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Introduction

In some simple two-dimensional structures it is
sufficient to determine only the lowest value of the load at
which buckling commences. However, in the case of shells,
it may be also necessary to investigate the postbuckling
behavior because it has an important bearing on the
magnitude of the failure load.

The importance of the postbuckling behavior, which
the small deflection theory of buckling is not capable of
predicting, was discovered as a consequence of attempts to
correlate experimental results with analytical predictions.

Poor correlation between the results of theory and
experiment exists when both principal membrane forces are
compressive, as in the case of cylindrical shells under axial
compressive load; cylindrical shells under distributed load
normal to the surface, which causes bending; and domes
under inward radial pressure. If both the principal
membrane forces are compressive, they tend to increase
with deformation of the shell. After the initial buckling, the
shell can only transmit loads smaller than the initial
buckling load. This is particularly true for concrete shells
because of creep and deviation of the actual shape of the
shell from the assumed theoretical surface.

Good correlation exists when one of the principal
membrane forces is tensile. If one of these forces is tensile, it
tends to return the shell back to its original position, thus
enabling it to carry loads greater than the initial buckling
load.

In general, the value of the buckling load depends on
shell geometry, type of restraint at boundary, material
properties of shell, the location of reinforcing steel, and the
type of load.
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This paper presents a buckling analysis for several notable concrete thin shells around the world.An approach which takes into account the large deflection and
plasticity effects was performed using Sofistik software to estimate the buckling load. A geometrically non-linear analysis of these structures with and without
geometrical imperfections was performed. To take into account the possible plastification of the material a materially non-linear analysis was performed
simultaneously with the geometrically non-linear analysis. The buckling analysis of concrete spherical shells shows that including only one kind of non-
linearity does not give a realistic situation and only their combination results in the decreasing of ultimate failure load.
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Subject review

U ovom radu je prikazana analiza sfernih ljusaka u svijetu. Pristup kojim se uzimaju
ijenjen je uporabom programa Sofistik radi procjene opte . Provela se geometrijski nelinearna analiza ovih

konstrukcija sa i bez geometrijske nost plastifikacije se provela materijalno nelinearna analiza
istodobno s geometrijski nelinearnom analizom. se

o stanje te da samo njihovo kombiniranje .

izbočavanja nekoliko značajnih betonskih u obzir velike deformacije i
učinci plastičnosti prim rećenja izbočavanja

imperfekcije. Da bi se uzela u obzir moguć materijala također
Analiza izbočavanja betonskih sfernih ljusaka pokazala je da uključujući samo jedan tip nelinearnosti ne

dobiva realn dovodi do smanjenja graničnog opterećenja sloma
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Buckling of domes

The classical analysis for the bifurcation buckling of
spherical domes under axisymmetrical radial pressure

was long ago found to be [1, 2]
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where:
– modulus of elasticity, MPa
– thickness of the shell, m
– radius of the sphere, m
– Poisson's .

The corresponding critical stress is therefore
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When the uniform external pressure exceeds , given

by equation (1), i.e., > , the system is unstable. If =

the spherical shell is in neutral equilibrium for small
displacements. If < the shell is in stable equilibrium.

The value of critical stress defined by equation (2),
which is based upon the small-displacement theory, often
does not agree with experimental data. However, the real
value of the critical stress is much lower than this.
Experimental results have repeatedly shown critical
stresses of as low as 10 percent of the classical, i.e., of that
predicted by the small deflection theory [3]. By the use of
large deflection theory of buckling and plasticity effects,
results may be obtained which closely approximate
experimental values. A spherical shell under radial external
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pressure will buckle suddenly or oilcan by leaping to a
lower state of energy at a stress far below that given by the
classic value.

For practical applications we can use the following
empirical formula for calculating [1]:

" "

qcr

These structures were built before the use of computers.
Prior to the availability of computers and the finite element
method, shells were analyzed using approximate methods
which forced the designer to develop an intuitive feel for the
structural behaviour of the shell, which is sometimes
missing with the uncritical use of computers.

Structural analysis and the optimization study of these
shells were also performed using Sofistik software in [5].

The Kresge Auditorium at MIT, designed by a noted
modernist architect, Eero Saarinen, consists of a one-eighth
spherical segment dome-shaped concrete roof enclosing a
triangular area approximately 49 m (160 ft) on a side. The
dome is entirely supported on three points at the vertices of
the triangle. The total weight of the roof is approximately
1500 tons, and the thickness of the roof shell is 8,9 cm (3,5
in) which is increased near the edge beams up to 14 cm. The
8,9 cm (3,5 in) concrete shell is covered with 5 1 cm (2 in) of
glass fiberboard and a second non-structural layer of
lightweight concrete 5,1 cm (2 in) thick.Additions had to be
made to this structure, since Saarinen's sculptural cutting of
the shell created severe edge disturbances to the membrane
stresses in the shell that had to be counteracted by an edge
beam (45,7 cm (18 in) height). There were also large
stresses created at the three points of support. These were
reinforced with tapered H-shaped steel ribs, which in turn
were connected to a steel hinge allowing for movement. In
the end, after the formwork was removed it was discovered
that the edges were deflecting an unacceptable amount
(clearly well over 12,7 cm (5 in)) due to uncontrolled creep.
Additional supports were added in the form of (4-by-9-in)
steel tubes spaced at 3,35 m (11 ft), which are also used to
support the window wall [6].

The problems with this building did not end with the
solution of the structural problems. The shell was difficult
and unusual to construct, and significant difficulties were
encountered in concrete placement (poor consolidation),
protection of the reinforcing steel (inadequate concrete
cover) and above all in the waterproofing the roof of the
building. The satisfactory solution of these problems had to
wait until decades after the commissioning of the building
and through several trials of different roofing procedures.

The original neoprene roofing was later replaced with
lead-coated copper roofing and then copper roofing. The
repair of the construction was costly and forced the closure
of the building for a few months.

The Ehime Public Hall in Matsuyama, Japan, designed
by Japanese engineers, Tange and Tsuboi, is a shallow
spherical inclined shell supported by 20 columns. A ring is
provided around the base between columns. The thickness
of the shell is 8 cm with a diameter of 49,35 m and a rise of 7
m at the crown [7].

The Het Evoluon in Eindhoven was the last major
project of the Netherlands designer Louis Kalff. The
building is unique due to its resemblance to a landed flying

3.1
KresgeAuditorium

3.2
Ehime Public Hall

3.3
Het Evoluon

,

Buckling analysis of concrete spherical shells

.

Using the Sofistik finite element program that solves
large-scale structural analysis problems, several spherical
shell structures were examined.

Figs 1-3 show some of the remarkable early shells for
the Kresge – MIT auditorium in Boston, Ehime Public Hall
in Matsuyama and Het Evoluon in Eindhoven.
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which gives satisfactory results for
, where is the angle between the axis of

rotation and the dome edge.
Here an approach which takes into account the large

deflection and plasticity effects was performed by using
Sofistik software [4]. This approach is based on
minimization of the energy of the system, i.e., energy
methods. It also permits computation of the lower as well as
the upper boundary of the buckling load, and is applicable to
all types of shells.

and
α

3
Analyzed concrete spherical shells
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Figure 1 Kresge-MIT Auditorium, Boston, USA (Saariner, 1954)

Figure 2 Ehime Public Hall, Matsuyama, Japan (Tange&Tsuboi)

Figure 3 Het Evoluon, Eindhoven, Netherlands (Kalff, 1966)
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saucer, which makes it look very futuristic. The dome has a
diameter of 77 m and rests on 12 V-shaped columns. The
overall height of the building is 30 m [7].

The existence of large-scale computer programs makes
it possible to study non-linear behavior in such shells. An
analysis according to the third-order theory which contains
non-linear analysis plus analysis according to the second-
order theory and additionally the effects of the geometrical
system modification, e.g. snap through, length modification
for big deformations, and behavior after buckling was
performed. Non-linear effects (e.g. plasticising, cracks) can
be analyzed only with iterations. This is done in Sofistik's
moduleASE with a modified Newton method with constant
stiffness matrix. The advantages of the method are that the
stiffness matrix does not have to be decomposed more than
once and that the system matrix remains always positive
definite. The Linesearch method with the update of the
tangential stiffness matrix is utilized for problems
according to the second-order theory. The load increment is
reduced here internally according to the available residual
forces. If an iteration step proceeds into the right direction,
i.e. in the direction of an energy minimum, then a new
tangential stiffness which enhances the further iteration's
behavior is generated, if necessary. Cracked elements are
considered here also with a reduced stiffness.

By means of the concrete law one can even consider
creep and shrinkage effects for a cracked shell-element (the
redistribution of stress, from concrete to the reinforced
steel, due to creep and shrinkage).

The numerical studies on these structures illustrate one
of three basic problems that need to be considered in design
beyond the stress analysis: (1) initial geometrical
imperfections, (2) concrete cracking and steel yielding, and
(3) large deflections.

The concrete material properties assume a unit weight

of 25 kN/m , the Young's Modulus of 36 GPa (C45/55) and
the Poisson's ratio of 0 2. The reinforcing steel material
properties assume the yield strength of 500 MPa and the
Young's Modulus of 200 GPa. The load on the structure is its

self weight and snow load of 1,25 kN/m uniformly
distributed on the horizontal projection.

In Sofistik FEA program, the Sofiplus was used as pre-
processing tool for model building and mesh generation.
The plane quadrilateral or triangular shell element (in the
case of MITAuditorium) was used in meshing.

An ultimate load iteration in geometrical non-linear
analysis of these structures with and without imperfections
in geometry was performed. As construction tolerances
cannot be overly refined without making field costs
prohibitive, some imperfections are always present in shells
and the problem mainly is to set limits and recognize how
such imperfections influence behavior and thereby control
the resulting response by adequate reinforcement.

A regular ultimate load iteration in geometrical non-
linear analysis without geometrical imperfection is started
at first with constant snow load for the Ehime dome. It ends
with a load factor of 48,30. Displacements of the last stable
load case with load factor 48,30 are shown in Fig. 4.

4
Buckling analysis of concrete spherical shells using finite
element analysis

4.1
Geometrically non-linear analysis

,

3

2

Figure 4 Displacements of last stable load case with load factor
of 48,30 in the Ehime dome without geometrical imperfection

Figure 5 First buckling shape on undeformed structure
for Ehime dome

Using the stress state of the snow load case the buckling
mode shapes are determined considering the element
stresses on undeformed system. The first buckling mode
shape is applied scaled as non-stressed imperfection (Fig.
5). The imperfection has here a maximum value in global X
direction of 20 mm.

An ultimate load iteration geometrically non-linear
follows with consideration of this imperfection. It ends now
already with the load factor 19,10. Last load step
displacements with load factor 19,10 are shown in Fig. 6.

Figure 6 Displacements of last stable load case with load factor
of 19,10 in the Ehime dome with geometrical imperfection

In the case of geometrical non-linear analysis the
stiffness is calculated for the deformed structure. Since the
last stable load case during an ultimate load iteration is
always considered as primary load case, the program
generates always the new tangential geometric stiffness
matrix.

A buckling eigenvalue determination as well as a
concurrent eigenvalue analysis are available in Sofistik's
module ASE. Buckling eigenvalues on deformed structure
can be determined with the last stable load case of ultimate
load iteration as primary load case. Here, the buckling
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eigenvalue determination gives a buckling factor of 1,08 for
the first buckling mode on deformed structure with
geometrical imperfection, as shown in Fig. 7. For
comparison, the buckling factor of 99,12 is obtained for the
first buckling mode on undeformed structure with the snow
load as primary load case i.e. under the stresses of the
primary load case (Fig. 5). The geometric stiffness from the
primary load case for buckling eigenvalues is scaled with
the buckling factor.

the other hand, however, the load deformation curve of a
shell has in general a reducing curve after the ramification
point, that one can imagine from the point A to the point B.
The reducing curve cannot be processed currently with the
moduleASE.

The critical buckling load for a spherical shell under
radial pressure according to the theory of elasticity, i.e.,
classical equation of buckling (1) amounts to = 121,16

kN/m . The value for the snow load uniformly distributed on

the horizontal projection is obtained from ' = /cos

167,10 kN/m
ing to

empirical relation (3) amounts to = 24,85 kN/m . The

value for the snow load uniformly distributed on the

horizontal projection is obtained from ' = /cos 4,27

kN/m
The program calculates a value for the critical buckling

load of 60,38 kN/m (48,30·1,25) according to the third-
order theory without geometrical imperfection. An analysis
according to the third-order theory with geometrical
imperfection gives a critical buckling load value of 23,88

kN/m (19,10·1,25).

The value of critical load 167,10 kN/m defined by
classical equation, which is based upon the small-
displacement theory does not agree with ultimate load

results of 60,38 kN/m and 23,88 kN/m . This discrepancy is
explained by applying the large-deflection theory of
buckling, which takes into account the squares of the
derivatives of the deflection, initial geometrical
imperfections and a host of additional factors. The ultimate

load result of 23,88 kN/m is in satisfactory agreement with

the empirical solution of 34,27 kN/m .
A plot of a limit load iteration for the node number with

the largest displacement can be generated. Load-
deformation curves with and without geometrical
imperfections are drawn for the node with the maximum
vertical displacement, as shown in Fig. 8. With the first
ultimate load iteration (curve A) a ramification problem
without geometrical imperfection is processed. The
deformations increase almost linearly; from a specific point
(ramification point) no further load increase is more
possible. Curve B shows the load deformation curve with
the geometrical imperfection from the first scaled buckling
mode shape. The ultimate load is smaller now, what on one
hand results from the scheduled deformation (u-0) and on
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Figure 7 First buckling shape on deformed structure with geometrical
imperfection for Ehime dome

Figure 8 Load-deformation curves with and without geometrical
imperfections for the node with the largest vertical displacement

in Ehime dome

The effects of the shell rise on the value of the critical
buckling load are analyzed for the Ehime shell with and
without geometrical imperfection. The values for diameter

Figure 9 Principal membrane forces in the Ehime dome
(a) without and (b) with geometrical imperfection
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(span) and thickness of Ehime shell are kept constant. The
dimensions of the ring and columns are equal to 40×60 cm
and 50×50 cm, respectively. The slope of the shell is set
equal to 2°. The only variable that is changed is rise . The
rise varies from 7, 8 and 9 meters in this study.

Tab. 1 gives the effects of rise on the principal
membrane forces and the buckling load for a spherical shell
with a uniform thickness of 8 cm. It is seen that if the
principal radii of curvature of the shell surface are larger
(that is, the shell is flatter), the membrane forces are
generally greater. Hence the value of the buckling load will
be lower, possibly substantially lower. Increasing the rise by
cca 30 % increases the buckling load factor by a factor of
about 2.

Typically, applying initial geometrical imperfection
related to the first buckling mode, the buckling load for the
system without imperfection is reduced by a factor of about
2,5.

In addition, it is seen that the compressive hoop forces
of the Ehime dome under snow load change to tension when
geometrical imperfection in the form of the first buckling
mode shape with a maximum deviation of 20 mm occurs.
Fig. 9 shows the principal membrane forces for the Ehime
dome with and without geometrical imperfection. Since this
initial geometrical imperfection leads to tension in hoop
direction it is mandatory to include this possibility in the
layout of the steel reinforcement of the shell.

It should be noted that such observation is not verified
on the Ehime dome with rise = 9 m.

Notice also that the buckling of the Ehime shell results
in excessive principal tensile membrane forces which are
restricted to a narrow zone at the edge of the dome. These
tensile forces produce too high stresses in the reinforced
concrete and should be reduced by increasing the edge ring
size (stiffness).

d
d

d

d

4.2
Interaction of the non-linearities

The analyzed concrete spherical shells are also used to
demonstrate the interaction of the two main non-linearities,
material and geometrical.

An analysis with non-linear (elasto-plastic) material
was performed simultaneously with a geometrically non-
linear analysis.

The material behavior of reinforced concrete can be
described by the following properties: non-linear stress-
strain curve in tensile and compressive zone, contribution of
the concrete between cracks (tension stiffening), non-linear
material behavior of the steel reinforcement and simplified
check of the shell's shear stress.

The buckling load obtained by a static geometrically
non-linear analysis and a combination of geometrically and
materially non-linear analysis of spherical shells is given in
Tab. 2.

For the Ehime shell the stable ultimate load calculations
geometrically and materially non-linear end now at about

11,30 kN/m (9,04·1,25) and 4,48 kN/m (3,58·1,25) for the
system without and with geometrical imperfections
respectively. Hence, the buckling load in the materially non-
linear, large deformation analysis is reduced by a factor of
5,3.Applying initial geometrical imperfection in the form of
the first buckling mode shape with a maximum deviation in
global X direction of 20 mm, the buckling load for the
system without imperfection is reduced by a factor of about
2,5. An iso-area presentation of the plastified zones leads to
Fig. 10.

The maximum bottom non-linear von Mises stresses
are equal to 12,70 and 7,26 MPa for the system without and
with geometrical imperfections, respectively. Fig. 11 shows
the resulting von Mises stress state with high stress
concentrations in the vicinity of the concentrated supports.
A slight geometrical deviation (related to the first buckling

2 2
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Table 1 Effect of rise on principal membrane forces and buckling load for Ehime domed

Rise d /m Loading System without imperfection System with imperfection

Buckling

load factor

Principal membrane forces

/ kN/m

Buckling

load factor

Principal membrane forces

/ kN/m

Min.

compressive
Max. tensile

Min.

compressive
Max. tensile

7 Dead load – –54,4 170,0 – –126,8 162,2

Snow load 48,30 –2500,0 5014,0 19,10 –2353,0 1872,0

8 Dead load – –53,6 147,3 – –100,1 145,0

Snow load 64,00 –2820,0 5576,0 25,50 –2330,0 2221,0

9 Dead load – –53,8 130,6 – –59,6 127,1

Snow load 80,30 –2944,0 5983,0 37,10 –1917,0 2776,0

Table2 Buckling load obtained by a geometrically non-linear and a combination of geometrically and materially non-linear analysis of spherical shells

System without imperfection System with imperfection

Buckling load factor

Non-linear von

Mises tensile

stress / MPa

Buckling load factor

Non-linear von

Mises tensile

stress / MPa

Name of

construction

Geometrically

non-linear

Geometrically and materially non-

linear

Geometrically

non-linear

Geometrically and materially non-

linear

Kresge A. - design 1 2,70 0,78 5,83 3,90 0,78 5,83

Kresge A. - design 2 8,00 0,72 5,06 8,20 0,72 5,06

Kresge A. - design 3 14,80 1,29 4,79 15,20 1,29 4,79

Het Evoluon 67,70 1,05 3,04 46,10 1,05 3,04

Ehime Public Hall 48,30 9,04 12,70 19,10 3,58 7,26
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mode) may lead to greater stresses towards the apex of the
dome as shown in Fig. 11 (b) compared to (besides the edge
bending effect) a homogeneous stress state shown in Fig. 11
(a).

In [5] it had been shown that structural optimization of
Kresge Auditorium results in a distribution of larger
thickness around the supports equal to 30 cm.

Here the critical buckling load and the von Mises
stresses on the shell surface for three different designs are
compared (Tab. 2).

In the original design 1 the concrete shell with a
uniform thickness of 8,9 cm is strengthened with a
stiffening beam (20×45 cm) around the perimeter of the
building, and the concrete class is C30/37 [8]. In the design
2 the concrete strength of the distributed thickness shell and
20×45 cm edge beam is C40/50. The design 3 comprises
distributed thickness shell and (30×30 cm to 30×70 cm)
edge beam with higher concrete strength C45/55.

The maximum bottom non-linear von Mises stresses
are equal to 5,83 MPa, 5,06 MPa and 4,79 MPa for the
design 1, design 2 and design 3, respectively (Tab. 2). These
maximum von Mises stresses occur in the region of the
supports, gradually decreasing to approximately zero at the
center of the shell (Fig. 12). It has also been found that the
design 3 develops less tensile area and smaller maximum
tensile stresses obtained by a linear analysis, and thus is a
more efficient design. Also, the deflections for the
distributed thickness shells (design 2 and 3) were much
smaller than the uniform thickness shell (design 1). In
addition, it can be shown that the edge beam of uniformly
varying cross section (height varies from 30 cm at apex to 70
cm at supports) in design 3 enhances the shell stiffness,
reducing maximum (principal) tensile stresses and
deflection, and thereby reducing reinforcements. Also, the
higher concrete strength of C45/55 reduces the deflection
and the amount of reinforcements.

Here the critical buckling load obtained by a
geometrically non-linear analysis is maximized for the
Kresge shell by structural optimization. Optimization is
based on the structure without geometrical imperfection
leading to a buckling load factor of 14,80 (Tab. 2). Also the
maximum geometrical deviation in global X direction of 20
mm was introduced in an additional simulation assuming an
imperfection shape taken from the first buckling mode. In
this example, the initial geometrical imperfection
(corresponding to the first buckling shape) increases the
final load level to 15,20 because it enhances the curvature of
the shell roof. Including the two main non-linearities,
material and geometrical, the buckling load is reduced to
1,29 showing the strong influence of the non-linear material

Buckling analysis of concrete spherical shells I. Mekjavić

Figure 10 Plastified zones in the Ehime dome with geometrical
imperfection resulting from geometrical and material nonlinear

analysis

Figure 11 Bottom non-linear von Mises stresses in the Ehime dome
(a) without and (b) with geometrical imperfection

Figure 12 Bottom non-linear von Mises stresses in the Kresge shell



behavior on the structural response.
This important interaction is also demonstrated by the

Evoluon shell.As can be found in [5] structural optimization
of Evoluon results in a shell with uniform thickness of 8 cm,
reinforced with meridional and hoop ribs. The ribbed model
built in Sofistik has a 20×30 cm ring at the top of the dome
around 6,70 m diameter skylight. Radiating off of the ring
beam at the top of the dome are 30×60 cm ribs at 7°. Added
are two hoop 30×60 cm ribs that are located at 6 m, and 12,2
m from the edge ring. The edge ring at the junction of the
upper and lower shell is 40×60 cm with a 77 m diameter. A
60×80 cm bottom ring is supported by 80×80 cm V-shaped
columns. The lower shell also has two hoop 30×60 cm ribs
that are located at 6 m, and 15,4 m from the edge ring.

In this example, the buckling load factor of 67,70
obtained by a geometrically non-linear analysis for the
structure without geometrical imperfection is reduced to
46,10 by the initial geometrical imperfection related to the
first buckling shape (with the maximum deviation of 20 mm
in global X direction) showing a substantial sensitivity (Tab.
2). Tab. 2 also shows that the buckling load obtained by a
combination of geometrically and materially non-linear
analysis is significantly reduced to 1,05. The maximum
bottom non-linear von Mises stress is equal to 3,04 MPa.
Fig. 13 shows the von Mises stresses on the shell surface for
Evoluon.

From Tab. 2 the following conclusions can be drawn:
ncluding only one kind of non-linearity does not give a

realistic situation and their combination results in the
decreasing ultimate failure load.

From a detailed structural buckling assessment of
analyzed concrete spherical shells it can be concluded that
shells can be extremely sensitive with respect to slight
deviation of their ideal parameters like initial geometry,
boundary conditions etc. Initial geometrical imperfections
and non-linearities tend to prevent the most real structures
from achieving their unrealistically high failure loads. To
get a more accurate answer nonlinear analysis should be
carried out, taking into account geometrical imperfections,
material non-linearities, edge effects which cause bending
etc., provided the shell is less prone to a sudden buckling
failure.

In the finite element buckling analysis of concrete
spherical shells, consideration shall be given to the possible
substantial reduction in the value of the buckling load
caused by large deflections, material non-linear effects, and

i

5
Conclusion
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the deviation between the actual and theoretical shell
surface.
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Figure 13 Bottom non-linear von Mises stresses
in the ribbed Evoluon shell




