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Preliminary note

At the nanoscale the dynamics of the nanorobot motion is very complex and 
requires an interdisciplinary approach to designing it. Generally, a nanorobot 
is moving in a multipotential eld. Therefore, in this paper a dynamic model 
of a nanorobot motion is described by the Hamiltonian canonical differential 
equations, as functions of the total potential energy of a nanorobot in a 
multipotential eld. This model is derived for non-relativistic nanorobot motion, 
without quantum effects. The presented model is suitable for application to 
modern control algorithms such as an external linearization, optimal and 
adaptive control and an articial intelligence control.

Dinamički model gibanja nanorobota u multipotencijalnom polju

Prethodno priopćenje
Dinamika gibanja nanorobota na nanoskali izuzetno je složena i zahtijeva 
interdisciplinarni pristup pri njezinu opisivanju. Općenito gledano, nanorobot 
se giba u multipotencijalnom polju. U tom smislu dinamika gibanja nanorobota 
opisana je ovdje Hamiltonovim kanonskim diferencijalnim jednadžbama, kao 
funkcijama totalne potencijalne energije nanorobota u multipotencijalnom polju. 
Ovaj je model izveden za nerelativističko gibanje nanorobota, bez kvantnih 
efekata. Prezentirani model pogodan je za primjenu modernih upravljačkih 
algoritama kao što su eksterna linearizacija, optimalno i adaptivno vođenje, te 
primjena algoritama umjetne inteligencije.
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1. Introduction

Initially, the state of the art in nanorobotics region is 
briey pointed out. As it is well known, nanorobotics is 
the multidisciplinary eld that deals with the controlled 
manipulation with atomic and molecular-sized objects 
[1-2]. Generally, there are two main approaches for 
building useful devices from nanoscale components. The 
rst one is based on self-assembly structures that can be 
realized in bionanorobotics [3, 8-9]. The second approach 
is based on direct application of mechanical forces, 
electromagnetic elds, and the other potential elds. 
The research in nanorobotics in the second approach has 
proceeded along two lines. The rst one is devoted to the 
design of mechanical robots with nanoscale dimensions. 
This is a big technological problem.

The second line of nanorobotics research involves 
manipulation of nanoscale objects with macroscopic 
instruments and related potential elds. The techniques 
used in this approach are Scanning Probe Microscopy 
(SPM) [4] and Scanning Tunneling Microscope (STM) 
[5]. In the STM technique a quantum-mechanical effect, 
called tunneling process, and the piezoelectric actuators 
can be employed for the position control in a nanorobotics. 
Further technique is Atomic Force Microscope (AFM), 
which is sensitive directly to the forces between the tip 
and the sample (particle), rather than a tunneling current 
[6]. 

Recently, the Spin-Polarized Scanning-Tunneling 
Microscopy (SP-STM) and Magnetic Exchange Force 
Microscopy (MExFM) have been presented with 
application to metallic and electrically insulating 
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Symbols/Oznake

A
e

- vector potential of electromagnetic eld, V
- vektorski potencijal elektromagnetskog polja

A
g

- vector potential of gravitomagnetic eld, m2/s2

- vektorski potencijal gravitomagnetskog polja

c - speed of light in vacuum, m/s
- brzina svjetlosti u vakuumu

ds - line element, m
- linijski element

E
e

- electric eld, V/m
- electrično polje

E
g

- gravitational eld, m/s2

- gravitacijsko polje

F
I

- interaction force, N
- interakcijska sila

F
L

- Lorentz force, N
- Lorentzova sila

F
p

- potential force, N
- potencijalna sila

F
t

- time-varying force, N
- vremenski-varijabilna sila

G - gravitational constant, N·m2/kg2

- gravitacijska konstanta

H
e

- magnetic eld, V/m
- magnetsko polje

H
g

- gravitational acceleration eld, m/s2

- gravitacijsko akceleracijsko polje

I - interaction term, J
- interakcijski član

m
0

- invariant (rest) mass of nanorobot, kg
- invarijantna masa nanorobota

M - gravitational mass, kg
- gravitacijska masa 

N - matrix of velocities, m/s 
- matrica brzina

p
x
, p

y
, p

z
- momentums in x, y and z directions, kg·m/s 
- momenti u x, y i z pravcima

r - gravitational radius, m 
- gravitacijski radijus

U - total potential energy, J 
- ukupna potencijalna energija

U
c

- control potential energy, J
- upravljačka potencijalna energija

V
e

- scalar potential of electromagnetic eld, V
- skalarni potencijal elektromagnetskog polja 

V
g

- scalar potential of gravitational eld, m2/s2

- skalarni potencijal gravitacijskog polja 

v
x
, v

y
, v

z
- velocities in x, y and z directions, m/s 
- brzine u x, y i z pravcima

- Hamiltonian, J 
- Hamiltonijan

q - elementary electric charge, C 
- elementarni električni naboj

x, y, z - positions in x, y and z directions, m 
- pozicije u x, y i z pravcima

- velocities in x, y and z directions, m/s 
- brzine u x, y i z pravcima

- accelerations in x, y and z directions, m/s2

- ubrzanja u x, y i z pravcima

magnetic nanostructures [7]. Potential applications of the 
nanorobots are expected in the tree important regions: 
nanomedicine [8, 10], nanotechnology [7] and space 
applications [11]. More information about applications 
of nanorobots in the mentioned regions can be found 
in the references [12]. Generally, an overview of the 
interaction between an articial intelligence and robotics 
is presented in [13].

The main motivation in this paper is to help in 
designing the related dynamic models of a nanorobot 
motion in a multipotential eld. Such models should 
be employable, among the others, to the description 
of nanorobot motion in the different potential elds 
like mechanical, electrical, electromagnetic, photonic, 
chemical and biomaterial, as well as in a gravitational 
eld. At the nanoscale the dynamics of a nanorobot is 
very complex because there are very strong interaction 
between nanorobots and nanoenvironment. Thus, 
the rst step in designing of the dynamic model of 

nanorobots motion is the development of the relativistic 
Hamiltonian for a multipotential eld. This problem has 
been solved in the reference [12], where the concept of 
the variation principle and the generalized line element 
ds are employed. This is because ds2 is a fundamental 
invariant of the four dimensional space-time continuum. 
The obtained relativistic Hamiltonian has been adapted 
for application to the non-relativistic quantum systems 
without spin by using the related Schrödinger equations 
[12]. The same relativistic Hamiltonian has also been 
transformed into the Dirac’s like structure for application 
to the relativistic quantum system with spin [22].

The main goal in this paper is to derive non-
relativistic and non-quantum canonical differential 
equations for nanorobot motion in a multipotential eld. 
In that sense, the relativistic Hamiltonian derived in [12] 
is transformed into the non-relativistic one. It follows the 
application of the non-relativistic Hamiltonian to creation 
of the canonical differential equations for description of a 
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nanorobot motion in a multipotential eld. For validation 
of the general approach, the obtained dynamic model 
is applied to description of the nanorobot motion in the 
two-potential electromagnetic and gravitational eld. 
This paper has been written by consideration of the 
related theories and fundamental laws of physics in the 
references �12, 14-24�. 

The paper is organized as follows. The second 
section presents formal system and problem statements. 
The third section shows a derivation process of the 
Hamiltonian canonic equations of the nanorobot 
motion in a multipotential eld. In the fourth section 
a canonical model of nanorobot motion in a two-
potential electromagnetic and gravitational eld has been 
presented. An overview of the application of derived 
Hamiltonians to quantum systems has been considered in 
the fth section. The conclusions of the paper with some 
comments are presented in the sixth section. Finally, the 
reference list is shown at the end of the paper.  

2. Formal system and problem statements

Let the non-relativistic approximation of the
Hamiltonian   for a nanorobot motion in a multipotential 
eld is given by the relation derived in [12]: 

(1)

Here m
0

is a rest mass of a nanorobot, c is a speed of 
the light in a vacuum, p

x
, p

y
, and p

z
, as well as v

x
, v

y
and v

z 

are momentums and velocities, respectively, in x, y, and z
directions and U is a total potential energy of a nanorobot 
in a multipotential eld. The momentums of the nanorobot 
motion can be calculated by the equations:

(2) 

At the nanoscale control of a nanorobot motion or/
and manipulation we usually have the multi-potential 
eld with n-potentials, plus an articial control potential 
eld of the nanorobot that inuents to the nanorobot with 
a potential energy U

c
. Thus, the related total potential 

energy of a nanorobot in a multipotential eld is described 
by the following relation:

(3)

In the relation (3) U
j

is a potential energy of the 
nanorobot in the j-th potential eld.

Thus, the problem is to derive the dynamic model of 
a nanorobot motion in a multipotential eld, starting with 
the non-relativistic approximation of the Hamiltonian 

from (1) and taking into account the relations (2) 
and (3). The derived model should be in the form of the 
Hamiltonian canonical differential equations that are 
suitable for applications of modern control algorithms.

3. Derivation of the Hamiltonian canonic 
equations of the nanorobot motion

In the case where there are no quantum mechanical 
effects one can employ classic Hamiltonian canonic 
forms for designing equations of the nanorobot motion 
[18]:

(4) 

Applying the Hamiltonian (1) to the rst line of (4) 
one obtains the canonical equations for the momentums 
in the following form: 

(5)
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The application of the Hamiltonian (1) to the second 
line of (4) produces canonical equations for coordinates:

(6)

Including (6), the relations (5) are transformed into 
the following canonical equations:

(7)

Now, one can dene the so called interaction terms of 
a nanorobot motion in a multipotential eld:

(11)

Applying (11) to the relations (10) one obtains the 
canonical dynamic equations of the nanorobot motion in 
a multipotential eld as the functions of the interaction 
terms: 

(12)

Now, one can employ the time derivatives of the equations (6):

(8)

The time derivation terms in (8) are presented by the following relations: 

(9)

The substitution of the equations (8) and (9) into the relations (7) gives the Hamiltonian canonical differential 
equations of the nanorobot motion in a multipotential eld:

(10)
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Further, one can dene interaction forces as functions 
of the interaction terms:

(13)

The next denition is related to the time-varying 
forces as the functions of the interaction terms:

(14)

Finally, one can dene the potential forces as the 
function of the total potential energy of a nanorobot in a 
multipotential eld:

(15) 

Applying (13), (14) and (15) to the relations (12) one 
obtains the compact form of the canonical differential 
equations of the nanorobot motion in a multipotential 
eld as the functions of the mentioned forces: 

(16)

From the previous consideration one can introduces 
the following vectors:

(17) 

Including the vectors (17) into the relations (16) 
one generates the vector-matrix form of the canonical 

differential equations of the nanorobot motion in a 
multipotential eld:   

(18) 

As one can see from the relations (18) the matrix N is 
an anti-symmetric matrix. 

4. Canonical model of nanorobot motion 
in a two-potential electromagnetic and 
gravitational eld 

In order to validate of the general approach given in 
the section 3, the derived general model of a nanorobot 
motion in a multipotential eld (16) is applied to two-
potential electromagnetic and gravitational eld. Let a 
nanorobot is an electric charged particle with charge q
and rest mass m

0
that is moving with a non-relativistic 

velocity (v << c) in a combined electromagnetic and 
gravitational potential eld. It is also assumed that a 
gravitational potential eld belongs to a spherically 
symmetric non-charged body with a mass M. In that 
case the total potential energy of a nanorobot in that two-
potential eld is determined by the following equation:

(19)

In the relation (19) V
e

and V
g

are the related scalar 
potentials of an electromagnetic and a gravitational eld. 
Parameter G is a gravitational constant, M is gravitational 
mass and r is a gravitational radius between a nanorobot 
and a center of a mass M. The interaction terms of a 
nanorobot in that two-potential eld can be obtained by 
applying (19) to the relations (11):

(20)

Here (A
ex

, A
ey

, A
ez
) is the vector potential of an 

electromagnetic eld, while (A
gx

, A
gy

, A
gz

) is an analog 
vector potential of a gravitational eld. The related 
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interaction forces as functions of the interaction terms 
can be calculated by using the relations (13) and (20):

(21)

The relations (21) can be transformed into the 
following equivalent form:

(22)

In the relations (22) the parameters H
ex

, H
ey

and H
ez

are the components of the magnetic eld H
e 
, as the result 

of the interaction of nanorobot motion in an electrical 
eld. On the other side, the parameters H

gx
, H

gy
and H

gz
are the components of the gravitational acceleration eld 
H

g
, as the result of the interaction of nanorobot motion in 

gravitational eld. The time-varying forces of a nanorobot 
as the functions of the interaction terms can be obtained 
by employing (14) and (20):

(23)

Finally, the potential forces of a nanorobot, as the 
function of the total potential energy of a nanorobot in 
a combined electromagnetic and gravitational potential 
eld, can be obtained by using the relations (15) and 
(19):

(24)

Now, one can make the sum of the time-varying 
forces (23) and potential forces (24):

(25)

Here E
ex

,E
ey

and E
ez

are the components of the electric 
eld E

e
, while E

gx
, E

gy
and E

gz
describe the analog 

inuence of the gravitational eld E
g
. Applying the 

interaction forces (22), and the sum of the time-varying 
forces and the potential forces (25) to the relations (16) 
one obtains the canonical differential equations of the 
nanorobot motion in a two-potential eld, with the total 
potential energy given by (19):

(26)

On that way, the validation of the general model (16) 
is successfully nished by (26). Generally, the rst two 
terms on the right side of the relations (26) belongs to the 
well known equations of motion of a particle with charge 
q and mass m

0
in an electromagnetic eld (E

e
, H

e
)[18]. In 

fact, the rst two terms on the right side of the relations 
(26) represent the well known Lorentz force on a particle 
with charge q and mass m

0
in an electromagnetic eld.

The inuence of the gravitational eld to the motion of 
a particle with mass m

0
in that eld is described by the 

third and fourth terms in the relations (26). Following the 
analogy to an electromagnetic eld, this inuence of a 



Strojarstvo 53 (2) 103-111 (2011) B. NOVAKOVIĆ et. al., Dynamic Model of Nanorobot Motion... 109Dynamic Model of Nanorobot Motion... 109109

gravitational eld often is called the equations of motion 
of a particle with mass m

0
in a gravitomagnetic eld (E

g
, 

H
g
) [23-24]. In fact, the third and fourth terms on the right 

side of the relations (26) represent the analog to Lorentz 
force on a particle with mass m

0
in a gravitomagnetic eld 

[23]. In that sense, the relation (26) can be transformed 
into the related vector equation as the explicit function of 
the mentioned Lorentz forces:

(27)

Here is an acceleration vector, v is a velocity 
vector and F

Le
and F

Lg
are the related Lorentz forces in an 

electromagnetic and a gravitomagnetic eld, respectively 
[23]. In this example a particle is a nanorobot with 
charge q and rest mass m

0
. Therefore this nanorobot 

has the interactions with both an electromagnetic and 
a gravitational eld. Thus, the relations (26), or (27) 
describe the dynamics of a nanorobot motion in a two-
potential electromagnetic and gravitational eld.

Further, from relations (19) and (20) one can calculate 
the components of the vector A

g
:

(28)

Including (28) into the relations (22) one obtains the 
components of the vector H

g
:

(29) 

Following (19), (25) and (28) one can calculate the 
components of the vector E

g
:

(30)

In the non-relativistic case, the following condition 
v << c should be satised. For that case and including a 
weak gravitational eld, one obtains from (29) and (30) 
the new values for components of the vectors H

g
 and E

g
:

(31)

Applying (31) to the relations (26) one obtains 
the dynamic model of the nanorobot motion in an 
electromagnetic eld and in a weak gravitational eld, 
valid for non-relativistic motion (v << c):

(32)

Since the gravitational eld of our planet Earth 
belongs to the weak potential elds, the relations (32) can 
be applied for calculation of a nanorobot motion in an 
electromagnetic eld on the surface of our planet.

5. Application of derived Hamiltonians to 
quantum systems 

In the case where quantum effects in nanorobotics are 
present there are two approaches to describe dynamics of 
a nanorobot motion. The rst one is for non-relativistic 
quantum systems without spin, where condition v << c
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is satised. In that case the non-relativistic Hamiltonian 
(1), derived for nanorobots motion in a multipotential 
eld, should be transformed into the related quantum 
mechanical operator and applied to the well known 
Schrödinger equation [19]. This approach has been 
presented in the reference [12], where a model of 
nanorobot motion in a multipotential eld has been 
employed with inclusion of related quantum effects. The 
second approach is referred to the relativistic quantum 
systems with spin. For inclusion of the spin effects one 
should employ the related Dirac’s equations [15]. In 
derivation of the Dirac’s equations for a nanorobot motion 
in a multipotential eld the relativistic Hamiltonian 
derived in [12] has been employed. This approach has 
been considered in the reference [22]. Finally, dynamics 
of the quantum feedback systems and control concepts 
and applications are presented in the references [20] and 
[21], respectively. 

6. Conclusion

At the nanoscale the dynamics of a nanorobot motion 
is very complex. This is because there are very strong 
interactions between nanorobots, manipulated objects 
(samples or particles) and nanoenvironment. Thus, the 
dynamic model of a nanorobot motion should be derived 
for application to a multipotential eld. Starting with the 
non-relativistic approximation of Hamiltonian, derived 
in [12], in this paper the canonical form of differential 
equations for a nanorobot motion in a multipotential 
eld has been derived. This model is suitable for 
application to modern control algorithms such as an 
external linearization, optimal and adaptive control and 
an articial intelligence control. For validation of the 
presented general approach, the derived dynamic model 
of a nanorobot motion is applied to two-potential eld 
combined of electromagnetic and gravitational elds. 

At the small enough distances between particles 
(nanorobot tip - sample distances) a quantum mechanical 
effects can be appeared. Thus, for non-relativistic quantum 
systems without spin, the well known Schrödinger 
equation for a multipotential eld should be applied for 
description of a nanorobot motion in that eld. On the 
other side, for relativistic quantum systems with spin, the 
related Dirac’s equation for description of a nanorobot 
motion in a multipotential eld should be employed. The 
future work will be devoted to application of modern 
control algorithms for control of a nanorobot motion in a 
multipotential eld.
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