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Ubiquitous Robotics is a novel paradigm aimed at addressing the cotdibahaviour of robots in environ-
ments that are intelligerger se To this aim, suitable methods to enforce cooperative activities mustsessel.
In this article, a formalism to encode spatio-temporal situations whosereoces must be detected by a context-
aware system is introduced. The Situation Definition Language is a tootasedcify relationships among classes
of sensory data in distributed systems (such as those adhering to thétbllmdrobotics paradigm), without posing
any assumption on how data themselves are acquired. The capabilie=ddffy the language are discussed with
respect to a real-world scenario, where a team of mobile robots ctepewith an intelligent environment to per-
form service tasks. Specifically, the article focuses on the system abiligntbioe in a centralized representation
information originating from distributed sources, eithesbile(i.e., the robots) ofixed(i.e., the intelligent devices
in the network).

Key words: Ubiquitous robotics, Context assessment, Distributed systems

Roboti i inteligentni prostori: prikazivanje znanja i procjena k onteksta u raspodijeljenim sustavima.
Sveprisutna robotika nova je paradigma namijenjena koordiniranonspojierobota u prostorima koji su sami po
sebi inteligentni. Radi toga, nuZna je procjena primjerenih metoda zagibakooperativnih aktivnosti. U ovome
seClanku predstavlja formalizam za zapisivanje prostorno-vremensighidja koji moraju biti detektirani u kon-
tekstno osvijeStenom sustavu. Situation Definition Language je alat kojirssikam specifikaciju odnosa nia
klasama senzorskih podataka u raspodijeljenim sustavima (poput gheloridrZzavaju paradigme sveprisutne
robotike), bez ikakvih pretpostavki nad@iaom prikupljanja podataka. Moguosti koje jezik nudi analizirane su
za stvarne skéajeve, gdje je tim mobilnih robota suli@ao s inteligentnim prostorom radi izélenja usluznih za-
datakaClanak se posebice fokusira na mégast sustava da na centralizirartimeobjedini informacije iz raspodi-
jeljenih izvora, bili oni mobilni (tj. od robota) ili stacionarni (tj. od inteligentnibedaju na mrezi).

Klju €ne rijeCi: sveprisutna robotika, procjena konteksta, raspodijeljeni sustavi

1 INTRODUCTION resentation and context awareness. A promising approach
is to describe contexts using high-level symbolic frame-
According to the Ubiquitous Robotics paradigm [1, 2], works [3]. In Ubiquitous Robotics the need arises for a the-
mobile robots are part of a fullgetworkedsystem that is  oretical framework able to deal with the following issues:
populatedby intelligent devices (both sensors and actuasi) design and implement context assessment strategies for
tOI'S) distributed throughout the environment. Robots COrobots and inte”igent devices; (||) assess the trade-eff b
operate with intelligent devices to perform tasks that retween situation-dependent knowledge representation and
quire sophisticated physical interaction capabilitiegiis  intelligent behaviour.
as remote sensing and interaction wifhasi staticparts
of the environment (e.g., automated doors, elevators;load This article introduces the Situation Definition Lan-
ing/unloading stations) or with other appliances. In thesgyuage (henceforth referred to &DL) aimed at mak-
cases, highly specialized intelligent devices can providéng the process of representing contextual knowledge eas-
with information exchange for the lack of physical interac-ier. SDL allows users to express models for context-
tion capabilities traditionally exhibited by robots: “aut  awareness that are organized in a hierarchical fashion and
omy” and “situatedness” refer thus to the whole systemencoded through ontologies [4]. Although different for-
Robotic architectures proposed in the literature lack in admalisms have been proposed to this end, such as the Sit-
dressing how this novel paradigm affects knowledge repuation Calculus [5, 6], the Linear Temporal Logic [7] and
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the Allen’s Interval Algebra [8,9], the use of temporal con-represented using one or more “scales”, relating hetero-
straints in this work is rather different. The aim of the en-geneous contextual knowledge. The model has two major
visaged context-assessment system is not only to specifyonstraints: (i) the availability of pairwise mappings be-
highly expressive formulas and to reason upon their conseween scales; (ii) the existence of a metric to establish the
guences, but also to ground sensory data (originating frormapping itself.

different sources) with respect to predefined event tem- |n [18], a hierarchical temporal situation language has
plates. been introduced. A context is a dynamic process where the

The paper is organized as follows. Section 2 discusse€lationships between semantics and interpretation depen
situation languages for context models, as well as releva@n their ownhistory. Therefore, a context is a sequence
Robotics frameworks. Section 3 describes the key comof “context states” depending on “context features”, which
ponents of the proposed model. Section 4 discusses ti@g€ individual and atomic language elements. Unfortu-
related context assessment strategy. Section 5 describ@ately, context features must be carefully classified and
SDL syntax and semantics. Implementation details, expe,evaluated in order to determine which features are impor-
iments and results are discussed in Section 6. Conclusiof@nt for a particular context.

follow. Frameworks for Ubiquitous Roboticé&lthough many
Ubiquitous Robotics approaches have been presented in
2 RELATED WORK the literature [4], if we focus on systems specifically tak-

ing context-awareness into account, this number reduces to

Situation language<Context-aware systems are subjecta few examples. Within thémbienceproject [19], robots
to three key requirementsffectivenes assessing sen- and smart environments manage human-robot interaction
sory informationreusabilityfor generating composite rep- tasks. A principled context model is not explicitly repre-
resentation structuresxpressivenesa representing rela- sented within the system, which lacks in reusability and
tional and temporal event patterns. The notion of “context’expressiveness. Thébibot paradigm [1] is based on three
has been defined amy information that can be used to main constituentsMobots (i.e., mobile robots) Embots
characterize the situation of an entif¢0-15]. Four ap- (i.e., embedded robots: agents in charge of data collec-
proaches to implement this idea are particularly relevantion) andSobots(i.e., software robots: agents implement-
for this discussion. ing cognitive algorithms). A context model requires a tight

The “Context Toolkit” [10] is based on contewiidget integration between Mobots, Embots and Sobots. How-

interpreterandaggregator A widget corresponds to a real- ever, just few contextual information is used by the system,

world artefact acquiring contextual knowledge. WidgetsWhiCh lacks in effectiveness and reusability. As part of the

are not application specific. Instead, they can be con:v.ideréD EIS tE_coIogyLameWﬁrk, ang _grozu(r;d_ed with fretﬁ p?_ct:fo}t
as available services. Interpreters correspond to modulé)§)er6: |\;e anc ontng'(tj_etv_\g)rt '(;] [ ]tlstonte Ot e Iram? -t
reasoning upon contextual knowledge. They can proceégmp S lo generate distributed context structures. or

several contexts and produce new contextual informatiornately' ISSUES re!ated to reu_sab|l|ty e}nd EXPressiveness a
10t sufficiently discussed. Finally, with a specific empha-

Finally, aggregators are modules used to combine heterd: ) : . .
Y. aggreg sis on human-robot interaction, the work in [21] is aimed
geneous knowledge. . L S
_ _ at investigating formal models of human behaviour in spe-
The “Context Broker Architecture” (CoBrA in short) cific situations, integrating information obtained frons<i
has been designed to deal with three requirements of digributed sources. Although this is an effective solution to

tributed systems [16]: (i) contextual knowledge must begrive robot behaviours, an explicit context model is miss-
shared (ii) intelligent agents must be provided with a well- ing.

defined information semantics; (jii) interope_rapility ango Ontologies and logic approache&pproaches based on
heterogeneous data must be enforced. Within CoBrA, allq|giesare expected to provide a superior expressive-
these aspects are realized byraker, a software entity 54 in describing concepts and relationships [13, 22]. The

malntalnlng a s_har.ed language to model sngaupns, acqUIFork in [23] adopts activity models to characterize a situa-
ing data from distributed sources and establishing data d‘?ron, which refer to many entities: a situation is origirite

livery policies. from contexts affecting different individuals. Crowleycan
The “Aspect-Scale-Context” model and the associatedolleagues [24] extend this principle by considering con-
Context Ontology Language (CoOL in short) [17] orig- texts as networks of building blocks: different entity prop
inate from theshared understandingssue of distributed erties are obtained by considering relationships among dif
systems: each “actor” must be provided with the samderent contexts. The network model abstracts from the
declarative data semantics. CoOL is structured to enforceource of a particular information, therefore allowing to
interoperability: situations are sets of “aspects”, eagk o consider distributed sources. Although these systems offe
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a basic framework for supporting reasoning, they are char
acterized by two major drawbacks: (i) they tend to produce
highly specialized terminologies, and (ii) context models

can not be easily aggregated to build composite represet contex:s
tations.

Logic approaches manage contexts integrating sensol
data with axioms and rules. Two inspiring principles de-
serve special attention [25]: (Ipcality: reasoning must
occur within a domain defined by a context; (Gjoss-
domains bridgingrelationships can occur between reason- smsois
ing activities belonging to different contexts. Logic-bds
architectures have been proposed for smart environmen
[26]. However, they show a number of limitations with
respect to expressiveness, since they lack in representir
compact models.

/— situations

data sources

Fig. 1. A graphical sketch of the proposed context assess-
3 A CONTEXT MODEL FOR UBIQUITOUS ment model.

ROBOTS

~ The proposed model takes inspiration frawmputa- gjstributed sources using other symbajs whose seman-
tional functionalism a theory of mindconsidering men- tjcs is grounded with respect to an ontolagy

tal states as functional relationships [27]. Mental states Proposition 6 Each symbol ir is defined by a vector
defined using mental andormental states, such as sen- o\, fnctional rolesr;, each one possibly filled by a
sory information. Functional states are defined in abStraC(/ectorqS- of one or more symbol fillersy, according to
Their effective realization is independent from the unglerl . roleldefinitionsz = A{r;} =11 At /\1_'_ “Ar. . Roles
ing embodimentFunctional states can be originated fromimplement functional relati:)nships among syn?bols.
distributed and heterogeneous sources of information, pos Proposition 7A contextS = o4 () is a grounded sym-
sibly remotely located and only loosely coupled. The mai ol originating from the closure of the functional relation

hypothesis of this work is to consider context; as spect hip between roles and fillers (which is referred to in the
mental states. A system based on functionalist considef-

ations is characterized by very desirable properties Sucollowing as avariable assignmend), according to the
as the possibility of being easily implemented, the suppor?efftlogoqzak =M@ =@ A2 ©d2
for distributed cognition and the lack of assumptions about™ "~ " " = "™

physical properties of information sources. The proposed From Proposmc_)ns 6 a_nd 7 It can b? seen how a
context model adheres to a number of design principle ,rounded_symbcﬁ_ Is recursively structured_. each fillg¢
which are introduced as follows of a certain role; is a grounded symbol. Since eagym-

. . .__bol ultimately represents real-workl/entghe system can
Proposition 1 Contexts are functional states emerging

f the int tion betw dat d the f observe, Propositions 5-7 define@mputational process
rom the interaction between sensory data an € ur]Céxtracting base predicate symbols from sensory data and
tional structures used to assess information.

- ) to semantically assess information from symbol combina-
Proposition 2Functional structures and the correspond+jgns.

ing relationships are defined in abstract and then grounded Proposition 8 Given the symbob grounded with re-

with respe.c.t to the pa'rtlcular.scgnano. spect to a context described in an ontology., and given

Proposition 3 Physically distributed as well as abstract 5 variable assignment under a specific interpretatiahy
sources of information are considered: a context can bgyen the proposed context model can be seen as the satisfi-
shared among many distributed entities, each one pOSSIbgbi”ty procedurg®, 7, a) = 6.

contributing to its assessment. This model requires to identify an interpretati@n=
Proposition 4 Contexts are hierarchically structured in (53 .7) for contexts in.

order to maintain knowledge and allow for reasoning at the Proposition 9 A context model~¢™ is defined such

proper level of abstraction. thatxc™ = {P,C,S} C ¥, wherecm stands for “con-
On the basis of these principles, the proposed model igext model”, P is a set ofpredicates Rop=1,...,[P|
described as follows (Figure 1 on the bottom). used to build more complex structuresjs a set ofcon-
Proposition 5 Symbolsoy, k = 1,...,|ox| are itera- texts C, ¢ = 1,...,|C| and, finally,S a set ofsituations
tively defined by numerical or ordered values provided byS;, s = 1,...,|S].
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In the following paragraphs, we adopt the syntax of De-C(6y) or X™ = S(6%), Vk € 1,..., K, it is possible to
scription Logic formalisms and the related nomenclature. uniquely determine if such a sequence is composed of ac-

Proposition 10Instance checkingd binary operator is tual symbols, to retrieve the number of involved symbols,

introduced, henceforth callédstance checkingsuch that ~2nd to identify symbols.

{truelfalse} « ¥ =2 of™(6§™), whereX is an ontol- _

ogy, o™ is a non grounded symbol (i.e., a concept) and  Proof: Each grounded symbgi,. can be associated
&¢™ is a grounded symbol (i.e., an individual) of the con-With a finite-length treef;,, which represents the process
text modelX¢™. Given a variable assignment the op-  Of functional relationships by recursively inspectingeiill
erator returns true i#$™ is aninstanceof (i.e., it can be ~Symbols until reaching elementsih i.e.,leaves The pro-
classified asy{™, or false otherwise. cess of building the associated trggcan be achieved us-

Although the model can manage hierarchical contexts',ng the following steps: (i) the tree root is labelled with

. ) &r; (i) if a node is such thak<™ = P(6y), it is a leaf;
in practice only 3-layer structures are needed, nameIYm) if a node is such thabe™ = oy, (6%) = A{r:}, then
predicate representing information about sensory data — Ok\Ok) = Mg

context aggregating predicates dealing with the samét hasn child nodes, which are labelled, respectively, us-

1 e : . .
entity andsituation considering different contexts as a i % : If it IS possible to build7y. for eaAchak,
: . then it is possible to inspect the seque#ge. .., 5, by

whole. Common logic operators are provided by the un- : .
exhaustively parsing all the trees. |

derlying ontology. However, to deal wittemporalevent

patterns, the context™ is augmented with a number of ~ In virtue of Theorem 1, we can draw a parallelism
temporal operators. between finite-length trees and elements in the context

model. Specifically, building the finite-length trgg for a
givenay, is equivalent to fill the corresponding roleswith
symbolic structures belonging ©°". Parsing the tree is
equivalent to traverse functional relationships among-fun
tional states. On the basis of this result, context awarenes
in Ubiquitous Robatics scenarios is reduced to msatys-
fiability procedures carried out over instance&6f".

Proposition 11Introduction of the temporal dimension
Given a time instant, elements of the context modei™,
wherel = 1,...,|P| + |C| + |S|, are satisfied i (and
we writeoj’") if there is an interpretatiod and a variable
assignment- such thatX, Z, ;) = P(677)UC(6777)U
S(om).

The use of temporal information is coupled Xhwith Proposition 12 Given a finite-length tred;, an inter-

a number of operations on symbols. Of particular rele- retationZ, a variable assignment., then satisfied Sym-
vance are thderivativeand thelengthof symbols, as well E Isé ' h th 9 N y

as thetimeline The derivatives is an operator returning bo 30’“. arg SL.“;] rt] a((;Tk_,I, o) oy X5"(0%), I.€.,65 can
true when the truth value of the operated grounded sym-e erived with the derivatioh.

bol changes in two subsequent time instants. The length  Strictly speaking, symbols i@ or S are encoded as
returns true if the truth values (either true or false) of thefinite-length treesy;, which — on their turn — rely on defi-
operated grounded symbols are in a particular temporal rdlitions of concepts irt<™. Context awareness is realized
lationship, such as:, <,=, >, >. Finally, the timeline< DY aggregating instances of symbols7min order to sat-
expresses precedence relationships between two groundéy symbolic structure€C. andS; represented withirt

symbols, returning true if the first symbol actually precede (S€€ Proposition 9 onwards). The aggregation assumes the
the second. form of thehistory of then most recent instances of sym-

. . . bolsinP P¢,i = 1,...,n, which are stored withii in a
Different techniques can be adopted to implement temf PP e

. . o : irst-in-first-outapproach (see Figure 1 on the bottom).
poral relationships. To this aim, symbols in the model use . } )
ify the temporal interval when the correspondifg® def- is available, a classification process is carried out over in
inition has been last satisfied by a variable assignment. ftances of symbols i®, thus — possibly — modifying their
is possible to encode advanced temporal relationships duth value. In particular, the overall history descriptiD,,
properly reasoning on actuatartsAtand endsAtvalues. IS consideredD,, is obtained by joining the description of
However, the focus of this work is on strict precedence re€achPy;:
lationships, i.e.§; < 62 holds iff 5, ends beforé starts.
D, =D(P,1...NP}) p=1,...,|P. (1)
4 CONTEXT RECOGNITION AS A COMPUTA- .
TIONAL PROCESS D, represents the system state with respect to both the
current situation and the most recent past events. For The-
Theorem 1 Given a finite-length sequence of groundedorem 1, the system can infer what symbGlsare satisfied.
symbolsé, ..., 6k such thatX™ E P(64), X" | Thisis accomplished by checking for instance relationship
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betweerC andD,,. Specifically,C, () is the collection of Section.SDL is used to build abstract sentences correlat-

C. symbols classifyingD,: ing different base symbols, which correspond to sensory
om data. As a consequence, the language poses constraints on
Co(7) ={Cc : 2 |=2 Ce(Dy) }- (@) the construction of symbolic structures in the ontology,

which correspond to name@iontextsand Situations
Proposition 13SDL is defined assSDL = L(SDL;),
whereL is a generative process that operates on a grammar
SDL,. As usual,SDL; is formally defined as a 2-ple
DLy =< A, R >, whereA is a finitealphabetand R
a binary relationship oved* (the set of finite, possibly
empty, strings over) such thatR C A* x A*.
D.=DECM...NCD) c=1,... ¢l @) The grammar specifies how to build well-formed sen-
tences belonging t6 DL starting from an initial sentence
Analogously to satisfied symbolsdh usingD. the sys- in A*.and i'teratively applyingewrite ryles belonging to
tem can infer whas, are satisfied in- (see Figure 1 on 1 until the mtended_ sentencedgrivedin n steps. In par-
top). Again, this is managed by instance checking betweefcular, sentences; in SDL are elements of the set”,
S andD... Current situations are storeddh (1), which is whereas rewrite rules, — r. are defined as binary ele-

Therefore, all the satisfied symbols@h namelyc. C
C,(7) are occurring inr (Figure 1 on the mid). This mech-
anism is easily iterated for symbols . SinceC,(7)
varies at eachr, the history descriptiorD, is consid-
ered, obtained by superimposing the description of eac
Cl C Cy(7):

the collection of instance§, subsumingD,, where ments(rq,c) € R, wherer, andr. € A* are called, re-
spectively, theantecedentaind theconsequenof the rule.
Su(1) ={Ss : X" =2 S(D.) }. (4) The generative procegsmust be precisely defined.

o o Proposition 14 Given a; anday € A*, a one-step
Remark 1 By explicitly taking time into account, tem- rewrite relation=j; over an alphabeti* can be defined
poral instances oSituationcan be handled as relational sych that, given, y, r, andr, € A*, thena; = as holds
symbols: the only difference is that satisfiability periodsif and only if a; = 74y, ay = zr.y and(rq,r.) € R.
may not overlap. For each temporituation the num- Proposition 15An n-derivation inSDL is defined as a
ber of constituenContextelements to be considered over ite sequence of sentences . . ., s, that are produced
time is limited. The reason is twofold: (i) since efficiency starting from an initial sentence, belonging toA* and

in logic inferences depends on description complexity, Aewriting it by means of rewrite rules iA.

mgreased number dtont_extelements n defm_mg 8itu- : Proposition 16 The generative procegscan be defined
ation can lead to dramatic response times; (ii) correlation

among different instances Gontextfades away with time. such thaSDL = {s; € A”|so = 5:}, from which it can

o be argued tha§DL is a Semi-Thue system.
Remark 2 The state at time instamtcan not completely

. Sentences are not atomic element§ L. On the con-
represent the whole evolution of the system, because ter?r'ary, they can be decomposed into many parts, which are

poral Slltuatlonsyrnl:.)ols require an explicit representation explained in the following paragraphs.
of previously satisfied symbols. In other words, the con- " . '
. . Proposition 17 The alphabetd is defined as a set of
text model does not comply with thHérst Order Markov
symbol classes such that = {sg,s,0,l, f,®,t,v,c},

Assumptionthe approach implements a process of “sym- i . 0
bolic smoothing” over a temporal window that is Charac_where.so, s and() are, respectively, the initial sentence, the

terized by the history length. As long asn increases generic sentence and the null sentericepresenttabels

the rate of successful recognition Bftuationinstances meant at providing each sentence with a natheepre-

: . . : sentsformulas i.e., building blocks upon which sentences
increases, since relevaRtedicatesymbols are still rep- N ) P

resented within the system, thus contributing to build the ! be built; represents both unary and binary connect-

necessargontextelements. However, computational load ;?gﬁ?iig:g;ite;egﬁj?é‘gnggﬁviﬁthmg le?eipart
exponentially increases with , thus requiring a trade-off ' P y languegea v

between history length and real-time recognition require?ndconsv’_‘htg' _ )
ments. Proposition 18A sentences is an element ofA* in the
form [ = I(f);, wherel represents suitable labels afids
5 A FORMAL LANGUAGE FOR SITUATION aformula. _ )
SPECIFICATION Proposition 19 A formglaf is an element o4 the_xt
o can be a label, a term, a juxtaposition or a composition of
5.1 Syntax and Definitions subformulas by means of connecting operators.

A formal language is introduced that builds upon the Proposition 20A connecting symbad) is an element of
knowledge representation model described in the previoud that contributes to formulas by composing one or more
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subformulas using, respectively, unary symhp]sand bi- Sentences; correspond to descriptions related to pred-

nary symbolspy. icates in normal conjunctive form that refer to different en
Proposition 21 The set of rewrite rule® is defined as  ttI€s.

follows: sog — s | sso |0;s = 1=1U(f); f—=1]|t]| Buf| The introduced mapping defines a translation mecha-

f@®p f; 1 — string t — v | ¢; v — string; ¢ — string;,  nism to mapSDL sentences in structures that are repre-

Gy — =0 )rdy =0 U] A |- sented within an ontolog¥. The set of connecting opera-

The syntax ofSDL is completely specified on the basis t0rs is not described in details, as actual translation mech
of the alphabet! and the rewrite rules ift. However, what ~@nisms are ontology-dependent (since they rely on the un-
is unspecified is how to ground the language with respect tgerlying operators) and — as such — out of the scope of this
the underlying ontology, and in particular to descriptions PaPer.

Dy. In particular, it is necessary to map language elements

to symbol classes within the ontology. 5.2 Semantics
Proposition 22 The rulev — string maps a set of vari- Every time instant-, grounded formulas originate from
ablesvy, k = 1,. .., |v.|, to corresponding symbols within @ variable assignment, according to a specific interpre-

Y. that are related tBasic Type®3 such tha® = B(Dy,). tation Z. Sentences iDL assert which symbols must
Variablesu;, correspond to description3,, that referto P& grounded in- for the represented sentence to be sat-

basic types. In particulastring refers to the name of the isfied, given sensory information acquired from some in-
stant in the past up to the present time. How the grounding

relatedak._ ) ) process is performed depends on the constituent formulas.

Proposition 23The rulec — string maps a set of con- Ultimately, this requires to identify a proper interpréat
stantse;, [ = 1,...,|¢, to symbols within the ontology | (3, -") for symbols belonging to the underlying ontol-
that are related to instances Basic Types5 such that ogy ¥, thereby imposing a semantics to the corresponding
2 B(Dy). formulas

Differently from variables, constants correspond to In order to groundBasic TypesB, it is necessary to

dgscriptionsj)l that refer to instances of basiic types. Inground symbols with respect to actual percepts corre-
this casestringrefers to the name of the relatégd sponding to sensory data. In this work, we refer to the map-

Proposition 24The rulel — stringmaps labels to a set ping discussed in [28], and we focus on how semantics is
of named non-groundes, or groundedy; symbols within  propagated to abstract structures by means of sentences.
the ontology, each one related to eithBredicatesCon-  |n particular, the effects of the variable assignmermiver

textsor Situations SDL formulas must be defined.

All the symbols above contribute to the definition of for- Proposition 29 The substitutionof an actual numerical,
mulas. ordered or non-ordered valug to all the occurrences of
Proposition 25The rulef — 1 | t | @.f | f @, f @ variablev in a termt, that is referred to agfv/a;], is
maps formulasf;, j = 1,...,|f;| to corresponding either recursively defined as: (i) if is a variable s.tv # t, then
non-grounded or grounded descriptions withinwhich  t[v/a;] — t; (ii) if ¢is a variable s.tv = ¢, thent[v/a;] —

are related to eithdéPredicates Contextsor Situations ay; (iii) if ¢ is a constant, thetjv/o;] — t.

Proposition 26 The rules — | = I(f); maps a set Proposition 30 The substitutionof a termt¢ to all the
of sentence; € A*, j = 1,...,|p;| to corresponding occurrences of a variablein a formulaf, that is referred
Predicatesymbols within. to asf[v/t], is recursively defined as: (i) jf, is a formula

Sentencep; correspond to descriptions related to ba-IN the form@.f, thenfs, [u/t] = G flv/t]; () if fo, is
sic types in conjunctive normal form that describe “facts*@ formulain the forny, @, f2, thenfs, [v/t] = filv/1] @y
about an entity. f2lv/t].

Proposition 27 The rules — | = I(f); maps a set As soon as new or updated_ informat?on is ava_ilable
of sentences; € A*, j = 1,...,|c;| to corresponding at t_he time mstfantr, a new variable assignment, is
Contextsymbols withinX. defined. Accordingly, variables are updated. As a conse-

S diod . lated q guence, corresponding formulas are given proper truth val-
entences; correspond to descriptions related to pre “ues, thereby satisfying more complex sentences. Further-

icates in conjunctive normal form that refer to the Samemore, the meaning associated with connecting operators

entity.
P _ . 1The interested reader could guess how to implement connemping
Proposition 28 The rules — 1 = l(f)’ maps a set erators by inspecting their semantics in the next Sectiomeder, in De-

Of_ sentenceSj € A.*' J = 1,...,]s;|, to corresponding  scription Logics based ontologies, the mapping can be ewsilized us-
Situationsymbols withinX. ing some sort of extra logic “trick”.
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must be clearly assessed. In order to recursively compos# the general operatdy, in order to differentiate the case
formulas, unary and binary symbols can be better classin which the argument of the derivative changes fream
fied in relational andtemporaloperators, that are charac- isfiedto not satisfiecr vice versa.
terized by an intuitive correspondence with common logic  Proposition 37 Length The family of binary opera-
and mathematical operators. Specifically, common logigors A, € @, w € {<,<,=,>,>}, produces a formula
operators have been added. fr < Au(f1, f2) that compares the temporal duration of
Proposition 31AssignmentThe unary operatokc @,  two subformulasf; and f,. Given three time instants,
produces a formulg. < =f that is the copy of the sub- tau; andry, an interpretatiorf and three variable assign-
formula f. Given an interpretatioff and a variable assign- mentsa, a,, anda.,; given thatr; < 7 is the most re-
menta, the grounded formula: f is satisfied if and only ~ cent time instant such that f,) holds, andr, < 7 is the
if the logical expressiorf is satisfied. most recent time instant such thatf;) holds; then the

Proposition 32 ParenthesesThe unary operatof) € ~ grounded formula\, - (f1.-. f.-) is satisfied if and only
@, produces a formulg(, « (f) that specifies the level if (1— :7'1)(;.)(’7’ — 7o) is satisfied, whereas it is not satisfied
of precedence in the parsing process for the subforrfiula Otherwise.

Given an interpretatio and a variable assignmemt the In most cases, one of the constituent formulas may sim-

grounded formuld f) is satisfied if and only if the logical ply correspond to actual time intervals (e.@)‘minutes”

expressiorf is satisfied. or “8 hours”), and the operator is currently used to check
whether a formula lasts less, equally, or more than the spec-

Proposition 33 Conjunction The binary operators
{n,,} € @ produce formulasfin v <« fi{M,,}fe “ .
that are the juxtaposition of two subformulgs and f». Proposition 38 PrecedenceThe binary operatore
Given an interpretatioff and a variable assignmentthe @b Produces aformulg; <= (f1, f2) that expresses the
grounded formulag {1, , } f» are satisfied if and only if témporal precedence relationship between two subformu-
the logical expressioff, and f; is satisfied. las f, and f;. Given two instants andr, an interpre-

. . tationZ and two variable assignmenis, anda.,; given

It is worth noting that the correspondence of mean

r t—f(f f=t( £ .
ing between the two latter connecting operators originatt’a_tEhaw A(fl’”) apdé (£2,7,) hold; then the grounded

from the mapping process of formulas to structures withi ormulq flf% = f?ﬂ IS Sa}t'Sf'eq i a_nd on_Iy_|fr1 < T2
the ontology. However, this is permitted to guarantee com" olds (i.e., if the interval in whicly; is satisfied strictly

patibility with commonly used logic formalisms. precedes the interval in which is satisfied), and not sat-
. . . . isfied otherwise.
Proposition 34 Disjunction The binary operator! €

@y, produces a formuld, < f; U f> thatis the disjunction 6 IMPLEMENTATION AND DISCUSSION
of two subformulasf; and f,. Given an interpretatio@d

ified interval.

and a variable assignment the grounded formu% ¥ f SDQ has beeq used to .model _the behaviour of a team
is satisfied if and only if the logical expressignor fs is of service robots in a hospital environment. All the exper-
satisfied. iments have been performed using Merry Porter, a com-

mercially available robotic platform (Figure 6). In thefol
lowing paragraphs, implementation details and an overall
discussion about system performance are presented.

Proposition 35Negation The unary operator € &,
produces a formulg- < —f that is the negation of the
subformulaf. Given an interpretatio and a variable as-
signmenta, the grounded formula-f is satisfied if and 6.1

. . . . s Implementation Details
only if the logical expressionot f is satisfied.

At the hardware level, Merry Porter is characterized

int £ A th tribute to f tﬁy an unicycle kinematics with an active front steering
7 Into account. AS a consequence, they contribute 1o Tory heel, three different systems for outdoor or indoor lo-

mul_as that are satisiied by a sequence of sev_eral variah %Iization, respectively based on GPS, laser rangefinders
assignments.,. Three operators have been defined. and active beacons (referred to as DLPS system), a safety
Proposition 36 Derivative The unary operataf € ©,  |aser rangefinder for obstacle detection and two cameras
produces a formulgs < 4(f) that is the “derivative” of  for surveillance. Merry Porter has a battery working time
the subformulaf. Given two time instants and7 — 1, of aboutd hours with only30 minutes charge time.
an interpretatio and two assignments, anda._1, the At the software level, Merry Porter exploits a multi-
grounded formula, () is satisfied if and only iff- = 4gent architecture that is based on the ETHNOS frame-
~fro1 work [29,30], where each module is in charge of executing
For simplicity, two operators, namelyositive deriva- well-defined tasks, for instance mission management [31],
tive 6*~/ andnegative derivativé ~* are used in place localization [32], trajectory planning [33], see Figure 2.
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LOCALIZATION cepts representing language elements in the forRred-
icates Contextsand Situations The domain specification

Kalman Filterj of SDL represents all the predicates, contexts and situa-

tions that can be defined using t§&® L formalism as in-

troduced in Section 5. For instance, Bentextconcept is

v represented in Description Logics formalism as:

Localization
Agent

GPS Manager
Active DPLS
Beacon Manager
Laser Data
Laserscanner
Extractor
Environment Task&Path
Automation Manager
Safety Obstacle
Laserscanner Detection

APF
Generator
Motors <g——|
Encoders ———

Context = dmadeOf.Predicate >; madeOf1
dstartsAt.Integemn =, startsAtr1
JendsAt.Integer =; endsAt

Trajectory
Generator
Motors
Manager

wherestartsAtandendsAtare — respectively — the start and

9 NAVIGATION end time instants associated with a given truth value for

z H . - . . .

© ; the context (time is modelled using integers). As a major
Conveyors % consequence of organizing predicates, contexts and situ-

ations in a hierarchical fashion, a bottom-up approach to
the continuous update of the ontology is achieved: sensory
Fig. 2. The robot software architecture. data affects instances of basic of domain elements, which
are used to determine truth values associated with domain

The th ical model d ived in thi has b gedicates, to be used by higher-level concepts such as con-
e theoretical model described in this paper has beep, s anq sjtuations to define complex abstractions.

implemented as part of theask Managemodule. It re- i
ceives as input information originating from sensors dis- Al the SDL operators have been implemented as spe-

tributed in the environment as well as on board the robot<Cific concepts in the ontology subsumed®PLOperator
such as position, detected obstacles or batteries level. Tiiror instance, given th€ontextconcept, thePrecedence
model has been implemented using the CLASSIC knowlOPerator is defined as:

edge representation framework, which has been selected

for its efficiency in the reasoning scheme [34]. As a matter Precedence = SDLOperator]

of fact, CLASSIC guarantees a number of desirable prop- Jargl.Contextl =; argl1ri
erties like reasoning complexity in polynomial time, at the Jarg2.Contextt =; arg2m1
price of few limitations with respect to base construct ex- (argl.endsAk arg2.startsA},
pressiveness.

In order to obtain an efficient structure for the ontology, where the test in the last row of the definition is used to
specifically in a reasoning perspective, a number of rulecharacterize precedence between occurrences of contexts
of-thumb and best practices related to the field of Ontologyn argl andarg2, respectively. Similar considerations hold
Engineering have been considered [35]. In particular, & firfor other concepts and operators.
classical division irupperanddomainontologies has been
considered. On the one hand, the upper ontology represer;
general-purpose concepts related to information (e.tp) da
and physical (e.g., space, areas, places, time) domains,

tics. On the other hand, the domain ontology is related tc
specific concepts holding in typical Ubiquitous Robotics
scenarios, in particular in the form of further specifica-
tion of concepts both in the information space (e.g., date
types, such as those related to laser, GPS or device agtivit
and in the physical space (e.g., automated doors, eleyatot
load/unload stations and other relevant objects), as well a
specific features of robots and intelligent devices.

In order to ground the&DL language, the model has Fig. 3. Map of the robot operating environment.
been implemented as a specific module within the ontol-
ogy. Following the subdivision in upper and domain ontol- The approach described in this paper is currently under
ogy, an upper specification &fDL comprises those con- validation at the Polyclinic of Modena, a hospital located
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in Italy. Robots are required to transport — either accgrdin 4. NotCrowded= —(Crowdedg4)r. . .Crowdedé,,));
to atime schedule or on demand — biologic waste and other

material between areas located at different floors of one of 5. AreAvailable= Available(a)_! Available(b)

the buildings of the Polyclinic complex (Figure 3). In the

following paragraphs, two test cases is reported, disogssi g AreCharged= 6/ ~*Charged(bp)

different examples of use.

e . 7. o1 = FeasibleMission= Path M AreChargedn
6.2 Bxample 1: Mission Feasibility (IsSafe (IsUnsafe NotCrowded) M AreAvailable
Rationale Mobile robots need to know both advance

and at run-time the availability of elevators (e 4.andB

in Figure 3), the crowding of areas to traverse (ekgH name, Path_1sSafe IsUnsafe NotCrowded AreAvail-

Iered (n ordor t avord possile contact wih food provi 2018 aNd AfeCharged are Contexts Connected Safe
P P Crowded Available and Charged are Predicates f, h,

sions and people) and the charge status oBtgeryPack m, ay,... an, a, b andbp are variables which names

~ In our set-up, this data is provided by proper informa-correspond to environmental elements represented in
tion sources: aEnvironment Automatiomodule running Figure 3. For a given interpretatioﬁ' and time in-

on the network device associated with elevat@randB  stantr, an o, can be defined such th&@onnected|f/F,
continuously provides information about their availeili  ¢/G), Safe[m/laundry] —~Crowdedp./A;, ..., an/A,],

a Task Managemodule running on a networked work- AreCharged[bp/BatteryPack] ~ Available[a/A]  and
station determines the sequence of a®as.., A, tobe  _ayailable[b/B], then the corresponding grounded
visited in order to carry out the mission [31]; algorithms sentence, satisfiess; .

(running on networked workstations) process camera im-
ages and passive infra red data (managed through sen-
sor nodes in the network) in order to determine whether
areasA,,...,A, are crowded or not, specifically using
state of the art background subtraction algorithms [36],
whereas distributed sensors provide information to track —

movements of other vehicles (through RFID tags) through- Y e N e N e N N sy
out the hospital; the integration with the hospital informa

Specifically, FeasibleMissionis the actual situation

| Path

o=

| IsSafe
I ]

o=

tion system allows to access data about the typeate- ! AreAvaiiable 1
rial being handled and the privileged routes for other de-

livery activities; finally, an on board battery system magul | —
monitors battery status, whereas other agents cooperate to N

perform self-localization [32], obstacle avoidance [3ddla i | FeasibleMission .

navigation [33]. i
A mission is considered feasible if a path between the

initial and goal areas exist, if on board batteries are suffiFig. 4. A variable assignment satisfying the FeasibleMis-

ciently charged, and either the material to be delivered i§ion situation.

safe, or — in case of risky material — the elevators are im-

mediately available and the areas to be traversed are free Figure 4 shows a real truth value log that satisfies this

of people. situation (opportunely “stretched” to fit space limitBga-
Modelling Assuming thaE andH are — respectively — _sibk_aMissior‘hoIds at time instant when all _thg constitut-

the initial and goal areas, and thst, . . ., A, are the areas N9 mstanpes of conte_xt elements. are satisfied at the same

to be traversed by the robot in order to move fréno time. In this example, it can be noticed that, when the robot

H, mission feasibility is modelled as tifeasibleMission IS requested to perform an actual mission, it is in battery
situation, and in particular using the following collectio charge mode: as soon as batteries are charged enough to

of sentences (or “source code”)&DL: complete the mission, then it becomes feasible. Further-
more, since the material is safe, the availability of elexat
1. Path= Connected(f, h) and the crowding of the areas to be visited do not really
matter.

2. IsSafe= Safe(m;
(m) Mapping Within the ontology, the sentence; is

3. IsUnsafe= —IsSafe mapped to a conceeasibleMissiorsubsumed bySitu-
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ation, and defined as:

Situationn

Pathm AreCharged
(IsSafe.

IsUnsafe NotCrowded M
AreAvailable

FeasibleMission =

Specifically,FeasibleMissions made up of sixContext
concepts, which are connected through &nel/or opera-
tors provided by the underlying ontology. EaClntextis
conventionally provided with a rolmadeOfthat is filled
by a proper set oPredicateconcepts. In this example, a
one-to-one mapping exists betwe€ontextsand Predi-
cates e.g.,AreChargeds associated witiCharged

AreCharged= madeOf.Charged

6.3 Example 2: Loading an Object to Deliver

Rationale When loading an object from loading sta-
tions, mobile robots can start their missistrictly after
the overall loading phase has been carried out. This can be
achieved by a tight interaction between robots and load-
ing conveyor stations (Figure 5 on the bottom): the robot
MP; must properly dock close to the loading conveyor sta-
tion, the station must be activated, the material to be de-
livered must be successfully detected on board the robot,
and the station must notify the successful conclusion of
the overall procedure. Again, this information is provided
by proper information sourceslacalizationmodule run-
ning on board the robot provides both metric and topolog-
ical information about the robot position [32]:Gonveyor
Manager module running on the network device associ-
ated with loading stationS; andS; continuously provides
information about their status (e.gn, off, active); finally,
pressure sensors located on the robot base are managed by
aBase Systeragent to detect when the material is loaded.

Predicate concepts are related to their entities andThe loading procedure is considered accomplished if the

grounded instances through thaig roles. In this case:

Charged= argl.batteryPacki arg2.batteryLevel

robot enters théockingArea then if the station is acti-
vated, if the material is detected on board, and finally if
the conveyor station stops. Obviously enough, further in-
formation can be obtained by the rear camera mounted on

Predicate concepts have two child concepts that arethe robot pole (Figure 5).

used to designate their truth value. For instari@iearged
subsume€hargedTrueandChargedFalsewhich differ on
the basis of the value dfatterylLevel When this value is
over a given threshold, the instance ©hargedis sub-
sumed byChargedTruethereby contributing té-easible-

Missionto hold. Finally, analogous mechanisms hold for

the otherContextinstances as well.

Fig. 5. Merry Porter performing a delivery task.

AUTOMATIKA 52(2011) 3, 256-268

Modelling Assuming thatvP; is the robot in charge of
loading the material fron%, in areaF, LoadMaterialcan
be modelled using the followin§DL code:

. Docking= 6 ~*IsIn(r, da);
. StationOn= §/~*Active(ls)

1
2
3. StationOff= 5t~/ Active(ls)
4. Load= §/~*Present(m)

5

. 09 LoadMaterial = Docking < StationOn <
Load < StationOff

Specifically,LoadMaterialis the actual situation name,
Docking Load StationOff and StationOnare Contexts
Isin, Active and Presentare Predicates whereasr, da,

Is and m are variables. For a given interpretatidn
and a sequence of time instants,...,r, if it is
possible to define a number of variable assignments
Q... , 0, Wherea,, is such that-Isin[r/MP, da/F],
ar, such that IsIn[r/MP,, da/F] (and therefore the
corresponding derivatives’ ¢ holds), o, such that
—Active[ls/S], a., such thatActive[ls/S] (therefore sat-
isfying the corresponding derivativé—7), .. such that
—Present[m/laundry] c.;, such thatPresent[m/laundry]
(and therefore the corresponding derivati/e’* holds),
and finally an assignment,. such that—Active[ls/S],
then the corresponding grounded sentenceatisfiesrs.
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Fig. 6. Merry Porter performing a delivery task.

3

t4

events to detect, an example borrowed from the Ubiquitous
Robotics paradigm has been discussed, which is currently
experimented in a real-world scenario. With respect to the
three fundamental requirements that context models must
adhere to, it is possible to conclude that:gfjectiveness
sensory data are mapped to symbolic representation that
can be directly operated upon; (igusability since sym-
bolic representations are maintained within an ontology in
a hierarchical fashion, selected concepts and relatipashi
can be differently composed to build different representa-
tions; (iii) expressivenessince tractability of inference is

a fundamental prerequisite, the system is limited to sim-
ple temporal relationships among events; however, prac-
tice suggests that it is possible to model a wide range of
contexts and situations for a broader spectrum of artificial
cognitive systems.
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