Operation approach to β -open sets and applications

SANJAY TAHILIANI^{1,*}

¹ Department of Mathematics, Delhi University, Delhi-110007, India

Received July 25, 2008; accepted March 14, 2011

Abstract. In this paper, we introduce the concept of an operation γ on a family of β -open sets denoted by $\beta O(X)$ in a topological space (X, τ) . Using the operation γ on $\beta O(X)$, we introduce the concept of β - γ -open sets, and investigate the related topological properties. We also introduce the notion of β - γ - T_i spaces (i = 0, 1/2, 1, 2) and study some topological properties on them. Further, we introduce β - (γ, b) -continuous maps and investigate basic properties. Finally, we investigate a general operation approach to β -closed graphs of mappings.

AMS subject classifications: Primary 54C08, 54D10

Key words: β - γ -open set, β - γ -closure, $\beta O(X)_{\gamma}$ -closure, β - (γ, b) -continuous

1. Introduction

Throughout this paper, (X, τ) and (Y, σ) represent non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. The closure and interior of $A \subseteq X$ will be denoted by Cl(A) and Int(A), respectively. Kasahara [5] defined the concept of an operation on a topological space and introduced the concept of α -closed graphs of functions. Further, Monsef et al. [1] initiated the study of β -open sets and β -continuity in a topological space and Janković [4] defined the concept of an α -closed set and investigated the functions on α -closed graphs. Ogata [8] called the operation α (respectively, α -closed set) as a γ -operation (respectively γ -closed sets) and introduced the notion of τ_{γ} which is the collection of all γ -open sets in a topological space (X, τ) . Morever, he introduced the concept of γ - T_i (i = 0, 1/2, 1, 2) spaces and characterized γ - T_i spaces by the notion of γ -closed sets or γ -open sets.

The family of all β -open sets of X is denoted by $\beta O(X)$. In this paper, Section 2 is the introduction of the concept of the family $\beta O(X)_{\gamma}$ of all β - γ -open sets by using the operation γ on $\beta O(X)$ in (X, τ) . Further, we introduce the concept of β - γ -closure, $\beta O(X)_{\gamma}$ -closure and study their relationships. In Section 3, we introduce the concept of β - γ - T_i (i = 0, 1/2, 1, 2) spaces and characterize β - γ - T_i spaces by the notion β - γ -closed or β - γ -open sets. In Section 4, we define a new class of maps called β -(γ , b)-continuous maps and study some of their properties. In Section 5, we investigate a general operation approach of β -closed graphs of mappings.

©2011 Department of Mathematics, University of Osijek

^{*}Corresponding author. Email address: sanjaytahiliani@yahoo.com (S. Tahiliani)

http://www.mathos.hr/mc

2. β - γ -open sets

Definition 1. Let (X, τ) be a topological space. A subset A of space X will be called β -open [1] if $A \subseteq Cl(Int(Cl(A)))$. The complement of a β -open set is said to be β -closed [1]. The intersection of all β -closed sets containing U, the subset of X, is known as a β -closure [3] of U and it is denoted by $\beta Cl(U)$. It is obvious by definition that $U \subseteq \beta Cl(U)$.

Definition 2. An operation γ [4] on the topology τ is a mapping $\gamma : \tau \to P(X)$ from τ to the power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V.

Definition 3. (i) A subset A of a topological space is called a γ -open set [8] of (X, τ) if for each $x \in A$ there exists an open set U such that $x \in U$ and $U^{\gamma} \subseteq A$. The complement of a γ -open set is said to be γ -closed.

(ii) The point $x \in X$ is in the γ -closure [4] of a set $A \subseteq X$ if $U^{\gamma} \cap A \neq \phi$ for each open set U of x. The γ -closure of a set A is denoted by $Cl_{\gamma}(A)$. Also τ_{γ} - $Cl(A) = \bigcap \{F : A \subseteq F, X \setminus F \in \tau_{\gamma}\}, \text{ where } \tau_{\gamma} \text{ denotes the set of all } \gamma\text{-open sets in}$ $(X, \tau).$

Definition 4. An operation γ on $\beta O(X)$ is a mapping $\gamma : \beta O(X) \to P(X)$ from $\beta O(X)$ to the power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in \beta O(X)$ and V^{γ} denotes the value of γ at V.

Definition 5. Let (X, τ) be a topological space and γ an operation on $\beta O(X)$. Then a subset A of X is said to be β - γ -open if for each $x \in A$, there exists a β -open set U such that $x \in U$ and $U^{\gamma} \subseteq A$. Also $\beta O(X)_{\gamma}$ denotes the family of β - γ -open sets in X.

The following is an example:

Example 1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and γ be an operation on $\beta O(X)$ such that $A^{\gamma} = A$, if $b \in A$; $A^{\gamma} = Cl(A)$ if $b \notin A$. Then $\beta O(X)_{\gamma} = \{\emptyset, X, \{a, c\}, \{b, c\}, \{b\}, \{a, b\}\}.$

Theorem 1. Let γ be an operation on $\beta O(X)$. Then the following statements hold:

- (i) Every β - γ -open set of (X, τ) is β -open in (X, τ) , i.e., $\beta O(X)_{\gamma} \subseteq \beta O(X)$.
- (ii) Every γ -open set of (X, τ) is β - γ -open.
- (iii) Let $\{A_{\alpha}\}_{\alpha \in J}$ be a collection of β - γ -open sets in (X, τ) .

Then $\bigcup \{A_{\alpha} : \alpha \in J\}$ is also a β - γ -open set in (X, τ) .

Proof. (i): Let $A \in \beta O(X)_{\gamma}$. Let $x \in A$. Then there exists a β -open set U such that $x \in U \subseteq U^{\gamma} \subseteq A$. As U is a β -open set, this implies that $x \in U \subseteq Cl(Int(Cl(U))) \subseteq Cl(Int(Cl(A)))$. Thus we show that $A \subseteq Cl(Int(Cl(A)))$ and hence $A \in \beta O(X)$. Therefore $\beta O(X)_{\gamma} \subseteq \beta O(X)$.

(ii): Let A be a γ -open set in (X, τ) and $x \in A$. There exists an open set U such that $x \in U \subseteq U^{\gamma} \subseteq A$. Since every open set is β -open, this implies that A is a β - γ -open set.

(iii): If $x \in \bigcup \{A_{\alpha} : \alpha \in J\}$, then $x \in A_{\alpha}$ for some $\alpha \in J$. Since A_{α} is a β - γ -open set, so there exists a β -open set U such that $U^{\gamma} \subseteq A_{\alpha} \subseteq \bigcup \{A_{\alpha} : \alpha \in J\}$. Therefore, $\bigcup \{A_{\alpha} : \alpha \in J\}$ is also a β - γ -open set in (X, τ) .

Remark 1. (i) The converse of (i) and (ii) of the above theorem is not true. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Let γ be the operation on $\beta O(X)$ such that $A^{\gamma} = A$ if $b \in A$; $A^{\gamma} = Cl(A)$ if $b \notin A$. Then $\{a\}$ is a β -open but not a β - γ -open set.

(ii) Consider Example 1. $\{a, c\}$ is a β - γ -open set but not a γ -open set.

(iii) In general, the intersection of two β - γ -open sets need not be a β - γ -open set. Consider Example 1. The sets $A = \{a, c\}$ and $B = \{b, c\}$ are β - γ -open sets in (X, τ) , but $A \cap B = \{c\}$ is not a β - γ -open set in (X, τ) .

Definition 6. (i) A space (X, τ) is said to be a β - γ -regular space if for each $x \in X$ and for each β -open set V containing x, there exists a β -open set U containing xsuch that $U^{\gamma} \subseteq V$.

(ii) Let γ be an operation on $\beta O(X)$. Then γ is said to be β -regular if for each $x \in X$ and for every pair of β -open sets U and V containing x, there exists a β -open set W such that $x \in W$ and $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$.

Theorem 2. Let (X, τ) be a topological space and γ an operation on $\beta O(X)$. Then the following statements are equivalent:

- (1) $\beta O(X) = \beta O(X)_{\gamma}$.
- (2) (X, τ) is a β - γ -regular space.
- (3) For every $x \in X$ and every β -open set U of (X, τ) containing x there exists a β - γ -open set W of (X, τ) such that $x \in W$ and $W \subseteq U$.

Proof. (1) \Rightarrow (2): Let $x \in X$ and let V be a β -open set containing x. Then by assumption, V is a β - γ -open set. This implies that for each $x \in V$, there exists a β - γ -open set U such that $U^{\gamma} \subseteq V$. Therefore (X, τ) is a β - γ -regular space.

 $(2) \Rightarrow (3)$: Let $x \in X$ and let U be a β -open set containing x. Then by (2), there is a β -open set W containing x and $W \subseteq W^{\gamma} \subseteq U$. Applying (2) to set W shows that W is β - γ -open. Hence W is a β - γ -open set containing x such that $W \subseteq U$.

 $(3) \Rightarrow (1)$: By (3) and Theorem 1 (iii), it follows that every β -open set is β - γ -open, i.e., $\beta O(X) \subseteq \beta O(X)_{\gamma}$. Also from Theorem 1 (i), $\beta O(X)_{\gamma} \subseteq \beta O(X)$. Hence we have the result.

Theorem 3. Let γ be a β -regular operation on $\beta O(X)$. Then the following statements hold:

- (i) If A and B are β-γ-open sets in (X, τ), then A ∩ B is also a β-γ-open set in (X, τ).
- (ii) $\beta O(X)_{\gamma}$ forms a topology on X.

Proof. (i): Let $x \in A \cap B$. Since A and B are β - γ -open sets, there exist β -open sets U and V such that $x \in U, V$ and $U^{\gamma} \subseteq A$ and $V^{\gamma} \subseteq B$. By β -regularity of γ , there exists a β -open set W containing x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma} \subseteq A \cap B$. Therefore $A \cap B$ is a β - γ -open set.

(ii): It follows by (i) above and Theorem 1 (iii).

Definition 7. Let γ be an operation on $\beta O(X)$. The set A is said to be β - γ -closed if $X \setminus A$ is β - γ -open.

Definition 8. Let γ be an operation on $\beta O(X)$. The point $x \in X$ is said to be β - γ -closure of the set A if $U^{\gamma} \cap A \neq \emptyset$ for each β -open set U containing x. $\beta Cl_{\gamma}(A)$ denotes the β - γ -closure of a set A.

Definition 9. Let γ be an operation on $\beta O(X)$. Then $\beta O(X)_{\gamma}$ -Cl(A) is defined as the intersection of all β - γ -closed sets containing A.

Theorem 4. Let (X, τ) be a topological space and A a subset of X. Let γ be an operation on $\beta O(X)$. Then for each point $y \in X, y \in \beta O(X)_{\gamma}$ -Cl(A) if and only if $V \cap A \neq \emptyset$ for every $V \in \beta O(X)_{\gamma}$ such that $y \in V$.

Proof. Let $E = \{y \in X \mid (V \cap A) \neq \emptyset$ for every $V \in \beta O(X)_{\gamma}$ and $y \in V\}$. To prove the theorem, it is enough to show that $E = \beta O(X)_{\gamma} - Cl(A)$. Let $x \notin E$. Then there exists a $V \in \beta O(X)_{\gamma}$ such that $V \cap A = \emptyset$. This implies that $X \setminus V$ is β - γ -closed and $A \subseteq X \setminus V$. Hence $\beta O(X)_{\gamma} - Cl(A) \subseteq X \setminus V$. It follows that $x \notin \beta O(X)_{\gamma} - Cl(A)$. Thus $\beta O(X)_{\gamma} - Cl(A) \subseteq E$. Conversely, let $x \notin \beta O(X)_{\gamma} - Cl(A)$. Then there exists a β - γ closed set F such that $A \subseteq F$ and $x \notin F$. Then we have $x \in X \setminus F, X \setminus F \in \beta O(X)_{\gamma}$ and $(X \setminus F) \cap A = \emptyset$. This implies that $x \notin E$. Hence $E \subseteq \beta O(X)_{\gamma} - Cl(A)$. \Box

Theorem 5. Let (X, τ) be a topological space, A and B subsets of X and γ an operation on $\beta O(X)$. Then the following relations holds:

- (i) The set $\beta O(X)_{\gamma}$ -Cl(A) is β - γ -closed and $A \subseteq \beta O(X)_{\gamma}$ -Cl(A).
- (ii) A is β - γ -closed if and only if $A = \beta O(X)_{\gamma}$ -Cl(A).
- (iii) If $A \subseteq B$, then $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq \beta O(X)_{\gamma}$ -Cl(B).
- $(iv) \ (\beta O(X)_{\gamma} Cl(A)) \cup (\beta O(X)_{\gamma} Cl(B)) \subseteq (\beta O(X)_{\gamma} Cl(A \cup B)).$
- (v) If γ is β -regular, then $(\beta O(X)_{\gamma}-Cl(A)) \cup (\beta O(X)_{\gamma}-Cl(B)) = (\beta O(X)_{\gamma}-Cl(A \cup B)).$
- (vi) $(\beta O(X)_{\gamma} Cl(A \cap B)) \subseteq (\beta O(X)_{\gamma} Cl(A)) \cap (\beta O(X)_{\gamma} Cl(B)).$
- (vii) $(\beta O(X)_{\gamma} Cl(\beta O(X)_{\gamma} Cl(A))) = \beta O(X)_{\gamma} Cl(A)).$

Proof. (i): It is obvious from Theorem 1 (iii), Definitions 7 and 9.

- (ii): It is clear from (i), Definitions 7, 9.
- (iii): It is obvious from Definition 9.
- (iv), (vi): These proofs are obvious from (iii).

(v): Let $x \notin (\beta O(X)_{\gamma}-Cl(A)) \cup (\beta O(X)_{\gamma}-Cl(B))$. Then there exists two β - γ -open sets U and V containing x such that $U \cap A = \emptyset$ and $V \cap B = \emptyset$. By Theorem 3

(i), it is proved that $U \cap V$ is β - γ -open in (X, τ) such that $(U \cap V) \cap (A \cup B) = \emptyset$. Thus we have $x \notin (\beta O(X)_{\gamma} - Cl(A \cup B))$ and hence $\beta O(X)_{\gamma} - Cl(A \cup B) \cup (\beta O(X)_{\gamma} - Cl(A)) \subseteq (\beta O(X)_{\gamma} - Cl(B))$. Using (iv), we have the equality.

(vii): From (i), we have $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq \beta O(X)_{\gamma}$ - $Cl(\beta O(X)_{\gamma}$ -Cl(A)). For $\beta O(X)_{\gamma}$ - $Cl(\beta O(X)_{\gamma}$ - $Cl(A)) \subseteq \beta O(X)_{\gamma}$ -Cl(A), let $x \in \beta O(X)_{\gamma}$ - $Cl(\beta O(X)_{\gamma}$ -Cl(A)) and V be any β - γ -open set containing x. We claim that $V \cap A \neq \emptyset$. Indeed, by Theorem 4, $V \cap (\beta O(X)_{\gamma}$ - $Cl(A)) \neq \emptyset$ and so there exists a point z such that $z \in V$ and $z \in \beta O(X)_{\gamma}$ -Cl(A). Moreover, by Theorem 4, for a point z, it is shown that $V \cap A \neq \emptyset$. Thus, we have that for any point $x \in V, V \cap A \neq \emptyset$ and so $x \in \beta O(X)_{\gamma}$ -Cl(A). Hence we conclude that $\beta O(X)_{\gamma}$ - $Cl(\beta O(X)_{\gamma}$ - $Cl(A)) \subseteq \beta O(X)_{\gamma}$ -Cl(A). \Box

Theorem 6. Let $\gamma : \beta O(X) \to P(X)$ be an operation on $\beta O(X)$ and A and B subsets of X. Then the following relations hold:

- (i) $\beta Cl_{\gamma}(A)$ is a β -closed set in (X, τ) and $A \subseteq \beta Cl_{\gamma}(A)$.
- (ii) A is β - γ -closed in (X, τ) if and only if $A = \beta Cl_{\gamma}(A)$ holds.
- (iii) If (X, τ) is β - γ -regular, then $\beta Cl_{\gamma}(A) = \beta Cl(A)$.
- (iv) If $A \subseteq B$, then $\beta Cl_{\gamma}(A) \subseteq \beta Cl_{\gamma}(B)$.
- (v) $\beta Cl_{\gamma}(A) \cup \beta Cl_{\gamma}(B) \subseteq \beta Cl_{\gamma}(A \cup B)$ holds for any subsets A and B of X.
- (vi) Let γ be a β -regular operation on $\beta O(X)$, then $\beta Cl_{\gamma}(A \cup B) = \beta Cl_{\gamma}(A) \cup \beta Cl_{\gamma}(B)$ holds for any subsets A and B of X.
- (vii) $\beta Cl_{\gamma}(A \cap B) \subseteq \beta Cl_{\gamma}(A) \cap \beta Cl_{\gamma}(B)$ holds.

(viii) If γ is β -open, then $\beta Cl_{\gamma}(A) = \beta O(X)_{\gamma} - Cl(A)$ and $\beta Cl_{\gamma}(\beta Cl_{\gamma}(A)) = \beta Cl_{\gamma}(A)$.

Proof. (i): Let $x \in \beta Cl(\beta Cl_{\gamma}(A))$. Then $U \cap \beta Cl_{\gamma}(A) \neq \emptyset$ for every β -open set U containing x. Let $y \in U \cap \beta Cl_{\gamma}(A)$. Then $y \in U$ and $y \in \beta Cl_{\gamma}(A)$. Since U is a β -open set containing y, this implies $U^{\gamma} \cap A \neq \emptyset$. Thus, $x \in \beta Cl_{\gamma}(A)$. Hence $\beta Cl(\beta Cl_{\gamma}(A)) \subseteq \beta Cl_{\gamma}(A)$. This implies that $\beta Cl_{\gamma}(A)$ is a β -closed set (from Definition 2.1). Also, $A \subseteq \beta Cl_{\gamma}(A)$ is clear by Definition 8.

(ii) (Necessity): Suppose that $X \setminus A$ is β - γ -open in (X, τ) . We claim that $\beta Cl_{\gamma}(A) \subseteq A$. Let $x \notin A$. There exists a β -open set U containing x such that $U^{\gamma} \subseteq X \setminus A$, i.e., $U^{\gamma} \cap A = \emptyset$. Hence using Definition 8, we have that $x \notin \beta Cl_{\gamma}(A)$ and so $\beta Cl_{\gamma}(A) \subseteq A$. So by (i), it is proved that $A = \beta Cl_{\gamma}(A)$.

(ii) (Sufficiency): Suppose that $A = \beta Cl_{\gamma}(A)$. Let $x \in X \setminus A$. Since $x \notin \beta Cl_{\gamma}(A)$, there exists a β -open set U containing x such that $U^{\gamma} \cap A = \emptyset$, i.e., $U^{\gamma} \subseteq X \setminus A$, namely $X \setminus A$ is β - γ -open in (X, τ) and so A is β - γ -closed.

(iii): By Definition 8, we have $\beta Cl(A) \subseteq \beta Cl_{\gamma}(A)$. Let $x \notin \beta Cl(A)$. Then, there exists a β -open set U containing x such that $U \cap A = \emptyset$. Using β - γ -regularity of (X, τ) , there exist a β -open set V containing x such that $V^{\gamma} \subseteq U$ and so $V^{\gamma} \cap A = \emptyset$. Thus we have that $x \notin \beta Cl_{\gamma}(A)$. Therefore we have that $\beta Cl_{\gamma}(A) \subseteq \beta Cl(A)$.

(iv): It is obvious by Definition 8.

(v): It is obvious from (iv).

(vi): It is enough to show that $\beta Cl_{\gamma}(A \cup B) \subseteq \beta Cl_{\gamma}(A) \cup \beta Cl_{\gamma}(B)$. Let $x \notin \beta Cl_{\gamma}(A) \cup \beta Cl_{\gamma}(B)$. Then, there exist β -open sets U and V such that $x \in U, x \in V, U^{\gamma} \cap A = \emptyset$ and $V^{\gamma} \cap B = \emptyset$. Since γ is β -regular, by Definition 6, there exists a β -open set W containing x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$. Thus we have $W^{\gamma} \cap (A \cup B) \subseteq (U^{\gamma} \cap V^{\gamma}) \cap (A \cup B) \subseteq (U^{\gamma} \cap A) \cup (V^{\gamma} \cap B) = \emptyset$, i.e., $W^{\gamma} \cap (A \cup B) = \emptyset$. Hence $x \notin \beta Cl_{\gamma}(A \cup B)$ and so $\beta Cl_{\gamma}(A \cup B) \subseteq \beta Cl_{\gamma}(A) \cup \beta Cl_{\gamma}(B)$.

(vii): It is obvious by Definition 8.

(viii): By Theorem 5 (i), we have $\beta Cl_{\gamma}(A) \subseteq \beta O(X)_{\gamma} - Cl(A)$. Now we prove that $\beta O(X)_{\gamma} - Cl(A) \subseteq \beta Cl_{\gamma}(A)$. Let $x \notin \beta Cl_{\gamma}(A)$. Then, there exists a β -open set U containing x such that $U^{\gamma} \cap A = \emptyset$. Since γ is β -open, there exists a β - γ -open set S such that $x \in S \subseteq U^{\gamma}$. Therefore $S \cap A = \emptyset$. This implies that $x \notin \beta O(X)_{\gamma} - Cl(A)$ and so $\beta O(X)_{\gamma} - Cl(A) = \beta Cl_{\gamma}(A)$. Since $\beta O(X)_{\gamma} - Cl(\beta O(X)_{\gamma} - Cl(A)) = \beta O(X)_{\gamma} -$ Cl(A) (Theorem 5 (vii)). Hence we have that $\beta Cl_{\gamma}(\beta Cl_{\gamma}(A)) = \beta Cl_{\gamma}(A)$.

Remark 2. We cannot remove the assumption of β -regularity of γ in Theorem 6 (vi). Consider Example 1 and let $\gamma : \beta O(X) \to P(X)$ be an operation defined by $\gamma(A) := Cl(A)$ for any $A \in \beta O(X)$. Now $\beta O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\beta O(X)_{\gamma} = \{\emptyset, X, \{b, c\}, \{a, c\}\}$. Let $A = \{a\}$ and $B = \{b\}$. Then, $\beta Cl_{\gamma}(A \cup B) = X; \beta Cl_{\gamma}(A) = \{a\}; \beta Cl_{\gamma}(B) = \{b\}$. The operation γ is not β -regular.

Theorem 7. For any subset A of a topological space (X, τ) and any operation $\gamma : \beta O(X) \to P(X)$, the following inclusions hold.

- (i) $\beta Cl(A) \subseteq \beta Cl_{\gamma}(A) \subseteq \beta O(X)_{\gamma} Cl(A) \subseteq \tau_{\gamma} Cl(A).$
- (ii) $\beta Cl(A) \subseteq Cl(A) \subseteq Cl_{\gamma}(A) \subseteq \tau_{\gamma} Cl(A).$

Proof. (i): The implication $\beta Cl(A) \subseteq \beta Cl_{\gamma}(A)$ is obtained by Definitions 2 and 8. The implication $\beta Cl_{\gamma}(A) \subseteq \beta O(X)_{\gamma}$ -Cl(A) is obtained from Definitions 5, 8 and 9. The implication $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq \tau_{\gamma}$ -Cl(A) is obtained from Definition 9.

(ii): The implication $\beta Cl(A) \subseteq Cl(A)$ is trivial, the implication $Cl(A) \subseteq Cl_{\gamma}(A)$ is obtained by Definition 3. The implication $Cl_{\gamma}(A) \subseteq \tau_{\gamma}$ -Cl(A) is obtained from Definitions 3 and 9.

Theorem 8. Let (X, τ) be a topological space, A a subset of X and γ an operation on $\beta O(X)$. Then the following are equivalent.

- (1) A is β - γ -open.
- (2) $\beta Cl_{\gamma}(X \setminus A) = X \setminus A.$
- (3) $\beta O(X)_{\gamma}$ - $Cl(X \setminus A) = X \setminus A$.
- (4) $X \setminus A$ is β - γ -closed.
- **Proof.** (1) \Leftrightarrow (2): It is obtained by Theorem 6(ii). (3) \Leftrightarrow (4): It is proved by Theorem 5 (ii). (4) \Leftrightarrow (1): It is proved by Definitions 9 and 7.

3. β - γ - T_i Spaces

Definition 10. (i) A space (X, τ) is called $\beta - \gamma - T_0$ if for any two distinct points $x, y \in X$, there exists a β -open set U such that either $x \in U$ and $y \notin U^{\gamma}$ or $y \in U$ and $x \notin U^{\gamma}$.

(ii) A space (X, τ) is called a $\beta - \gamma - T'_0$ if for any two distinct points $x, y \in X$, there exists $\beta - \gamma$ -open set U such that either $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$.

Definition 11. (i). A space (X, τ) is called $\beta - \gamma - T_1$ if for any two distinct points $x, y \in X$, there exist two β -open sets U and V containing x and y, respectively, such that $y \notin U^{\gamma}$ and $x \notin V^{\gamma}$.

(ii) A space (X, τ) is called $\beta - \gamma - T'_1$ if for any two distinct points $x, y \in X$, there exists two $\beta - \gamma$ -open sets U and V containing x, y respectively such that $y \notin U$ and $x \notin V$.

Definition 12. (i) A space (X, τ) is called $\beta - \gamma - T_2$ if for any two distinct points $x, y \in X$, there exists β -open set U, V such that $x \in U, y \in V$ and $U^{\gamma} \cap V^{\gamma} = \emptyset$. (ii) A space (X, τ) is called $\beta - \gamma - T'_2$ if for any two distinct points $x, y \in X$, there exist $\beta - \gamma$ -open sets U, V such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 13. Let γ be an operation on $\beta O(X)$. Then γ is said to be β -open if for each point $x \in X$ and for every open set U containing x, there exists a β - γ -open set V such that $x \in V$ and $V \subseteq U^{\gamma}$.

Theorem 9.

- (i) A space (X, τ) is a $\beta \gamma T'_0$ space if and only if, for every pair $x, y \in X$ with $x \neq y, \beta O(X)_{\gamma} Cl(x) \neq \beta O(X)_{\gamma} Cl(y)$.
- (ii) Let γ be a β -open operation. A space (X, τ) is a β - γ - T_0 space if and only if, for every pair $x, y \in X$ with $x \neq y$, $\beta Cl_{\gamma}(\{x\}) \neq \beta Cl_{\gamma}(\{y\})$.
- (iii) Let γ be a β -open operation. A space (X, τ) is $\beta \gamma T_0$ if and only if it is $\beta \gamma T'_0$.

Proof. (i) (Necessity): Let x and y be any two distinct points of a β - γ - T'_0 space (X, τ) . Then, by definition, we assume that there exists a β - γ -open set U such that $x \in U$ and $y \notin U$. Hence $y \in X \setminus U$. Because $X \setminus U$ is a β - γ -closed set, we have $\beta O(X)_{\gamma}$ - $Cl(\{y\}) \subseteq X \setminus U$ and so $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$.

(i) (Sufficiency): Suppose that for any $x, y \in X, x \neq y$. Thus we have $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$. Thus we assume that there exists $z \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$ such that $z \notin \beta O(X)_{\gamma}$ - $Cl(\{y\})$. We shall prove that $x \notin \beta O(X)_{\gamma}$ - $Cl(\{y\})$. Indeed if $x \in \beta O(X)_{\gamma}$ - $Cl(\{y\})$, then we get $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq \beta O(X)_{\gamma}$ - $Cl(\{y\})$ (by Definition and Theorem 5 (iii)). This contradiction shows that $X \setminus (\beta O(X)_{\gamma}$ - $Cl(\{y\}))$ is a β - γ -open set containing x but not y. Hence (X, τ) is a β - γ - T'_0 space.

(ii) (Necessity): Let x and y be any two distinct points of a β - γ - T'_0 space (X, τ) . Then by definition, we assume that there exists a β -open set U such that $x \in U$ and $y \notin U^{\gamma}$. It follows from the assumption that there exists a β - γ -open set S such that $x \in S$ and $S \subseteq U^{\gamma}$. Hence $y \in X \setminus U^{\gamma} \subseteq X \setminus S$. Because $X \setminus S$ is a β - γ -closed set, we obtain that $\beta Cl_{\gamma}(\{y\}) \subseteq X \setminus S$ and so $\beta Cl_{\gamma}(\{x\}) \neq \beta Cl_{\gamma}(\{y\})$.

(ii) (Sufficiency): Suppose that $x \neq y$ for any $x, y \in X$. Then we have that $\beta Cl_{\gamma}(\{x\}) \neq \beta Cl_{\gamma}(\{y\})$. Thus we assume that there exists $z \in \beta Cl_{\gamma}(\{x\})$ but $z \notin \beta Cl_{\gamma}(\{y\})$. If $x \in \beta Cl_{\gamma}(\{y\})$, then we get $\beta Cl_{\gamma}(\{x\}) \subseteq \beta Cl_{\gamma}(\{y\})$ (Theorem 5 (iii)). This implies that $z \in \beta Cl_{\gamma}(\{y\})$. This contradiction shows that $x \notin \beta Cl_{\gamma}(\{y\})$. So by Definition 8, there exists a β -open set W such that $x \in W$ and $W^{\gamma} \cap \{y\} = \emptyset$. Thus, we have that $x \in W$ and $y \notin W^{\gamma}$. Hence (X, τ) is β - γ - T_0 .

(iii): This follows from (i), (ii) and the fact that, for any subset A of (X, τ) , $\beta O(X)_{\gamma} - Cl(A) = \beta Cl_{\gamma}(A)$ holds under the assumption that γ is β -open (Theorem 6 (iii)).

Definition 14. A space (X, τ) is said to be $\beta - \gamma - T_{1/2}$ if every $\beta - \gamma - g$.closed set of (X, τ) is $\beta - \gamma$ -closed.

Theorem 10. Let (X, τ) be a topological space and γ be an operation on $\beta O(X)$. Then the following statements are equivalent:

- (1) A is β - γ -g.closed in (X, τ) .
- (2) $(\beta O(X)_{\gamma} Cl(x)) \cap A \neq \emptyset$ for every $x \in \beta Cl_{\gamma}(A)$.
- (3) $\beta Cl_{\gamma}(A) \subseteq \beta O(X)_{\gamma}$ -Ker(A) holds, where $\beta O(X)_{\gamma}$ -Ker(E) = $\cap \{V | E \subseteq V, V \in \beta O(X)_{\gamma}\}$ for any subset E of (X, τ) .

Proof. (1) \Rightarrow (2): Let A be a β - γ -g.closed set of (X, τ) . Suppose that there exists a $x \in \beta Cl_{\gamma}(A)$ such that $(\beta O(X)_{\gamma}-Cl(\{x\})) \cap A = \emptyset$. By Theorem 5 (i), $\beta O(X)_{\gamma}-Cl(\{x\})$ is β - γ -closed. Since $A \subseteq X \setminus (\beta O(X)_{\gamma}-Cl(\{x\}))$ and A is β - γ -g.closed, we have that $\beta Cl_{\gamma}(A) \subseteq X \setminus (\beta O(X)_{\gamma}-Cl(\{x\}))$ and hence $x \notin \beta Cl_{\gamma}(A)$. This is a contradiction. Therefore, $(\beta O(X)_{\gamma}-Cl(\{x\})) \cap A \neq \emptyset$.

 $(2)\Rightarrow(3)$: Let $x \in \beta Cl_{\gamma}(A)$. By (2), there exists a point z such that $z \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$ and $z \in A$. Let $U \in \beta O(X)_{\gamma}$ be a subset of X such that $A \subseteq U$. Since $z \in U$ and $z \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$, we have that $U \cap \{x\} \neq \emptyset$. Hence we show that $x \in \beta O(X)_{\gamma}$ -Ker(A). Therefore $\beta Cl_{\gamma}(A) \subseteq (\beta O(X)_{\gamma}$ -Ker(A)).

(3) \Rightarrow (1): Let U be any β - γ -open set such that $A \subseteq U$. Let x be a point such that $x \in \beta Cl_{\gamma}(A)$. By (3), $x \in \beta O(X)_{\gamma}$ -Ker(A) holds. So we have $x \in U$ because $A \subseteq U$ and $U \in \beta O(X)_{\gamma}$.

Theorem 11. Let (X, τ) be a topological space and γ an operation on $\beta O(X)$. If a subset A of X is β - γ -g.closed, then $\beta Cl_{\gamma}(A) \setminus A$ does not contain any non-empty β - γ -closed set.

Proof. Suppose that there exists a non-empty β - γ -closed set F such that $F \subseteq \beta Cl_{\gamma}(A) \setminus A$. Then we have $A \subseteq X \setminus F$ and $X \setminus F$ is β - γ -open. It follows from the assumption that $\beta Cl_{\gamma}(A) \subseteq X \setminus F$ and so $F \subseteq (\beta Cl_{\gamma}(A) \setminus A) \cap (X \setminus \beta Cl_{\gamma}(A))$. Therefore, we have $F = \emptyset$.

Remark 3. In the above theorem, if γ is a β -open operation, then the converse of the above theorem is true.

Proof. Let U be a β - γ -open set such that $A \subseteq U$. Since γ is a β -open operation, it follows from Theorem 6 (iii) that $\beta Cl(A)$ is β - γ -closed in (X, τ) . Thus by Theorem 6 (iii) and Definition 7, we have $\beta Cl(A) \cap (X \setminus U) = F$ is β - γ -closed in (X, τ) . Since $X \setminus U \subseteq X \setminus A, F \subset \beta Cl(A) \setminus A$. Using the assumptions of the converse of Theorem 11 above, $F = \emptyset$ and hence $\beta Cl_{\gamma}(A) \subseteq U$.

Theorem 12. Let (X, γ) be a topological space and γ an operation on $\beta O(X)$. Then for each $x \in X, \{x\}$ is β - γ -closed or $X \setminus \{x\}$ is β - γ -g.closed in (X, τ) .

Proof. Suppose that $\{x\}$ is not β - γ -closed, then $X \setminus \{x\}$ is not β - γ -open. Let U be any β - γ -open set such that $X \setminus \{x\} \subseteq U$. Then U = X. Hence, $\beta Cl_{\gamma}(X \setminus \{x\}) \subseteq U$. Therefore, $X \setminus \{x\}$ is a β - γ -g.closed set.

Theorem 13. Let (X, τ) be a topological space and γ an operation on $\beta O(X)$. Then, the following properties are equivalent.

- (1) A space (X, τ) is $\beta \gamma T_{1/2}$.
- (2) For each $x \in X$, $\{x\}$ is β - γ -closed or β - γ -open.

Proof. (1) \Rightarrow (2): Suppose $\{x\}$ is not β - γ -closed in (X, τ) . Then, $X \setminus \{x\}$ is β - γ -g.closed by Theorem 12. Since (X, τ) is a β - γ - $T_{1/2}$ space, so by definition, $X \setminus \{x\}$ is β - γ -closed and so $\{x\}$ is β - γ -open.

 $(2) \Rightarrow (1)$: Let F be a β - γ -g.closed set in (X, τ) . We shall prove that $\beta Cl_{\gamma}(F) = F$ (from Theorem 6 (ii)). It is sufficient to show that $\beta Cl_{\gamma}(F) \subseteq F$. Assume that there exists a point x such that $x \in \beta Cl_{\gamma}(F) \setminus F$. Then by assumption, $\{x\}$ is β - γ -closed or β - γ -open.

Case 1. $\{x\}$ is a β - γ -closed set: for this case, we have a β - γ -closed set $\{x\}$ such that $\{x\} \subseteq \beta Cl_{\gamma}(F) \setminus F$. This is a contradiction to Theorem 11.

Case 2. $\{x\}$ is a β - γ -open set: we have $x \in \beta O(X)_{\gamma}$ -Cl(F). Since $\{x\}$ is β - γ -open, it implies that $\{x\} \cap F \neq \emptyset$ by Theorem 4. This is a contradiction. Thus we have $\beta Cl_{\gamma}(F) = F$ and so by Theorem 6 (ii), F is β - γ -closed.

Theorem 14. For a topological space (X, τ) , let γ be an operation on $\beta O(X)$.

- (i) Then, the following properties are equivalent.
 - (1) (X, τ) is $\beta \gamma T_1$.
 - (2) For every point $x \in X$, $\{x\}$ is a β - γ -closed set.
 - (3) (X, τ) is $\beta \gamma T'_1$.
- (ii) Every $\beta \gamma T'_i$ space is $\beta \gamma T_i$, where $i \in \{2, 0\}$.
- (iii) Every β - γ - T_2 space is β - γ - T_1 .
- (iv) Every $\beta \gamma T_1$ space is $\beta \gamma T_{1/2}$.
- (v) Every $\beta \gamma T_{1/2}$ space is $\beta \gamma T'_0$.
- (vi) Every $\beta \gamma T'_i$ space is $\beta \gamma T'_{i-1}$, where $i \in \{2, 1\}$.

Proof. (i) (1) \Rightarrow (2): Let $x \in X$ be a point. For each point $y \in X \setminus \{x\}$, there exists a β -open set V_y such that $y \in V_y$ and $x \notin (V_y)^{\gamma}$. Then $X \setminus \{x\} = \bigcup \{(V_y)^{\gamma} | y \in X \setminus \{x\}\}$. It is shown that $X \setminus \{x\}$ is β - γ -open in (X, τ) .

(2) \Rightarrow (3): Let x and y be two distinct points of X. By (2), $X \setminus \{x\}$ and $X \setminus \{y\}$ are required β - γ -open sets such that $y \in X \setminus \{x\}, x \notin X \setminus \{x\}$ and $x \in X \setminus \{y\}, x \notin X \setminus \{y\}$.

(3) \Rightarrow (1): It is shown that if $x \in U$, where $U \in \beta O(X)_{\gamma}$, then there exists a β -open set V such that $x \in V \subseteq V^{\gamma} \subseteq U$. Using (3), we have that (X, τ) is β - γ - T'_1 . (ii), (iii), (vi): These proofs are obvious by definition.

(iv): This follows from (i) above and Theorem 13.

(v): This follows from Theorem 13 and Definition 10 (ii).

Remark 4. By Theorems 13 and 14 we have the following diagram of implications:

$$\begin{array}{cccc} \beta-\gamma-T_{2}^{\prime} \Rightarrow & \beta-\gamma-T_{1}^{\prime} & \Rightarrow & \beta-\gamma-T_{0}^{\prime} \\ & \Downarrow & & \Downarrow & & \downarrow \\ \beta-\gamma-T_{2} \Rightarrow & \beta-\gamma-T_{1} & & \beta-\gamma-T_{0} \\ & & \swarrow & & \swarrow \\ & & \beta-\gamma-T_{1/2} \end{array}$$

Remark 5. None of the above reverse implications (except $\beta - \gamma - T'_2 \Rightarrow \beta - \gamma - T_2$ and $\beta - \gamma - T'_1 \Rightarrow \beta - \gamma - T_1$) are true as shown in examples below.

(i) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Define an operation γ on $\beta O(X)$ such that $A^{\gamma} = A$ if $b \in A$; $A^{\gamma} = Cl(A)$ if $b \notin A$. Then (X, τ) is $\beta - \gamma - T_0$ but not $\beta - \gamma - T_{1/2}$.

(ii) Consider Example 1. There (X, τ) is $\beta - \gamma - T_{1/2}$ but not $\beta - \gamma - T_1$.

(iii) Let $X = \{a, b, c\}, \tau = P(X)$, the power set on X. Define an operation γ on $\beta O(X)$ such that $A^{\gamma} = A \cup \{c\}$ if $A = \{a\}$ or $\{b\}$; $A^{\gamma} = A \cup \{a\}$ if $A = \{c\}$; $A^{\gamma} = A$ if $A \neq \{a\}, \{b\}, \{c\}$. Then (X, τ) is β - γ - T_1 but not β - γ - T_2 . Also, (X, τ) is β - γ - T'_1 (Theorem 14 (i)) but not β - γ - T'_2 .

(iv) Consider (i) above. Define the operation γ on $\beta O(X)$ such that $A^{\gamma} = A$ for every set A such that $A \neq \{a\}; A^{\gamma} = \{a, b\}$ if $A = \{a\}$. Then (X, τ) is $\beta - \gamma - T'_0$ but not $\beta - \gamma - T'_1$.

(v) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Define an operation γ on $\beta O(X)$ such that $\{a\}^{\gamma} = \{a, c\}, \{b\}^{\gamma} = \{a, b\}, \{a, b\}^{\gamma} = \{a, b\}, \{b, c\}^{\gamma} = \{a, b\}, \{b, c\}^{\gamma} = \{a, b\}, \{b, c\}^{\gamma} = \{a, c\}, \{a, c\}^{\gamma} = \{a, b\}, \emptyset^{\gamma} = \emptyset, X^{\gamma} = X$. Now the β - γ -open sets are $\{\emptyset, X, \{a, b\}\}$ and γ is not β -open. Then (X, τ) is not β - γ - T'_0 . Indeed for every β - γ -open set V_a containing a, we have $b \in V_a$, for every β - γ -open set V_b containing b, we have $a \in V_b$. Hence by Definition 1 (ii), (X, τ) is not β - γ - T'_0 .

Remark 6. In Remark 5, Example (v) shows that β -openness of γ in Theorem 9 (iii) cannot be dropped.

4. β -(γ , b)-continuous maps

Throughout Sections 4 and 5, let $\gamma : \beta O(X) \to P(X)$ and $b : \beta O(Y) \to P(Y)$ be operations on $\beta O(X)$ and $\beta O(Y)$, respectively.

Definition 15. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be β - (γ, b) -continuous if for each $x \in X$ and each β -open set V containing f(x), there exists a β -open set U such that $x \in U$ and $f(U^{\gamma}) \subseteq V^{b}$.

Theorem 15. Let $f: (X, \tau) \to (Y, \sigma)$ be a β - (γ, b) -continuous mapping. Then,

- (i) $f(\beta Cl_{\gamma}(A)) \subseteq \beta Cl_b(f(A))$ holds for every subset A of (X, τ) ,
- (ii) for every β -b-open set B of (Y, σ) , $f^{-1}(B)$ is β - γ -open, that is for any $B \in \beta O(Y)_b$, $f^{-1}(B) \subseteq \beta O(X)_{\gamma}$.

Proof. (i): Let $y \in f(\beta Cl_{\gamma}(A))$ and let V be any β -open set containing y. Then, there exists a point $x \in \beta Cl_{\gamma}(A)$ and a β -open set U containing x such that f(x) = y and $f(U^{\gamma}) \subseteq V^{b}$. We have $U^{\gamma} \cap A \neq \emptyset$. Therefore, $\emptyset \neq f(U^{\gamma} \cap A) \subseteq f(U^{\gamma}) \cap f(A) \subseteq V^{b} \cap f(A)$ and so $y \in \beta Cl_{b}(f(A))$.

(ii): Let B be a β -b-closed set. Then using (i) we have that $f(\beta Cl_{\gamma}(f^{-1}(B)) \subseteq \beta Cl_b(f(f^{-1}(B)) \subseteq \beta Cl_b(B) = B$. Thus, $\beta Cl_{\gamma}(f^{-1}(B)) \subseteq f^{-1}(B)$ and hence $(f^{-1}(B)) = \beta Cl_{\gamma}(f^{-1}(B))$. This implies that $f^{-1}(B)$ is β - γ -closed in (X, τ) . \Box

Remark 7. In Theorem 15, the properties of β - (γ, b) -continuity of f, (i) and (ii) are equivalent to each other if one of the following conditions (a) and (b) is satisfied:

- (a) (Y, σ) is a β -b-regular space,
- (b) b is a β -open operation.

Proof. It follows from the proof of Theorem 15 that we know the following implications: " β -(γ , b)-continuity of f" \Rightarrow (i) \Rightarrow (ii). Thus, under condition (a), we first show the implication: (ii) $\Rightarrow \beta$ -(γ , b)-continuity of f. Let $x \in X$ and let V be a β -open set containing f(x). Since (Y, σ) is a β -b-regular space, $V \in \beta O(Y)_b$. Then, by (ii) of Theorem 15, $x \in f^{-1}(V) \in \beta O(X)_{\gamma}$. So, by the definition of β -b-openness of $f^{-1}(V)$, there exists a β -open set U containing x such that $U^{\gamma} \subseteq f^{-1}(V)$ and so $f(U^{\gamma}) \subseteq V \subseteq V^b$. Therefore, f is β -(γ , b)-continuous.

Finally, under condition (b), we prove the implication: (ii) $\Rightarrow \beta$ -(γ , b)-continuity of f. Let $x \in X$ and let V be a β -open set containing f(x). Since b is β -open, there exists a β -b-open set U containing f(x) such that $U \subseteq V^b$. By (ii) of Theorem 15, $x \in f^{-1}(U) \in \beta O(X)_{\gamma}$ and so by definition of β - γ -openness of $f^{-1}(U)$, there exists a β -open set W containing x such that $W^{\gamma} \subseteq f^{-1}(U) \subseteq f^{-1}(V^b)$. Therefore, we have $f(W^{\gamma}) \subseteq V^b$ and so f is β -(γ , b)-continuous.

Definition 16. A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be

- (i) β -(γ , b)-closed, if for every β - γ -closed set A of (X, τ) , f(A) is β -b-closed in (Y, σ) ,
- (ii) β -(id,b)-closed, if f(F) is β -b-closed in (Y,σ) for every β -closed set F of (X,τ) .

Theorem 16. Suppose f is β - (γ, b) -continuous and f is β -(id, b)-closed. Then, the following properties hold.

(i) For every β - γ -g.closed set A of (X, τ) , the image f(A) is β -b-g.closed.

(ii) For every β -b-g.closed set B of (Y, σ) , $f^{-1}(B)$ is β - γ - g.closed.

Proof. (i): Let V be a β -b-open set in (Y, σ) such that $f(A) \subseteq V$. Then by Theorem 15 (ii), $f^{-1}(V)$ is β - γ -open. Since A is β - γ -g.closed and $A \subseteq f^{-1}(V)$, $\beta Cl_{\gamma}(A) \subseteq f^{-1}(V)$ holds and so $f(\beta Cl_{\gamma}(A)) \subseteq V$. Thus, $f(\beta Cl_{\gamma}(A))$ is β -b-closed as $\beta Cl_{\gamma}(A)$ is β -closed by Theorem 6 (i) and the assumption that f is β -(id, b)closed. Therefore $\beta Cl_b(f(A)) \subseteq \beta Cl_b(f(\beta Cl_{\gamma}(A))) = f(\beta Cl_{\gamma}(A)) \subseteq V$. Hence, f(A) is β -b-g.closed.

(ii): Let U be a β - γ -open set in (X, τ) such that $f^{-1}(B) \subseteq U$. Let $F = \beta Cl_{\gamma}(f^{-1}(B)) \cap (X \setminus U)$. Then by Theorem 6 (i), F is β -closed in (X, τ) . Since f is β -(id, b)-closed, f(F) is β -b-closed in (Y, σ) and $f(F) \subseteq f(\beta Cl_{\gamma}(f^{-1}(B)) \cap (X \setminus U)) \subseteq \beta Cl_{\gamma}(B) \setminus B$. By Theorem 11, $f(F) = \emptyset$ and so $F = \emptyset$. Hence $\beta Cl_{\gamma}(f^{-1}(B)) \subseteq U$. Therefore, $f^{-1}(B)$ is β - γ -g.closed in (X, τ) .

Theorem 17. Suppose that $f : (X, \tau) \to (Y, \sigma)$ is β - (γ, b) -continuous and β -(id, b)-closed. Then the following properties hold.

- (i) If f is injective and (Y, σ) is β -b- $T_{1/2}$, then (X, τ) is β - γ - $T_{1/2}$.
- (ii) If f is surjective and (X, τ) is $\beta \gamma T_{1/2}$, then (Y, σ) is $\beta b T_{1/2}$.

Proof. (i): Let A be a β - γ -g.closed set of (X, τ) . Then by Theorem 16 (i), f(A) is β -b-g.closed. Since (X, τ) is β - γ - $T_{1/2}$, f(A) is β -b-closed. By Theorem 16 (ii), $A = f^{-1}(f(A))$ is β - γ -closed. This implies A is β - γ -closed. Hence, (X, τ) is β - γ - $T_{1/2}$ space.

(ii): Let B is a β -b-g.closed set in (Y, σ) . By Theorem 16 (ii), $f^{-1}(B)$ is β - γ -g.closed. Since (X, τ) is β - γ - $T_{1/2}$, so $f^{-1}(B)$ is β - γ -closed. Therefore $B = f(f^{-1}(B))$ is β -b-closed in (Y, σ) . Hence, (Y, σ) is β -b- $T_{1/2}$ space.

Definition 17. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then f is said to be β - (γ, b) -homeomorphic, if f is bijective, β - (γ, b) -continuous and f^{-1} is β - (b, γ) -continuous.

Theorem 18. Suppose that a mapping $f : (X, \tau) \to (Y, \sigma)$ is β - (γ, b) -homeomorphic. If (X, τ) is β - γ - $T_{1/2}$, then (Y, σ) is β -b- $T_{1/2}$.

Proof. Let $\{y\}$ be a singleton set of (Y, σ) . Then there exists a point $x \in X$ such that y = f(x). By Theorem 13, $\{x\}$ is β - γ -open or β - γ -closed. Therefore by Theorem 15, $\{y\}$ is β -b-closed or β -b-open. Hence, (Y, σ) is β -b- $T_{1/2}$.

Theorem 19. Let $f : (X, \tau) \to (Y, \sigma)$ be a β - (γ, b) -continuous injection. If (Y, σ) is β -b- T_2 (resp. β -b- T_1), then (X, τ) is β - γ - T_2 (resp. β - γ - T_1).

Proof. Suppose that (Y, σ) is β -b- T_2 . Let x and y be distinct points of X. Then, there exist two β -open sets V and W of Y such that $f(x) \in V, f(y) \in W$ and $V^b \cap W^b = \emptyset$. Since f is β - (γ, b) -continuous, for V and W there exist two β -open sets U and S such that $x \in U, y \in S, f(U^{\gamma}) \subseteq V^b$ and $f(S^{\gamma}) \subseteq W^b$. Therefore, we have $U^{\gamma} \cap S^{\gamma} = \emptyset$ and hence (X, τ) is β - γ - T_2 . Similarly, we can prove the case of β - γ - T_1 .

5. β -closed graphs of mappings

In this section, we further investigate general operator approaches of closed graphs of mappings. Let $(X \times Y, \tau \times \sigma)$ be the product space of topological spaces (X, τ) and (Y, σ) and let $\rho : \beta O(X \times Y) \to P(X \times Y)$ be an operation on $\beta O(X \times Y)$.

Some topological properties on $\beta O(\prod_{i=1}^{n} X_i)$ are investigated in [2] and [7, Lemma 3.1], where $\{X_i | i \in \nabla\}$ is any family of topological spaces with an index set ∇ . For subsets $A \subseteq X$ and $B \subseteq Y, A \in \beta O(X)$ and $B \in \beta O(Y)$ if and only if $A \times B \in \beta O(X \times Y)$ hold. It is easily shown that $\beta O(X \times Y) \neq \beta O(X) \times \beta O(Y)$ similar to [6, Remark 8, Example 7]. Some properties of product functions involving *b*-closure and product spaces are studied in [2].

Definition 18. Let $(X, \tau), (Y, \sigma)$ be two topological spaces and b an operation on $\beta O(Y)$. We say that the graph G(f) of $f: X \to Y$ is β -b-closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists a β -open set U in X and V in Y contains x and y, respectively, such that $(U \times V^b) \cap G(f) = \emptyset$.

Example 2. Let $X = Y = \{x, y, z\}$ and $\tau = \sigma = \{\emptyset, X, \{x\}, \{x, y\}\}$; then $\beta O(X) = \beta O(Y) = \{\emptyset, X, \{x\}, \{x, y\}, \{x, z\}\}$ hold. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping defined by f(a) = z for every point $a \in X$. Define an operation b on $\beta O(Y)$ such that $A^b = A$ if $y \in A$ and $A^b = Cl(A)$ if $y \notin A$. Then, $G(f) = \{(x, z), (y, z), (z, z)\}$ and G(f) is β -b-closed.

Definition 19. An operation $\rho : \beta O(X \times Y) \to P(X \times Y)$ is said to be β -associated with γ and b, if $(U \times V)^{\rho} = U^{\gamma} \times V^{b}$ holds for each set $U \in \beta O(X)$ and $V \in \beta O(Y)$.

Example 3. (i) Let $X = Y = \{x, y, z\}$ and $\tau = \sigma = \{\emptyset, X, \{x\}, \{x, y\}\}$. Define an operation γ on $\beta O(X)$ such that $A^{\gamma} = A$ if $y \in A$ and $A^{\gamma} = Cl(A)$ if $y \notin A$. Let b be the closure operation on $\beta O(Y)$, i.e., $A^{b} = Cl(A)$ for every $A \in \beta O(Y)$. Let ρ be the operation on $\beta O(X \times Y)$ defined as $(A \times B)^{\rho} = A \times B$ if $(x, y) \in A \times B$ and $(A \times B)^{\rho} = Cl(A \times B)$ if $(x, y) \notin A \times B$. Then, this operation ρ is not β -associated with γ and b. Indeed, for β -open subsets $U = \{x\} \in \beta O(X)$ and $V = \{x, y\} \in \beta O(Y)$, we have $(U \times V)^{\rho} = U \times V \neq X \times Y$ and $U^{\gamma} = Cl(U) = X$ and $V^{b} = Cl(V) = Y$.

(ii) In general, for subsets $A \subseteq X$ and $B \subseteq Y$, $A \times B \subseteq Cl(A \times B)$ and $Cl(A \times B) = Cl(A) \times Cl(B)$ holds; especially, for subsets $A \in \beta O(X)$ and $B \in \beta O(Y)$, $A \times B \subseteq Cl(Int(Cl(A \times B)))$ and $Cl(Int(Cl(A \times B))) = Cl(Int(Cl(A))) \times Cl(Int(Cl(B)))$; and also, for any subset $U \in \beta O(X \times Y)$, $U \subseteq Cl(Int(Cl(U)))$ holds. Thus, the operations $id : \beta O(X \times Y) \to P(X \times Y)$, $Cl : \beta O(X \times Y) \to P(X \times Y)$ and $Cl \circ Int \circ Cl : \beta O(X \times Y) \to P(X \times Y)$ are well defined by id(U) := U, Cl(U) := Cl(U) and $Cl \circ Int \circ Cl(U) = Cl(Int(Cl(U)))$ for every $U \in \beta O(X \times Y)$, respectively; moreover, they satisfy the condition of Definition 19.

Definition 20. The operation $\rho : \beta O(X \times Y) \to P(X \times Y)$ is said to be β -regular with respect to γ and b, if for each point $(x, y) \in X \times Y$ and each β -open set W containing (x, y) there exist β -open sets U in (X, τ) and V in (Y, σ) such that $x \in U, y \in V$ and $U^{\gamma} \times V^{b} \subseteq W^{\rho}$.

Theorem 20. Let $\rho: \beta O(X \times X) \to P(X \times X)$ be a β -regular operation associated with γ and γ . If $f: (X, \tau) \to (Y, \sigma)$ a β - (γ, b) -continuous and (Y, σ) is β -b- T_2 space, then the set $A = \{(x, y) \in X \times X : f(x) = f(y)\}$ is a β - ρ -closed set of $(X \times X, \tau \times \tau)$.

Proof. We have to show that $\beta Cl_{\rho}(A) \subseteq A$. Let $(x, y) \in (X \times X) \setminus A$. Then, there exist two β -open sets U and V in (Y, σ) such that $f(x) \in U, f(y) \in V$ and $U^b \cap V^b = \emptyset$. Moreover, for each U and V there exist β -open sets W and S in (X, τ) such that $x \in W, y \in S$ and $f(W^{\gamma}) \subseteq U^b$ and $f(S^{\gamma}) \subseteq V^b$. Therefore we have $(W \times S)^{\rho} \cap A = \emptyset$, because $(x, y) \in W^{\gamma} \times S^{\gamma} = (W \times S)^{\rho}$ and $W \times S \in \beta O(X \times X)$. This shows that $(x, y) \notin \beta Cl_{\rho}(A)$.

Definition 21. Let (X, τ) be a topological space and γ an operation on $\beta O(X)$. A subset K of X is said to be β - γ -compact, if for every β -open cover $\{G_i : i \in \mathbb{N}\}$ of K there exists a finite subfamily $\{G_1, G_2, \ldots, G_n\}$ such that $K \subseteq (G_1)^{\gamma} \cup (G_2)^{\gamma} \cup \ldots \cup (G_n)^{\gamma}$.

Theorem 21. Suppose that $\gamma : \beta O(X) \to P(X)$ is β -regular and $\rho : \beta O(X \times Y) \to P(X \times Y)$ is β -regular with respect to γ and b. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping whose graph G(f) is β -b-closed in $(X \times Y, \tau \times \sigma)$. If a subset B is β -b-compact in (Y, σ) , then $f^{-1}(B)$ is β - γ -closed in (X, τ) .

Proof. Let $x \notin f^{-1}(B)$. Then $(x, y) \notin G(f)$ for each $y \in B$. Since $\beta Cl\rho(G(f)) \subseteq G(f)$, there exists a β -open set W in $(X \times Y, \tau \times \sigma)$ such that $(x, y) \in W$ and $W^{\rho} \cap G(f) = \emptyset$. Since ρ is β -regular with respect to γ and b (cf. Definition 20), for each $y \in B$ we can take two subsets $U(y) \in \beta O(X)$ and $V(y) \in \beta O(Y)$ such that $x \in U(y), y \in V(y)$ and $U(y)^{\gamma} \times V(y)^b \subseteq W^{\rho}$. Then we have $f(U(y)^{\gamma}) \cap V(y)^b = \emptyset$ and so $U(y)^{\gamma} \cap f^{-1}(V(y)^b) = \emptyset$. Since $\{V(y)|y \in B\}$ is a β -open cover of B, then by β -b-compactness there exists $y_1, y_2, \ldots, y_n \in B$ such that $B \subseteq V(y_1)^b \cup V(y_2)^b \cup \cdots \cup V(y_n)^b$. By β -regularity of γ (cf. Definition 6 (ii)), there exist a β -open set U such that $x \in U$ and $U^{\gamma} \subseteq U(y_1)^{\gamma} \cup U(y_2)^{\gamma} \cup \ldots U(y_n)^{\gamma}$. Therefore we have $U^{\gamma} \cap f^{-1}(B) \subseteq \bigcup_{i=1}^{n} (U^{\gamma} \cap f^{-1}(V(y_i)^b) \subseteq \bigcup_{i=1}^{n} (U(y_i)^{\gamma} \cap f^{-1}(V(y_i)^b) = \emptyset$. This shows that $x \notin \beta Cl_{\gamma}(f^{-1}(B))$. Therefore, we show $\beta Cl_{\gamma}(f^{-1}(B)) \subset f^{-1}(B)$ and so $f^{-1}(B)$ is β - γ -closed.

Acknowledgement

The author wishes to express his deep gratitude to the referees for their helpful comments and valuable suggestions.

References

- M. E. ABD EL-MONSEF, S. N. EL-DEEB, R. A. MAHMOUD, β-open sets and βcontinuous mappings, Bull. Fac. Sci. Assint Univ. 12(1983), 77–90.
- [2] M. E. ABD EL-MONSEF, A. N. GEAISA, R. A. MAHMOUD, β-regular spaces, Proc. Math. Phys. Soc. Egypt 60(1985), 47–52.
- [3] M. E. ABD EL-MONSEF, R. A. MAHMOUD, E. R. LASHIN, β-closure and β-interior, Rep. J. of. Fac. of. Edu. Ain. Shams. Univ. 10(1986), 235–245.
- [4] D. S. JANKOVIĆ, On functions with γ -closed graphs, Glasnik Math. 18(1983), 141–148.

- [5] S. KASAHARA, Operation-compact spaces, Math. Japonica. 24(1979), 97–105.
- [6] N. LEVINE, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36–41.
- [7] A. A. NASEF, T. NOIRI, Some weak forms of almost continuity, Acta Math. Hungar. 74(1997), 211–219.
- [8] H. OGATA, Operation on topological spaces and associated topology, Math. Japonica. 36(1991), 175–184.
- G. SAI SUNDRA KRISHNAN, M. GANSTER, K. BALACHANDRAN, Operation approaches on semi-open sets and applications, Kochi J. Math. 2(2007), 21–33.