
1
Introduction

Evolutionary computation (EC) is well recognized as
an effective method for solving many difficult optimization
problems. However, EC generally entails large
computational costs because it generally evaluates all
solution candidates in a population for every generation. To
overcome this disadvantage, parallel processing has been
utilized such as in a form of Cluster computing [1]. In
addition, in the late 1990s, Grid computing, which enables
high- performance computing by connecting computational
resources on the Internet, began applying EC for utilizing
high-speed networks [2, 3]. In this way, parallel and
distributed computing techniques have become widespread
as a means of increasing the processing speed of EC.

In recent years, graphics processing units (GPUs),
which were originally a device for graphics applications,
have attracted much research interest from the viewpoint of
low-cost, high-performance computing. Because GPUs
possess an architecture that is specialized for graphics
applications, they are good at processing simple and same
calculations with a large amount of data. On the other hand,
because of their special architecture, GPUs are not good at
processing tasks that include many conditional branches.
However, the performance of GPUs has rapidly been
improving in recent years such that their peak performance
is much higher than that of CPUs. Another point to be noted
is that GPU also has a higher power-to-watt ratio than CPU.
The concept of using GPU not only for graphics
applications but also for general-purpose applications is
called general-purpose computation on GPUs (GPGPU) [4,
5, 6, 7, 8]. GPGPU is growing rapidly in various fields
where low-cost and high-performance computation is
necessary and valuable.

GPGPU is also gaining popularity among EC
researchers, initially those in the field of genetic

511

M Oiso. et al.

ISSN 1330-3651

UDC/UDK 004.92.02:004.421.2

IMPLEMENTING GENETIC ALGORITHMS TO CUDA ENVIRONMENT
USING DATA PARALLELIZATION

Masashi Oiso, Yoshiyuki Matsumura, Toshiyuki Yasuda, Kazuhiro Ohkura

Computation methods of parallel problem solving using graphic processing units (GPUs) have attracted much research interests in recent years. Parallel
computation can be applied to genetic algorithms (GAs) in terms of the evaluation process of individuals in a population. This paper describes yet another
implementation method of GAs to the CUDA environment where CUDA is a general-purpose computation environment for GPUs provided by NVIDIA. The
major characteristic point of this study is that the parallel processing is adopted not only for individuals but also for the genes in an individual. The proposed
implementation is evaluated through eight test functions. We found that the proposed implementation method yields 7 6-18 4 times faster results than those of a
CPU implementation.

, ,

Keywords: Genetic Algorithms, GPU, CUDA

Original scientific paper

Računarske metode rješavanja paralelnih problema korištenjem grafičkih obradnih jedinica (GPUs) zadnjih su godina pobudile veliki interes. Paralelno
izračunavanje može primijeniti na genetske algoritme (GAs) u odnosu na proces evaluacije jedinki u populaciji. Ovaj rad opisuje još jednu metodu primjene
GAs na CUDAokruženje gdje je CUDAračunarsko okruženje opće namjene za GPUs koje daje NVIDIA. Osnovna karakteristika ovog istraživ

, ,

se
anja leži u tome

da se paralelna obrada koristi ne samo za jedinke nego i za gene u jedinki. Predložena implementacija se procjenjuje kroz osam ispitnih funkcija. Ustanovili smo
da predložena metoda implementacije daje 7 6-18 4 puta brže rezultate od onih kod primjene CPU.

Ključne riječi: genetski algoritmi, GPU, CUDA

Izvorni znanstveni članak

Implementiranje genetskih algoritama u CUDA okruženje upotrebom paralelizacije podataka

Tehni ki vjesnikč 18, 4(2011) 511-517,

programming [9, 10, 11, 12, 13]. The GA researchers soon
followed this trend. Pospichal and Jaros [14] adopted the
island model for implementation with the conditions of 64
islands and the population size of 256 in each island, and
they yielded a speedup ratio of 2,602 compared to the CPU
implementation. Tsutsui and Fujimoto [15] proposed an
implementation of distributed GA similar to the island
model for a population size of 11,520 in an experiment for
quadratic assignment problems and showed a speedup ratio
of 23 9 compared to the CPU implementation. They also
analyzed the peak performance of their implementation by
eliminating data transition between subpopulations, which
was the bottleneck of GPU calculation [16]. Debattisti et al.
[17] implemented the entire process of a simple GAto GPU,
except for the initialization process. They conducted their
experiments using the OneMax problems and achieved a
speedup rate of 26 for a population size of 512 and a genome
length of 256 compared to sequential execution on CPU.

Here, we can identify that all three implementation
methods have achieved high performance, generally
because they employed a population size larger than that
generally employed in GAs in order to achieve a sufficient
parallelization effect. In contrast, in this paper, yet another
implementation method of GA to GPU is proposed. This is
mainly based on the idea of adopting the parallelization not
only of individuals but also of genes. These two
parallelizations realize massive parallelization on GPU to
accelerate GA computation in a standard population size,
which would be more appropriate for utilizing the
characteristic of a many-core computation than the previous
related work.

The rest of this paper is organized as follows. Section 2
describes the development environments for GPGPU.
Section 3 presents the proposed implementation method of
GA to GPU. In Section 4, experiments of function
optimization problems are conducted to examine the basic
performance of the proposed method. Finally, Section 5
presents the conclusions of this paper.

,

Implementiranje genetskih algoritama u CUDA okruženje upotrebom paralelizacije podataka

512

Implementing genetic algorithms to CUDA environment using data parallelization

Technical Gazette 18, 4(2011) 511-517,

2
Development Environment for GPGPU
2.1
Brief History of Development Environment

2.2
CUDA Environment

Around the year 1999, GPU gained popularity and had
the specialized architecture to execute a fixed function
pipeline. With the installation of a programmable shader to
GPU, the degree of freedom of GPU calculation improved
dramatically. Thus GPU has been used for general-purpose
applications as GPGPU.

In the initial stage of GPGPU, programming using low-
level assembly languages was indispensable, and thus,
efforts were made on the implementation rather than on
designing of shader algorithms. Then, graphics shading
languages such as C for graphics (Cg) [18] by NVIDIA in
2002, High Level Shading Language (HLSL) [19] by
Microsoft, and OpenGL Shading Language (GLSL) [20]
were released, and GPGPU programming became easier to
use. However, an in-depth understanding of GPU
architecture and graphics processing is still required. As a
result, GPGPU was reserved for graphics programming
experts. Therefore, the development of high-level
languages has been highly anticipated.

In the next stage, since 2004, some development
environments have been proposed. Sh [21], was developed
in Waterloo University and consists of the C++ library.
Brook [22] was developed in Stanford University, which is
based on C language and was extended to deal with stream
data. In particular, Compute Unified Device Architecture
(CUDA) [23] was released by NVIDIA as a development
environment for their GPU. Although the development
language of CUDA is also extended C, CUDA has more
functions for GPGPU use than other development
environments. Therefore, the GPU implementation with
CUDAis much easier with previous environments.

In the CUDA environment, CPU, the main memory, is
called a "host", and GPU is called a "device". GPU is
considered to be a co-processor that can execute many
threads in parallel. Fig. 1 shows the hardware model of the
device. In Fig 1, the device has multiple streaming
multiprocessors (SMs), and each SM has multiple
streaming processors (SPs). The device executes a large
amount of threads in parallel on those processors for
accelerating the computation.

The CUDA environment employs an architecture
called single-instruction, multiple-thread. Threads are
grouped into thread blocks. Moreover, threads in a thread
block are separated into a warp at every 32 threads, and a
single warp is executed in an SM simultaneously. Then, the
throughput of GPU calculation decreases if the number of
threads in a thread block is not a multiple of 32.

Threads in a thread block can share data through the
shared memory on each SM. Threads can also refer to some
memory areas: register, constant cache, texture cache, and
global memory. The memory on SMs, such as shared
memory, can be referred to with almost no latency. On the
other hand, the global memory on VRAM causes a latency
of approximately 400-600 clock cycles when a thread
accesses it, although it can be referred to by all threads.
However, the latency can be concealed by executing many

.

threads in sequence.
Processes executed by the devices are described as

kernel functions, and the devices execute the kernel
responding to a call from the host. A kernel function
describes the process in a single thread, and the same kernel
is executed in many processors. Thus, the device works as
single-instruction multiple-data. Note that the functions for
executing on the host cannot be called on the device.

When we mount GA on GPU for speeding up
calculation, the data transfer between a host and a device
should be minimized by executing all operations of
evaluation, selection, and reproduction through GPU. In
each process, task parallelism is achieved by allocating the
operation to each individual in SM. Moreover, operations
for the elements of genes are allocated to CUDA cores for
data parallelism.

Fig. 2 illustrates the parallel processing model of GAon
the GPU environment proposed in this paper. The model
allocates an individual to an SM instead of allocating
multiple individuals as most related works do. The model
allocates each gene of an individual to an SP included in the
SM (this method is called data parallelization), considering
the CUDA architecture described in Section 2.2. The model

3
Implementation Method of GA to GPU
3.1
Parallel Processing Model

M Oiso. et al.

Figure 1 Hardware model of GPU in CUDA

Figure 2 Parallel processing model of GA on GPU

513Tehni ki vjesnikč 18, 4(2011) 511-517,

M Oiso. et al.

enables the acceleration of GA by utilizing many cores and
high memory bandwidth, and concealing the latency of
memory access by executing many threads sequentially.

As mentioned above, the processes of threads on GPU
are described as kernel functions in the CUDA
environment. The GA operations of threads are defined as
kernel functions, and GPU (the device) executes kernel
functions by codes from CPU (the host) side. Data transfer
between a host and a device is extremely slower compared
with that of on-chip memory, and therefore, to effectively
improve speed such transfers must be decreased. In the
following sections, the implementation methods of GA
operators on GPU are illustrated.

Because GAis a type of meta-heuristic algorithm, some
processes are executed on a probabilistic basis. However,
CUDA libraries do not include any functions of a random
number generator (RNG) at present, despite the fact that
RNG is naturally necessary for executing GA processes.
Then, we generate random numbers using an original kernel
of RNG. The kernel is called in each generation and it
outputs the array of the random number to the global
memory. The other kernels can read random numbers from
the array if necessary. In this paper, Xorshift [24] is adopted
as RNG in both CPU and GPU computations. Xorshift is so
fast and simple that it can be easily implemented to the
kernel.

The sorting process is executed for the selection
process. The sorting kernel sorts the population based on the
fitness of the individuals; however, the sorting algorithms
generally used in CPU implementation, such as Quicksort
and heap sort, are difficult to parallelize on GPU.
Furthermore, in the sort process of GA, Quicksort is used in
CPU, and Bitonicsort [25, 26] is used in GPU from CUDA
SDK. Bitonicsort can be executed only when the element
count is a power of 2; thus, it is sorted after adding the
dummy data to match the number, that is, the element count
a power of 2.

3.2
Implementation of GAOperators

3.2.1
Random Number Generator

3.2.2
Sorting

The sorting process is divided into two kernels as
illustrated below. The first kernel sorts the index of
individuals based on fitness value by using a Bitonic sort
algorithm. The first kernel is executed in a block in order to
use single shared memory, which can be accessed over 100
times faster than global memory. The kernel must access the
same array of indexes multiple times in the sorting process,
and thus using shared memory is suitable because the kernel
can avoid accessing the low-speed global memory
repeatedly (that is, the kernel accesses global memory only
twice when it copies the initial array and returns the result).
The second kernel exchanges individuals in the population
array based on the ranking sorted in the first kernel. The
second kernel allocates an individual to a block and
allocates a gene to a thread in order to highly parallelize the
processes and conceal the latency, as mentioned in Section

3.1. Note that the processing time of sorting for GPU is a
sum of both kernels.

In the CPU implementation, a quick sort is used in the
experiment. The effect of the difference of the sort
algorithm between CPU and GPU versus execution time is
discussed in Section 4.4.

Tournament selection is adopted, and the process is
divided into two kernels. The first kernel independently
executes a tournament in a thread and writes the index of the
champion to global memory. Thus the number of threads of
the first kernel is equal to the population size. The second
kernel copies the information of a selected individual to the
array of population on the next generation. The second
kernel allocates an individual to a block and a gene to a
thread as the sorting kernel. Note that the processing time of
Selection for GPU is a sum of both kernels.

The crossover kernel in this paper adopts a one-point
crossover. The kernel executes the crossover process with
two individuals in a thread, and then, the number of blocks
of the kernel is [population size]/2. The kernel checks the
crossover point and exchanges the genes of two individuals.
The kernel allocates an individual to a block and a gene to a
thread as the sorting kernel.

The mutation kernel adopts the point mutation. The
kernel processes an individual in a block, and the check of
the point mutation and the swap of a gene are executed in a
thread. The kernel allocates an individual to a block and a
gene to a thread as the sorting kernel.

To evaluate the basic performance on GPU and CPU,
the GPU and CPU computations are compared using eight
test functions of the optimization problem shown in Table 1.
Their calculation times are different from each other
because of their characteristics of functions included,
especially whether trigonometric functions are included or
not. The dimension of these functions is set on = 32 and =
128.

Tab 2 shows the parameter settings of GA. The
genotypes of individuals are encoded as a binary string of 16
bits per dimension size of the problem. Thus, the gene
length is 512 in case of = 32 and 2048 in case of = 128.

Tab 3 shows the experimental environment. We used a
PC that has one Intel Core2Duo E8500 processor and one
NVIDIA Geforce GTX280. Although the CPU has two
cores, it executes only a single thread in this experiment.

3.2.3
Selection

3.2.4
Crossover

3.2.5
Mutation

4
Experiment : Test Functions
4.1
Outline for Experiment

4.2
Experimental Settings

.

.

n n

n n

Implementiranje genetskih algoritama u CUDA okruženje upotrebom paralelizacije podataka

514 Technical Gazette 18, 4(2011) 511-517,

For the CUDA program compilation of the extended
part of C++ of the GPU implementation, the nvcc compiler
with default settings is used. For the C++ program
compilation of the CPU and GPU implementations,
Microsoft Visual C++ with the default settings for the
release mode of Visual Studio 2005 is used.

Fig. 3 shows the implementation model of the
evaluation kernel. The model distributes the evaluation
process of an individual to an SM. In addition, the
calculation process of each gene is distributed to SPs
multiply included in an SM. Accordingly, the number of
threads in a block is 32 and 128, corresponding to the
dimension of the function.

The execution flow of the evaluation kernel in a block is
shown below (Fig. 3):

4.3
Implementation of Evaluation

Implementing genetic algorithms to CUDA environment using data parallelization M Oiso. et al.

Table 1 Test functions

Function Expression Range

Hypersphere � �� n

i ixxf
1

2
1)(12.512.5 ��� ix

Ridge � �2

1 12)(� �� �
� n

i

i

j jxxf 100100 ��� ix

Rosenbrock � 	� �
� �
�� 1

1

222
13)1()(100)(

n

i ii xxxxf 048,2048,2 ��� ix

Step � �� �� �
� n

i ixxf
1

2
4 5,0)(100100 ��� ix

Griewank
� ��

��

�

�
��
�

�
�� n

i

in

i i
i

x
xxf

11

2
5 1cos

4000

1
)(048,2048,2 ��� ix

Schwefel � �
�� n

i ii xxxf
16 sin)(512512 ��� ix

Rastrigin � �� �
�� n

i ii xxxf
1

2
7 10)2cos(10)(� 12,512,5 ��� ix

Ackley ex)
n

x
n

xf
n

i i

n

i i

�
�

�
�
�

�
��

�
�

�
�
�
�

�
��� �� ��

20(2cos
1

exp
1

2,0exp20)(
11

2
8 � 3232 ��� ix

Figure 3 Implementation of evaluation kernel for test functions on GPU

Table 2 GA settings

Table 3 Experimental environment

515Tehni ki vjesnikč 18, 4(2011) 511-517,

1. Each thread loads required variables that corresponds
to the allocated dimension (equal to the thread ID) and
calculates a part of the function value.

2. Each thread writes the calculated value to shared
memory, and all threads are synchronized.

3. The function value is calculated by parallel reduction.
4. Thread 0 calculates the summation of partial solutions,

then writes the function value to global memory.

The binary value given from the gene is converted to a
decimal value using parallel reduction in the same way as in
Fig. 3, before processing the evaluation kernel.

Tab. 4 shows the experimental results of the GPU and
CPU implementations. The processing time required for
calculating 10 000 generations for each condition is shown
in the table. The performance on the table is the average
value of 10 trials. GPU with the proposed implementation
method yielded a speedup ratio of 7,6-18,4 times compared
to the CPU implementation method. It is considered that the
GPU implementation can conceal the latency of memory
access by executing many threads in parallel, while the CPU
implementation executes the GA calculation sequentially.
In particular, it is notable that our implementation to
parallelize the process of both individuals and their data is
more effective, because the implementation enables the
execution of more threads than others. In addition, most GA
processes are executed on GPU. This can suppress the
frequency of data transfer between the host and the device,
which is probably the bottleneck to speed up by GPU.

Having discussed the difference between the results of
the GPU and CPU implementations, we will now discuss
the difference between the functions. The rate of evaluation
of the Griewank function against the total computation time
is longer than that of the Hypersphere function on CPU.
This is considered because the Griewank function contains
the trigonometric function that takes 0,03 s on CPU,

4.4
Results and Discussion

μ

.

although the basic arithmetic operation takes only 0 0025
s. On the other hand, the GPU kernel can use the fast

trigonometric functions in the CUDA library, although it

contains a small error (about 2 in absolute value

maximum in t
cosf() takes 0 0043 s; in contrast, the normal

trigonometric function cos() takes 0 0492 s, and four
arithmetic operations take 0 0020 s. For this reason, the
Griewank function on GPU computation is executed nearly
as fast as the Hypersphere function, and the speedup ratio
increases when evaluating the Griewank function.

,

,
,

,

μ

he range [π, π]). The fast trigonometric
function __ μ

μ
μ

−21 44,

−

M Oiso. et al. Implementiranje genetskih algoritama u CUDA okruženje upotrebom paralelizacije podataka

Table 4 Experimental results

,
,

,
,

Fig. 4 shows the occupation time of each operator of
GA. Focusing on the evaluation, the occupation time of the
Griewank function is longer than that of the Hypersphere
function, as mentioned above. Furthermore, regarding the
dimension size, the occupation time of the Griewank
function is 51 9 (GPU s/generation) and that of the
Hypersphere function is 47 4 (GPU s/generation) in cases
of = 32, and the occupation time of the Griewank function
is 142 9 (GPU s/generation) and that of the Hypersphere
function is 133 9 (GPU s/generation) in cases of = 128.

μ
μ

μ
μ

n

n

Figure 4 GPU occupancy of GA kernels

516

These results indicate that the occupation time in cases of
= 128 is about 2 8 times higher than that in cases of = 32,
nevertheless, the problem scale in cases of = 128 is 4 times
greater than that in cases of = 32. This is considered
because in case of = 128, a thread can be executed more
easily while other threads are accessing memory compared
to the case of = 32. In short, the more the number of threads
increases as the problem scale is enlarged, the more the
latency of memory access decreases.

n
n

n
n

n

n

,

Technical Gazette 18, 4(2011) 511-517,

These results clearly show that the difference of processing
times between CPU and GPU is much larger in the case that
data transfer to/from the Global Memory is executed. From
these results, it is considered that exchanging individual
information in the second sorting kernel in Section 3.2.2 is a
bottleneck, because the kernel must access global memory
frequently.

In this paper, we proposed an implementation method
of GA to GPU using CUDA, adopting parallelization of not
only individuals but also the genes by considering the GPU
architecture. In terms of the experimental results, the
proposed implementation method yielded approximately
18 times faster results than those of a CPU implementation
on benchmark tests. The results also showed that the
speedup ratio increased as the problem scale increased.

In the future, we plan to adopt some real-world
problems to examine the performance of a GPU
implementation. Moreover, the Fermi architecture is
released in 2010, which supports concurrent kernel
execution and improves the performance of double-
precision calculation, and so on, is expected to further
develop the GPGPU field. We also plan to implement some
evolutionary algorithms which can utilize the Fermi
architecture, e.g., steady-state Gas.

5
Conclusion

6

References

[1] Dorigo, M.; Maniezzo, V. Parallel genetic algorithms:
Introduction and overview of current research, Parallel
Genetic Algorithms: Theory and Applications. // Frontier in
Artificial Intelligence andApplications, (1993), pp. 5–42.

[2] Imade, H.; Morishita, R.; Ono, I.; Ono, N.; Okamoto, M. A
grid-oriented genetic algorithm framework for
bioinformatics, Grid systems for life sciences. // New
Generation Computing, 22, 2(2004), pp. 177–186.

[3] Lim, D.; Ong, Y.; Jin, Y.; Sendhoff, B.; Lee, B. Efficient
Hierarchical Parallel Genetic Algrorithms using Grid
computing. // Future Generation Computer Systems, 23,
4(2007), pp. 658–670.

[4] Matsuoka, S.; Aoki, T.; Endo, T.; Nukada, A.; Kato, T.;
Hasegawa, A. GPU accelerated computing from hype to
mainstream, the rebirth of vector computing. // Journal of
Physics: Conference Series, Vol. 180, No. 1, pp. 0120435,
2009.

[5] Nukada, A.; Ogata, Y.; Endo, T.; Matsuoka, S. Bandwidth
Intensive 3-D FFT kernel for GPUs using CUDA. // Proc.
ACM/IEEE Supercomputing 2008 (SC2008), pp. 1–11.

[6] Fujimoto, N. Dense Matrix-Vector Multiplication on the
CUDA Architecture. // Parallel Processing Letters, 18,
4(2008), pp. 511–530.

[7] Stone, S. S.; Haldar, J. P.; Tsao, S. C.; Hwu, W.-m. W.; Sutton,
B. P.; Liang, Z.-P. Accelerating advanced MRI
reconstructions on GPUs. // Journal of Parallel and
Distributed Computing, 68, 10(2008), pp. 1307–1318.

[] Preis, T.; Virnau, P.; Paul, W.; Schneider, J. J. Accelerated
fluctuation analysis by graphic cards and complex pattern
formation in financial markets. // New Journal of Physics, 11,
(2009), pp. 1–21.

[] Banzhaf, W.; Harding, S.; Langdon, W. B.; Wilson, G.
Accelerating Genetic Programming Through Graphics
Processing Units. // Genetic and Evolutionary Computation,
(2009), pp. 1–19.

8

9
9

Implementing genetic algorithms to CUDA environment using data parallelization M Oiso. et al.

Figure 5 Transition of function value on a 128 dimensional function

Fig. 5 shows the transition of the function value in case
of = 128. The same random sequences are used in both
CPU and GPU implementations; however, the function
values of those are slightly different from each other,
because the application order of the random number is
different. The transition of the function value shows no
negative effect on the quality; thus, it was found that GA
with GPU implementation has almost equal search
performance to that with the CPU implementation.

As mentioned in Section 3.2.2, different sort algorithms
are used for CPU and GPU in the experiment in order to
investigate the best performance of each implementation.
The processing times of the sorting are as follows: CPU
takes 98 s and GPU takes 173 s in case of = 32, and CPU
takes 259 s and GPU takes 295 s in case of = 128. The
processing times of the sorting without exchanging the
individual information (that is, the processing time of the
sort algorithms are simply compared) are as follows: CPU
takes 34 5 s and GPU takes 37 7 s in case of = 32, and
CPU takes 35 6 s and GPU takes 37 7 s in case of = 128.

n

n
n

n
n

μ μ
μ μ

μ μ
μ μ

, ,
, ,

517Tehni ki vjesnikč 18, 4(2011) 511-517,

Authors' addresses

Masashi Oiso
Graduate School of Engineering
Hiroshima University
1-4-1 Kagamiyama, Higashi- iroshima
Hiroshima, 739-8527, Japan
phone: +81-90-4107-3129
e-mail: oiso@ohk.hiroshima-u.ac.jp

h

Faculty of Textile
Shinshu University
3-15-1 Tokida, Ueda
Nagano, 386-0018, Japan

Graduate School of Engineering
Hiroshima University
1-4-1 Kagamiyama, Higashi-hiroshima
Hiroshima, 739-8527, Japan

Graduate School of Engineering
Hiroshima University
1-4-1 Kagamiyama, Higashi-hiroshima
Hiroshima, 739-8527, Japan

Yoshiyuki Matsumura

Toshiyuki Yasuda

Kazuhiro Ohkura

[10] Harding, S.; Banzhaf, W. Fast Genetic Programming and
Artificial Developmental Systems on GPUs. // Proceedings of
the 21st International Symposium on High Performance
Computing andApplications (HPCS'07), 2007, pp. 2.

[11] Langdon, W. B.; Banzhaf, W. GP on SPMD parallel graphics
hardware for mega Bioinformatics data mining. // Soft
Computing, 12, 12(2008), pp. 1169–1183.

[12] Langdon, W. B.; Banzhaf, W. A SIMD interpreter for Genetic
Programming on GPU Graphics Cards. // Proceedings of the
11th European Conference on Genetic Programming
(EuroGP2008), 4971, (2008), pp. 73–85.

[13] Robilliard, D.; Marion-Poty, V.; Fonlupt, C. Population
Parallel GP on the G80 GPU. // Lecture Notes in Computer
Science, 4971, (2008), pp. 98–109.

[14] Pospichal, P.; Jaros, J. GPU-basedAcceleration of the Genetic
Algorithm. // Proceedings of the GECCO 2009 Workshop on
Computational Intelligence on Consumer Games and
Graphic Hardware (CIGPU-2009), 2009.

[15] Tsutsui, S.; Fujimoto, N. Solving Quadratic Assignment
Problems by Genetic Algorithms with GPU Computation: A
Case Study. // Proceedings of the GECCO 2009 Workshop on
Computational Intelligence on Consumer Games and
Graphic Hardware (CIGPU-2009), 2009, pp. 2523–2530.

[16] Tsutsui, S.; Fujimoto, N. An Analytical Study of GPU
Computation for Solving QAPs by Parallel Evolutionary
Computation with Independent Run. // Proceedings of IEEE
World Congress on Computational Intelligence (WCCI
2010), 2010, pp. 889–896.

[17] Debattisti, S.; Marlat, N.; Mussi, L.; Cagnoni, S.
Implementation of a Simple Genetic Algorithm within the
CUDA Architecture. // Proceedings of the GECCO 2009
Workshop on Computational Intelligence on Consumer
Games and Graphic Hardware (CIGPU-2009), 2009.

[18] Mark, W. R.; Glanville, R. S.;Akeley, K.; Kilgard, M. J. Cg:A
System for programming graphics hardware in a C-like
language. // ACM Transaction on Graphics (Proceedings of
SIGGRAPH 2003), 22, 3(2003), pp. 867–907.

[19] Microsoft, High-Level Shading Language,
h t t p : / / m s d n . m i c r o s o f t . c o m / e n -
us/library/bb509561(v=vs.85).aspx, 2004.

[20] Kessenich, J.; Baldwin, D.; Rost, R. The OpenGL Shading
Language version 1.10.59,
http://www.opengl.org/documentation/oglsl.html, 2004.

[21] Mark, W. R.; Glanville, R. S.;Akeley, K.; Kilgard, M. J. Cg:A
System for programming graphics hardware in a C-like
language. // ACM Transaction on Graphics (Proceedings of
SIGGRAPH 2003), 22, 3(2003), pp. 867-907.

[22] Buck, I.; Foley, T.; Horn, D.; Sugerman, J.; Fatahalian, K.;
Houston, M.; Hanrahan, P. Brook for GPUs: Stream
Computing on Graphics Hardware. // SIGGRAPH'04, ACM
Transactions on Graphics, 23, 3(2004), pp. 777–786.

[23] NVIDIACorporation, CUDAZone,
http://www.nvidia.com/object/cuda home new.html, 2007.

[24] Marsaglia, G. Xorshift RNGs. // Journal of Statistical
Software, 8, 14(2003), pp. 1–6.

[25] Batcher, K. Sorting networks and their applications. //
Proceedings of the AFIPS Spring Joint Computing
Conference, 32, (1968), pp. 307–314.

[26] Blelloch, G. E.; Leiserson, C. E.; Maggs, B. M.; Plaxton, C.
G.; Smith, S. J.; Zagha, M. An Experimental Analysis of
Parallel Sorting Algorithms. // Theory of Computing
Systems, 31, 2(1998), pp 135-167..

M Oiso. et al. Implementiranje genetskih algoritama u CUDA okruženje upotrebom paralelizacije podataka

