Cl(Int(Cl(B)))$; *and also, for any subset* $U \in \beta O(X \times Y)$, $U \subset Cl(Int(Cl(U)))$ *holds. Thus, the* operations id: $\beta O(X \times Y) \rightarrow P(X \times Y)$, $Cl : \beta O(X \times Y) \rightarrow P(X \times Y)$ and $C\text{lo}Int \circ Cl : \beta O(X \times Y) \to P(X \times Y)$ are well defined by $id(U) := U, Cl(U) := Cl(U)$ *and* $Cl \circ Int \circ Cl(U) = Cl(Int(Cl(U)))$ *for every* $U \in \beta O(X \times Y)$ *, respectively; moreover, they satisfy the condition of Definition 19.*

Definition 20. *The operation* ρ : $\beta O(X \times Y) \rightarrow P(X \times Y)$ *is said to be* β *regular with respect to* γ *and b, if for each point* $(x, y) \in X \times Y$ *and each* β -open set *W* containing (x, y) there exist β-open sets *U* in $(X, τ)$ and *V* in $(Y, σ)$ such that $x \in U, y \in V$ *and* $U^{\gamma} \times V^b \subseteq W^{\rho}$.

Theorem 20. *Let* $\rho : \beta O(X \times X) \to P(X \times X)$ *be a* β *-regular operation associated* with γ and γ . If $f:(X,\tau)\to(Y,\sigma)$ a $\beta(\gamma,b)$ -continuous and (Y,σ) is β -b-T₂ space, then the set $A = \{(x, y) \in X \times X : f(x) = f(y)\}\$ is a β -p-closed set of $(X \times X, \tau \times \tau)$.

Proof. We have to show that $\beta Cl_{\rho}(A) \subseteq A$. Let $(x, y) \in (X \times X) \setminus A$. Then, there exist two *β*-open sets *U* and *V* in (Y, σ) such that $f(x) \in U, f(y) \in V$ and $U^b \cap V^b = \emptyset$. Moreover, for each *U* and *V* there exist *β*-open sets *W* and *S* in (X, τ) such that $x \in W$, $y \in S$ and $f(W^{\gamma}) \subseteq U^b$ and $f(S^{\gamma}) \subseteq V^b$. Therefore we have $(W \times S)^{\rho} \cap A = \emptyset$, because $(x, y) \in W^{\gamma} \times S^{\gamma} = (W \times S)^{\rho}$ and $W \times S \in \beta O(X \times X)$. This shows that $(x, y) \notin \beta Cl_{\rho}(A)$.

Definition 21. *Let* (X, τ) *be a topological space and* γ *an operation on* $\beta O(X)$ *. A subset K of X is said to be* β - γ -*compact, if for every* β -*open cover* $\{G_i : i \in \mathbb{N}\}$ *of K* there exists a finite subfamily $\{G_1, G_2, \ldots, G_n\}$ such that $K \subseteq (\tilde{G}_1)^{\gamma} \cup (G_2)^{\gamma} \cup$ $\dots \cup (G_n)^\gamma$.

Theorem 21. *Suppose that* γ : $\beta O(X) \rightarrow P(X)$ *is* β -regular and ρ : $\beta O(X \times Y) \rightarrow$ $P(X \times Y)$ *is* β -regular with respect to γ and b. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping *whose graph* $G(f)$ *is* β *-b-closed in* $(X \times Y, \tau \times \sigma)$ *. If a subset* B *is* β *-b-compact in* (Y, σ) *, then* $f^{-1}(B)$ *is* β - γ -closed *in* (X, τ) *.*

Proof. Let $x \notin f^{-1}(B)$. Then $(x, y) \notin G(f)$ for each $y \in B$. Since $\beta Cl(\rho(G(f))) \subseteq$ *G*(*f*), there exists a *β*-open set *W* in $(X \times Y, \tau \times \sigma)$ such that $(x, y) \in W$ and $W^{\rho} \cap G(f) = \emptyset$. Since ρ is β -regular with respect to γ and *b* (cf. Definition 20), for each $y \in B$ we can take two subsets $U(y) \in \beta O(X)$ and $V(y) \in \beta O(Y)$ such that $x \in U(y), y \in V(y)$ and $U(y)^{\gamma} \times V(y)^{b} \subseteq W^{\rho}$. Then we have $f(U(y)^{\gamma}) \cap V(y)^{b} = \emptyset$ and so $U(y)^{\gamma} \cap f^{-1}(V(y)^b) = \emptyset$. Since $\{V(y)|y \in B\}$ is a β -open cover of B, then by β -*b*-compactness there exists $y_1, y_2, \ldots, y_n \in B$ such that $B \subseteq V(y_1)^b \cup V(y_2)^b \cup$ $\cdots \cup V(y_n)^b$. By *β*-regularity of γ (cf. Definition 6 (ii)), there exist a *β*-open set *U* such that $x \in U$ and $U^{\gamma} \subseteq U(y_1)^{\gamma} \cup U(y_2)^{\gamma} \cup \ldots U(y_n)^{\gamma}$. Therefore we have Uⁿ $f^{-1}(B) \subseteq \bigcup_{i=1}^{n} (U^{\gamma} \cap f^{-1}(V(y_i)^{b})) \subseteq \bigcup_{i=1}^{n} (U(y_i)^{\gamma} \cap f^{-1}(V(y_i)^{b})) = \emptyset$. This shows that $x \notin \beta Cl_{\gamma}(\overline{f}^{-1}(B))$. Therefore, we show $\beta Cl_{\gamma}(f^{-1}(B)) \subset f^{-1}(B)$ and so $f^{-1}(B)$ is *β*-γ-closed. $□$

Acknowledgement

The author wishes to express his deep gratitude to the referees for their helpful comments and valuable suggestions.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, *β-open sets and βcontinuous mappings*, Bull. Fac. Sci. Assint Univ. **12**(1983), 77–90.
- [2] M. E. Abd El-Monsef, A. N. Geaisa, R. A. Mahmoud, *β-regular spaces*, Proc. Math. Phys. Soc. Egypt **60**(1985), 47–52.
- [3] M. E. Abd El-Monsef, R. A. Mahmoud, E. R. Lashin, *β-closure and β-interior*, Rep. J. of. Fac. of. Edu. Ain. Shams. Univ. **10**(1986), 235–245.
- [4] D. S. Jankovic´, *On functions with γ-closed graphs*, Glasnik Math. **18**(1983), 141–148.

- [5] S. Kasahara, *Operation-compact spaces*, Math. Japonica. **24**(1979), 97–105.
- [6] N. Levine, *Semi-open sets and semi-continuity in topological spaces*, Amer. Math. Monthly **70**(1963), 36–41.
- [7] A. A. Nasef, T. Noiri, *Some weak forms of almost continuity*, Acta Math. Hungar. **74**(1997), 211–219.
- [8] H. Ogata, *Operation on topological spaces and associated topology*, Math. Japonica. **36**(1991), 175–184.
- [9] G. Sai Sundra Krishnan, M. Ganster, K. Balachandran, *Operation approaches on semi-open sets and applications*, Kochi J. Math. **2**(2007), 21–33.