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Bioprocess optimization by genetically modifying the microorganism characteristics
is an intensively investigated subject due to the immediate economic interest. A large va-
riety of alternatives using elaborated experimental procedures, accompanied by in-silico
cell design based on topological and dynamic models have emerged. The present study
investigates the possibility of using a mixed-integer nonlinear programming (MINLP)
approach to determine optimal metabolic fluxes in respect of multi-objective criteria as-
sociated to gene knockout strategies. The advantage of the proposed power-law type cri-
terion stems from the possibility of accounting, in a simple way, for the flux nonlinear
interactions and complex constraints. The combinatorial rule is included in the iterative
MINLP solver, while a large number of constraints could increase the chance of obtain-
ing a reduced set of viable gene-knockout solutions for a given metabolic network. Mul-
tiple gene deletion alternatives are thus identified, allowing a high cell growing rate with
maximizing externally imposed chemical production targets. Exemplification is made for
the case of designing an E. coli cell that realizes maximization of succinate production
by using a reduced model from literature. Comparatively to the linear procedure that
solves a combinatorial problem in a bi-level optimization approach, of dimensionality
sharply increasing with the number of removed genes, the MINLP alternative considers
an adjustable nonlinear influence of fluxes to the main goal, its performance being less
dependent on the number of knockout genes.
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Introduction

Over the last decade, biotechnology and bioen-
gineering have been developing new research direc-
tions for improving the metabolic performances of
microorganisms used in the processing industry.
The new approach, known in literature as “from
gene to product concept”,1 is based on the applica-
tion of fundamental scientific knowledge (biology,
biochemistry) and engineering science approaches
to understand the cell metabolism, species interac-
tions, and the genetic regulatory circuits responsible
for regulation of cell biochemical reactions. The re-
sult is the in-silico design of new microorganisms,
genetically modified, by conferring new properties
and functions to the mutant cells (i.e. desired ‘mo-
tifs’), with applications in various fields, such as
improving industrial bioprocesses (biosynthesis,
pollutant biotreatment, drug industry), designing
new metering devices (biosensors, bioindicators),
or in medicine (gene therapy).

Numerical simulation of metabolic cell pro-
cesses, at a topological or dynamic (kinetic) level,
in a holistic, modular, compartmented, lumped or
extended approach is necessary for the in-silico de-
sign of modified microorganisms (based on mathe-
matical models), combining knowledge from vari-
ous modern fields, such as synthetic biology, sys-
tems biology, genetic circuit engineering, and mo-
lecular bioengineering.2–7 Living cells are evolu-
tionary, autocatalytic, self-adjustable structures able
to convert nutrients from the environment into addi-
tional copies of themselves during the cell cycle. In
spite of tremendous progress made in cell process
analysis and the development of –omics databanks,
various approaches exist in analysing and model-
ling the genome replication, cell metabolism, and
the multiple regulatory functions of the cell synthe-
ses. Different analyses are justified by the very high
complexity of metabolic processes, implying thou-
sands of species and tens of thousands of (self)-cat-
alytic reactions, enzymes, co-enzymes, activators
and inhibitors, proteic oligomers, intermediates, re-
gulatory and signaling chains, motility, membranar
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and internal transport, gene transcription, morpho-
genesis, and cellular differentiation, all in an
inter-connection difficult to decipher. As a conse-
quence, topological cell models have been pre-
ferred, as a first step, by applying the ‘Metabolic
Control Analysis’ (MCA)8,9 to investigate the sensi-
tivity of the stationary cell system vs. external per-
turbations.

The engineering approach to the analysis and
design of new organisms is based on developing
dynamic simulators of the cellular processes by ap-
plying physico-chemical laws and principles, and
including both stationary and kinetic information
on metabolic processes. However, the availability
of enzymatic reaction kinetic information was frag-
mented, and consequently such dynamic models
rarely include more than hundreds or thousands
modelled biochemical reactions. In contrast, due to
the very large quantity of qualitative, less structured
–omic information, attention has turned to develop-
ing methods for analyzing the relative importance
of various metabolic events / reactions. In this con-
text, the developed metabolic ‘flux balance analy-
sis’ (FBA, or ‘Metabolic Flux Analysis’),17 and the
‘elementary mode analysis’ (EMA)10 allowed eval-
uation of cell metabolism efficiency and determina-
tion of how to use the resources, as well as the use
of the minimum set of enzymes required by the cell
growth to preserve the physiological functions and
system invariants (so-called ‘modes’ derived from
the null space of the stoichiometric matrix). Similar
to EMA, the ‘extreme pathways analysis’ (ExPA)11

determines the ‘solution space’ within which fall all
possible steady-state flux distributions of the net-
work, by means of a constraint-based approach (us-
ing mass balance and maximum reaction rates). The
algebraic calculus is based on Kirchhoff’s first law
(that the production and utilization rate of a metab-
olite must balance in steady-state), and second law
(that the free-energy change around a biochemical
loop must be zero). Rigorous statistical methods
can be applied to identify the relations between me-
tabolites in a network,12,13 by performing a “modal
matrix” analysis to assess which metabolites could
be grouped (“pooled”), and develop a reduced topo-
logical and dynamic model by using those pooled
metabolites. In the end, they recommend the type of
aggregate variables to be used for kinetic model de-
velopment when sufficient information is unavail-
able. Kauffman et al.14 used this “modal matrix”
analysis to pool metabolites and extract the dy-
namic characteristics of a biological network (e.g.
the human red blood cell metabolism). They show
how “dynamic phase planes, statistical time-lagged
correlation analysis, and temporal decomposition”
can be used to relate the biochemical mechanistic
details and the overall metabolic functions. As such

methods are based on analysing the steady-state
metabolism of a cell, hybrid stationary-dynamic
methods have also been developed. For instance,
Mahadevan et al.15 introduced the ‘dynamic flux
balance analysis’ (DFBA), which incorporates rate
of change of flux constraints from analysing the
evolution of flux distribution over time. Dynamic
interpretations of the flux control (sensitivity) coef-
ficients of the MCA have also been studied (e.g.
Tušek and Kurtanjek16).

FBA is a classical but still very powerful
method for determining the stationary distribution
of metabolic fluxes (for a known metabolic path-
way), and also for relating any change in the envi-
ronmental conditions or in the cell structure (in-
cluding genome modification) to the way of using
the nutrients inside the cell.17–19 FBA is based on
the stoichiometric mass balance constraints under
steady-state conditions, of type S v� = 0 (where S is
the stoichiometric matrix including stoichiometric
coefficients of the metabolites in the reaction path-
way, and v is the vector of stationary metabolic
fluxes, including internal, transport, and the growth
fluxes). In FBA, exchange fluxes are assigned to
those metabolites that enter or leave the particular
network only, with constraints ranging from nega-
tive to positive values. Those metabolites that are
consumed within the network are assigned no ex-
change flux value. As the number of fluxes is much
higher than the number of measured fluxes and mass
balance constraints, the feasible set of solutions is
defined by the intersection of the null space (i.e.
vector space for v) and max-min type of constraints
imposed to the fluxes, i.e. v v vj j j, min , max� � ,
j M� �1, , (where M is the number of fluxes in
the considered metabolic pathway).20 In principle, if
a sufficient number of constraints (including the ki-
netic details) are available, a “single point” solution
in the flux-space can be obtained. In practice, mea-
surements of some net stationary fluxes allow ob-
taining the least squares solution of the problem
with linear constraints, by means of a simple matrix
calculation.18 The FBA stoichiometric constraints
can also be used to correct (reconcile) the measured
fluxes affected by gross errors.21 More elaborated
and precise approaches use both stationary and dy-
namic information on the cellular utilization of a
C-labelled substrate (either 13C or 14C) to extract
supplementary information on metabolic fluxes in
terms of isotopomer distribution.22–25,52 In fact, FBA
and MCA are closely connected because modifica-
tion of stationary fluxes due to a certain pertur-
bation factor (or cell modification, e.g. by gene
knockout) can be transcribed in terms of stationary
sensitivities.26

FBA can highlight the most effective and effi-
cient pathway through the network in order to
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achieve a particular objective function. In fact, mul-
tiple stationary flux solutions exist according to the
environmental conditions and cell adaptation char-
acteristics. The multiple cellular objectives are as-
sociated to the system action to perform regulatory,
metabolic, homeostatic, and phenotypic functions
that realize the best tradeoff between proliferation
and differentiation from one side, and cellular
functions and robust growth from other side, with
optimal use of available resources. For instance,
Selvarasu et al.55 use a weighted multi-objective
optimization rule to identify synergistically switch-
ing pathways for multi-product strain improve-
ment.56

To solve this complex problem, various
multi-objective optimization strategies have been
proposed, because it is still unclear how to combine
and/or prioritize mutually competing objectives to
achieve a true optimal solution, or how to select
from the very large number of Pareto optimal solu-
tions those that realizes the “best” tradeoff for the
cell designers’ preferences. A Pareto-solution is one
where any improvement in one objective can only
take place at the cost of another objective; for con-
tinuous variables an infinity of Pareto-optimal solu-
tions might exists.48 On the other hand, a significant
re-routing of flux directions and cycle fluxes are re-
ported when switching from one objective to an-
other within system constraints.

Following the review of Nagrath et al.53 to find
an optimal set of stationary net fluxes for a defined
number of genes encoding the enzymes that partici-
pate in the metabolic reactions, several methods can
be followed. One alternative is to use the linear pro-
gramming (LP) to find the maximum of a weighted
linear combination of fluxes of type Max(w v)
(where vector w includes the chosen weights).27,28

However, in contrast to EMA and ExPA, only a sin-
gle solution results in the end, even if additional
linear constraints (other than the stoichiometric bal-
ance S v = 0) limiting the fluxes are added to the LP
formulation. By varying the weights, or by apply-
ing an iterative weighting procedure, a still reduced
number of Pareto-solutions are usually obtained
(especially when Pareto-frontier is non-convex).
Besides, the weight selection (usually between
0 and 1 for scaled objectives) in association to
physical meanings is difficult. A similar route, the
so-called ‘Goal Programming’, uses sets of upper
and lower weights to optimize the composite objec-
tive. Even if a larger number of Pareto-optimal so-
lutions are thus obtained, the method suffers from
the same disadvantages. Alternatively, the ‘Linear
Physical Programming’ method27 replaces the a-pri-
ori prioritization of cellular objectives (fluxes) by
successively relaxing (smoothing) the explicit flux
constraints, from very strong (“highly desirable”) to

very soft (“unacceptable”), and by minimizing the
weighted distances from the solution to the bound-
aries. The number of classes defining the preference
degree for each objective is still a subjective deci-
sion, somehow equivalent to inspecting various
weights in the multi-objective optimization, but re-
alized in a more comprehensive way. The procedure
leads to a larger number of Pareto-optimal solutions
due to the possibility of gradually relaxing the asso-
ciated LP problem with an increased physical sig-
nificance of the imposed constraints.

A similar transformation of the multi-objective
optimization in a LP problem in the presence of
stoichiometric, enzyme maximum amounts, and
solvent capacity constraints, was presented by Vera
et al.34 By performing a nonlinear (logarithmic)
transformation of the power-law reaction rate ex-
pressions (the so-called S-systems), the steady-state
metabolic fluxes can be optimized vs. species con-
centrations and enzyme activities (by means of an
evolutionary algorithm).54 Even if attractive, the
procedure requires the knowledge of kinetic expres-
sions of the involved reactions, while the S-type
representation of cellular processes, even if com-
putationally convenient, suffer from a number of
limitations. 4,57

Often several Pareto optimal flux solutions are
available in cellular systems, representing alterna-
tive designs, from which one can subjectively be
selected to offer the best trade-off among multiple
objectives. An important application is the design
of mutant cells by testing the effect of gene knock-
outs on stationary metabolic fluxes. The enzymatic
flux that correlates to the gene that needs to be re-
moved is given a constraint value of zero; then, the
reaction that the particular enzyme catalyzes is
completely removed from the analysis. Various
strategies of gene deletions can be tested, by in-
specting the feasibility of the solution in respect to
certain constraints or objective, in such a manner.
FBA was used in practice, to inspect the successive
deletion to only one gene,20,29 by retaining the opti-
mal solution vs. a certain linear objective function.
The simultaneous deletion of more than one gene
leads to a very extended combinatorial problem, a
total number of C M

KG trials being necessary for KG
genes removed from the total of M genes.

It is important to mention that while the gene
knockout procedure is trying to drain the cell re-
sources to the over-production of the desired me-
tabolites by cutting alternative metabolic pathways,
other proposed cell optimization techniques try to
re-design complex regulatory circuits to compen-
sate the removed cell functions.

A completion of the FBA method for solving
the gene-knockout problem is the ‘minimization of
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metabolic adjustment’ method (MOMA).27 MOMA
employs quadratic programming to identify the
closest point in the flux space to the FBA wild-type
point, compatible with the gene deletion constraint.
MOMA displays a significantly higher correlation
than FBA, being of use for predicting the behavior
of the perturbed metabolic networks, whose growth
performance is generally sub-optimal. However, as
observed by Wunderlich and Mirny,30 FBA, EMA,
and MOMA are unable to separate the role of topol-
ogy and other parameters in network function,
while EMA is computationally very expensive and
provides “little insight into why certain mutations
are lethal, whereas others are tolerated”. They pro-
posed to use the so-called ‘total synthetic accessi-
bility’ index S St j j� � , evaluated from summing
the synthetic accessibility of the outputs, defined as
the minimal number of metabolic reactions needed
to produce component j from the network inputs. If
an enzyme knockout does not change the index St,
that is the biomass which can be produced without
extra metabolic cost, then the mutant is viable. If St

becomes infinite, at least one essential component
of the biomass cannot be produced from network
inputs, and therefore the gene knockout leads to a
lethal phenotype.

Finally, it should be mentioned that “topology
plays a central role in determining network function
and malfunction”,30 and the viability of sets of mu-
tants. However, the gene knockout through FBA is
intrinsically incomplete as long as it is difficult to
separate the contribution of topology from the con-
tributions of kinetic and equilibrium characteristics
of the system. Also, inferences among genes are not
accounted for, while validation of FBA conclusions
by means of simulating gene regulatory circuits,
and dynamic response to perturbations is neces-
sary.4,6,31,32

Because the main bioengineering objective
through gene knockouts (usually maximization of
production of a certain metabolite) is associated
with a cellular objective (usually maximization of
biomass yield), one worthy alternative is to formu-
late the problem as a bi-level programming prob-
lem.33 Such an approach is justified by the observa-
tion that the yields for some metabolites are far be-
low their theoretical maximum given certain nutri-
ent flux entering into the cell. Linear constraints of
the bi-level optimization problem impose fixed sub-
strate uptake, fulfillment of the network stoichio-
metric balance, upper/lower limits of fluxes, and
other balance relationships. Following the mathe-
matical rules, the ‘primal’ problem, aiming at maxi-
mizing the bioengineering objective subjected to
maximizing the cellular objective in the presence of
linear constraints, is equivalent to solving the asso-
ciated ‘dual’ problem, of LP type, aiming at maxi-

mizing only one composed objective function in the
presence of the original and additional constraints.
When a gene knockout strategy is investigated,
Boolean variables are added to each flux, leading to
a mixed-integer LP (i.e. MILP) problem. By limit-
ing the number of knockouts, the solution consists
of a set of retained genes and the associated opti-
mum values of stationary fluxes. Exemplification of
this procedure (OptKnock) is made for optimizing
production of succinate and lactate in E. coli cells
by using the Edwards and Palsson20 central metabo-
lism model of 720 reactions. Even if effective,
application of OptKnock requires solving a very
large combinatorial problem, and multiple solutions
might exist for the same objectives. Besides, the
right choice of max/min boundary values of the
auxiliary variables increases difficulties in applying
the procedure.

The aim of this paper is to investigate the pos-
sibility of using a mixed-integer nonlinear program-
ming (MINLP) approach in solving the multi-ob-
jective cell metabolism optimization problem, in a

nonlinear power-law formulation Max(�v j

j�
), by

including the adjustable influence of fluxes for
reaching the composite goal. Even if being similar
to the weighted multi-objective and goal optimiza-
tion (if a logarithmic transformation is applied), the
procedure includes the possibility of accounting for
nonlinear interactions among fluxes and nonlinear
constraints without loosing any property by trans-
formation. The MINLP procedure was then used to
identify multiple gene deletion combinations that
allow a maximum cell growth rate with maximizing
externally imposed chemical (product) production
targets, as an alternative to the combinatorial MILP
procedure. The algorithm is simple to apply, re-
quires no specification of auxiliary variables, and is
easily extendable to solve a variety of nonlinear
multi-objective optimization problems in a simple
way.9,34,35

Exemplification is made for the case of finding
sets of knockout genes to ensure maximization of
succinate and biomass production in E. coli cells,
by using the Edwards and Palsson20 central metabo-
lism model (the reduced variant of 95 reactions).36

As multiple feasible solutions exist, a step-by-step
increase of the number of constraints might lead to
a reduction in the gene knockout alternatives when
using the MINLP formulation. Even if only linear
constraints have been included in the tested case
study, the nonlinear multi-objective formulation can
be easily extended by accounting for flux interde-
pendencies, the use of energy charge, carbon and
nitrogen recoveries at steady state, or cell regula-
tory / thermodynamic properties, thus allowing re-
duction of the number of viable solutions.
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Tested metabolic model of Escherichia coli

(central metabolism)

The approached case study is the stoichiometric
model of central metabolism of E. coli K-12 of Ed-

wards and Palsson20 and Orth et al.36 The reduced
variant includes 72 metabolites (Table 1) participating
in 95 reactions (Table 2, Fig. 1), the stationary net
fluxes being limited by specified minimum/maxi-
mum values (–1000 / +1000 mmol gDW–1 h–1). The
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T a b l e 1
– Considered metabolites in the Edwards and Palsson20 model (central metabolism of Escherichia coli)

Abbreviation Metabolite Formula Charge CAS Number

13dpg 3-Phospho-D-glyceroyl phosphate C3H4O10P2 –4 38168-82-0

2pg D-Glycerate 2-phosphate C3H4O7P –3 None

3pg 3-Phospho-D-glycerate C3H4O7P –3 None

6pgc 6-Phospho-D-gluconate C6H10O10P –3 None

6pgl 6-phospho-D-glucono-1,5-lactone C6H9O9P –2 None

ac Acetate C2H3O2 –1 71-50-1

ac[e] Acetate (extracellular) C2H3O2 –1 71-50-1

acald Acetaldehyde C2H4O 0 75-07-0

acald[e] Acetaldehyde (extracellular) C2H4O 0 75-07-0

accoa Acetyl-CoA C23H34N7O17P3S –4 72-89-9

acon-C cis-Aconitate C6H3O6 –3 585-84-2

actp Acetyl phosphate C2H3O5P –2 19926-71-7

adp ADP C10H12N5O10P2 –3 58-64-0

akg 2-Oxoglutarate C5H4O5 –2 328-50-7

akg[e] 2-Oxoglutarate (extracellular) C5H4O5 –2 328-50-7

amp AMP C10H12N5O7P –2 61-19-8

atp ATP C10H12N5O13P3 –4 56-65-5

cit Citrate C6H5O7 –3 77-92-9

co2 CO2 CO2 0 124-38-9

co2[e] CO2 (extracellular) CO2 0 124-38-9

coa Coenzyme A C21H32N7O16P3S –4 85-61-0

dhap Dihydroxyacetone phosphate C3H5O6P –2 57-04-5

e4p D-Erythrose 4-phosphate C4H7O7P –2 585-18-2

etoh Ethanol C2H6O 0 64-17-5

etoh[e] Ethanol (extracellular) C2H6O 0 64-17-5

f6p D-Fructose 6-phosphate C6H11O9P –2 643-13-0

fdp D-Fructose 1,6-bisphosphate C6H10O12P2 –4 488-69-7

for Formate CHO2 –1 64-18-6

for[e] Formate (extracellular) CHO2 –1 64-18-6

fru[e] D-Fructose (extracellular) C6H12O6 0 57-48-7

fum Fumarate C4H2O4 –2 110-17-8

fum[e] Fumarate (extracellular) C4H2O4 –2 110-17-8

g3p Glyceraldehyde 3-phosphate C3H5O6P –2 142-10-9

g6p D-Glucose 6-phosphate C6H11O9P –2 56-73-5
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Abbreviation Metabolite Formula Charge CAS Number

glc-D[e] D-Glucose (extracellular) C6H12O6 0 50-99-7

gln-L L-Glutamine C5H10N2O3 0 56-85-9

gln-L[e] L-Glutamine (extracellular) C5H10N2O3 0 56-85-9

glu-L L-Glutamate C5H8NO4 –1 56-86-0

glu-L[e] L-Glutamate (extracellular) C5H8NO4 –1 56-86-0

glx Glyoxylate C2HO3 –1 298-12-4

h2o H2O H2O 0 7732-18-5

h2o[e] H2O (extracellular) H2O 0 7732-18-5

h H+ H 1 12408-02-5

h[e] H+ (extracellular) H 1 12408-02-5

icit Isocitrate C6H5O7 –3 30810-51-6

lac-D D-Lactate C3H5O3 –1 10326-41-7

lac-D[e] D-Lactate (extracellular) C3H5O3 –1 10326-41-7

mal-L L-Malate C4H4O5 –2 97-67-6

mal-L[e] L-Malate (extracellular) C4H4O5 –2 97-67-6

nad Nicotinamide adenine dinucleotide C21H26N7O14P2 –1 53-84-9

nadh Nicotinamide adenine dinucleotide – reduced C21H27N7O14P2 –2 58-68-4

nadp Nicotinamide adenine dinucleotide phosphate C21H25N7O17P3 –3 53-59-8

nadph Nicotinamide adenine dinucleotide phosphate – reduced C21H26N7O17P3 –4 2646-71-1

nh4 Ammonium H4N 1 14798-03-9

nh4[e] Ammonium (extracellular) H4N 1 14798-03-9

o2 O2 O2 0 7782-44-7

o2[e] O2 (extracellular) O2 0 7782-44-7

oaa Oxaloacetate C4H2O5 –2 328-42-7

pep Phosphoenolpyruvate C3H2O6P –3 138-08-9

pi Phosphate HO4P –2 14265-44-2

pi[e] Phosphate (extracellular) HO4P –2 14265-44-2

pyr Pyruvate C3H3O3 –1 127-17-3

pyr[e] Pyruvate (extracellular) C3H3O3 –1 127-17-3

q8 Ubiquinone-8 C49H74O4 0 1339-63-5

q8h2 Ubiquinol-8 C49H76O4 0 56275-39-9

r5p alpha-D-Ribose 5-phosphate C5H9O8P –2 4300-28-1

ru5p-D D-Ribulose 5-phosphate C5H9O8P –2 4151-19-3

s7p Sedoheptulose 7-phosphate C7H13O10P –2 None

succ Succinate C4H4O4 –2 110-15-6

succ[e] Succinate (extracellular) C4H4O4 –2 110-15-6

succoa Succinyl-CoA C25H35N7O19P3S –5 604-98-8

xu5p-D D-Xylulose 5-phosphate C5H9O8P –2 None

T a b l e 1
– continued
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F i g . 1 – Central metabolic pathway of Escherichia coli (Edwards and Palsson20 model). Fluxes characterizing the membranar trans-
port (Metabolite[e] 	Metabolite[c]) and the exchange with environment ([e]:Metabolite 	Metabolite[e]) have been omitted from the plot
([e]= environment; [c]= cytosol). This is the case of fluxes no.: 2(ACALD), 6(AC,H), 9(AKG,H), 14(CO2), 17(LAC,H), 19(ETOH,H),
20(AC), 21(ACALD), 22(AKG), 23(CO2), 24(ETOH), 25(FOR), 26(FRU), 27(FUM), 28(GLC), 29(GLN), 30(GLU), 31(H), 32(H2O),
33(LAC), 34(MAL), 35(NH4), 36(O2), 37(Pi), 38(PYR), 39(SUCC), 42(FOR,H), 43(FOR), 47(FUM,H), 52(GLN,ATP), 56(GLU,H),
58(H2O), 63(MAL,H), 69(NH4), 70(O2), 78(Pi,H), 84(PYR,H), 87(SUCC,2H), 88(SUCC,H). Notations: (Met) = diffusional transport of
metabolite Met; (Met,H) = transport of metabolite Met via proton symport; (Met,ATP) = transport of metabolite Met via ABC system.
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T a b l e 2
– Considered reactions in the Edwards and Palsson20 model (central metabolism of Escherichia coli).

Notation: [e]= environment; [c]= cytosol (units correspond to mmol gDW–1 h–1; biomass formation is expressed as
g-biomass gDW–1 h–1, or h–1).

No. Reaction name Equation Net flux* Net flux** Lower
limit

Upper
limit

1 acetaldehyde dehydrogenase
(acetylating)

[c] : acald + coa + nad 	
	 accoa + h + nadh

0 –1.3756 · 10–11 –1000 1000

2 acetaldehyde reversible transport acald[e] 	 acald[c] 0 –7.8444 · 10–12 –1000 1000

3 acetate kinase [c] : ac + atp 	 actp + adp 0 –6.1391 · 10–12 –1000 1000

4 aconitase (half-reaction A,
Citrate hydro-lyase)

[c] : cit 	 acon-C + h2o 6.0072 6.0072 –1000 1000

5 aconitase (half-reaction B,
Isocitrate hydro-lyase)

[c] : acon-C + h2o 	 icit 6.0072 6.0072 –1000 1000

6 acetate reversible transport
via proton symport

ac[e] + h[e] 	 ac[c] + h[c] 0 –6.1391 · 10–12 –1000 1000

7 adenylate kinase [c] : amp + atp 	 (2) adp 0 5.2637 · 10–11 –1000 1000

8 2-Oxogluterate dehydrogenase [c] : akg + coa + nad 


 co2 + nadh + succoa

5.0644 5.0644 0 1000

9 2-oxoglutarate reversible transport
via symport

akg[e] + h[e] 	 akg[c] + h[c] 0 –2.8422 · 10–12 –1000 1000

10 alcohol dehydrogenase (ethanol) [c] : etoh + nad 	 acald + h + nadh 0 –5.9117 · 10–12 –1000 1000

11 ATP maintenance requirement [c] : atp + h2o 
 adp + h + pi 8.39 8.39 8.39 1000

12 ATP synthase (four protons
for one ATP)

adp[c] + (4) h[e] + pi[c] 	
	 atp[c] + (3) h[c] + h2o[c]

45.514 45.514 –1000 1000

13 Biomass Objective Function
(with GAMS)

[c] : (1.496) 3pg + (3.7478) accoa +
(59.8100) atp + (0.3610) e4p +
(0.0709) f6p + (0.1290) g3p +
(0.2050) g6p + (0.2557) gln-L +
(4.9414) glu-L + (59.8100) h2o +
(3.5470) nad + (13.0279) nadph +
(1.7867) oaa + (0.5191) pep +
(2.8328) pyr + (0.8977) r5p �

(59.8100) adp + (4.1182) akg +
(3.7478) coa + (59.8100) h +
(3.5470) nadh + (13.0279) nadp +
(59.8100) pi

0.8739 0.8739 0 1000

14 CO2 transporter via diffusion co2[e] 	 co2[c] –22.8098 –22.8098 –1000 1000

15 citrate synthase [c] : accoa + h2o + oaa 


 cit + coa + h

6.0072 6.0072 0 1000

16 cytochrome oxidase bd
(ubiquinol-8: 2 protons)

(2) h[c] + (0.5) o2[c] + q8h2[c] 


 (2) h[e] + h2o[c] + q8[c]

43.5989 43.5989 0 1000

17 D-lactate transport via proton
symport

h[e] + lac-D[e] 	 h[c] + lac-D[c] 0 –5.0022 · 10–12 –1000 1000

18 enolase [c] : 2pg 	 h2o + pep 14.7161 14.7161 –1000 1000

19 ethanol reversible transport
via proton symport

etoh[e] + h[e] 	 etoh[c] + h[c] 0 –5.9117 · 10–12 –1000 1000

20 Acetate exchange [e] : ac 	 ac[e] 0 6.1662 · 10–12 0 1000

21 Acetaldehyde exchange [e] : acald 	 acald[e] 0 7.8028 · 10–12 0 1000

22 2-Oxoglutarate exchange [e] : akg 	 akg[e] 0 2.9574 · 10–12 0 1000

23 CO2 exchange [e] : co2 	 co2[e] 22.8098 22.8098 –1000 1000
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Upper
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24 Ethanol exchange [e] : etoh 	 etoh[e] 0 5.9292 · 10–12 0 1000

25 Formate exchange [e] : for 	 for[e] 0 6.0134 · 10–11 0 1000

26 D-Fructose exchange [e] : fru 	 fru[e] 0 3.0363 · 10–16 0 1000

27 Fumarate exchange [e] : fum 	 fum[e] 0 3.1576 · 10–16 0 1000

28 D-Glucose exchange [e] : glc-D 	 glc-D[e] –10 –10 –10 1000

29 L-Glutamine exchange [e] : gln-L 	 gln-L[e] 0 3.0640 · 10–16 0 1000

30 L-Glutamate exchange [e] : glu-L 	 glu-L[e] 0 2.8755 · 10–12 0 1000

31 H+ exchange [e] : h 	 h[e] 17.5309 17.5309 –1000 1000

32 H2O exchange [e] : h2o 	 h2o[e] 29.1758 29.1758 –1000 1000

33 D-Lactate exchange [e] : lac-D 	 lac-D[e] 0 5.0309 · 10–12 0 1000

34 L-Malate exchange [e] : mal-L 	 mal-L[e] 0 3.1553 · 10–16 0 1000

35 Ammonium exchange [e] : nh4 	 nh4[e] –4.7653 –4.7653 –1000 1000

36 O2 exchange [e] : o2 	 o2[e] –21.7995 –21.7995 –1000 1000

37 Phosphate exchange [e] : pi 	 pi[e] –3.2149 –3.2149 –1000 1000

38 Pyruvate exchange [e] : pyr 	 pyr[e] 0 5.0478 · 10–12 0 1000

39 Succinate exchange [e] : succ 	 succ[e] 0 4.6482 · 10–12 0 1000

40 fructose-bisphosphate aldolase [c] : fdp 	 dhap + g3p 7.4774 7.4774 –1000 1000

41 fructose-bisphosphatase [c] : fdp + h2o 
 f6p + pi 0 5.6732 · 10–11 0 1000

42 formate transport via proton
symport (uptake only)

for[e] + h[e] 
 for[c] + h[c] 0 3.7922 · 10–10 0 1000

43 formate transport via diffusion for[c] 
 for[e] 0 4.3935 · 10–10 0 1000

44 fumarate reductase [c] : fum + q8h2 
 q8 + succ 0 497.47 0 1000

45 Fructose transport via PEP:Pyr PTS
(f6p generating)

fru[e] + pep[c] 
 f6p[c] + pyr[c] 0 3.1681 · 10–16 0 1000

46 fumarase [c] : fum + h2o 	 mal-L 5.0644 5.0644 –1000 1000

47 Fumarate transport via proton
symport (2 H)

fum[e] + (2) h[e] 
 fum[c] + (2) h[c] 0 3.0476 · 10–16 0 1000

48 glucose 6-phosphate dehydrogenase [c] : g6p + nadp 	 6pgl + h + nadph 4.96 4.96 –1000 1000

49 glyceraldehyde-3-phosphate
dehydrogenase

[c] : g3p + nad + pi 	
	 13dpg + h + nadh

16.0235 16.0235 –1000 1000

50 D-glucose transport
via PEP:Pyr PTS

glc-D[e] + pep[c] 
 g6p[c] + pyr[c] 10 10 0 1000

51 glutamine synthetase [c] : atp + glu-L + nh4 


 adp + gln-L + h + pi

0.2235 0.2235 0 1000

52 L-glutamine transport
via ABC system

atp[c] + gln-L[e] + h2o[c] 


 adp[c] + gln-L[c] + h[c] + pi[c]

0 3.1609 · 10–16 0 1000

53 glutamate dehydrogenase (NADP) [c] : glu-L + h2o + nadp 	
	 akg + h + nadph + nh4

–4.5419 –4.5419 –1000 1000

54 glutaminase [c] : gln-L + h2o 
 glu-L + nh4 0 4.9750 · 10–12 0 1000

55 glutamate synthase (NADPH) [c] : akg + gln-L + h + nadph 


 (2) glu-L + nadp

0 5.5288 · 10–12 0 1000

T a b l e 2
– continued
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56 L-glutamate transport via proton
symport, reversible (periplasm)

glu-L[e] + h[e] 	 glu-L[c] + h[c] 0 –2.9559 · 10–12 –1000 1000

57 phosphogluconate dehydrogenase [c] : 6pgc + nadp 


 co2 + nadph + ru5p-D

4.96 4.96 0 1000

58 H2O transport via diffusion h2o[e] 	 h2o[c] –29.1758 –29.1758 –1000 1000

59 isocitrate dehydrogenase (NADP) [c] : icit + nadp 	
	 akg + co2 + nadph

6.0072 6.0072 –1000 1000

60 Isocitrate lyase [c] : icit 
 glx + succ 0 1.8071 · 10–10 0 1000

61 D-lactate dehydrogenase [c] : lac-D + nad 	 h + nadh + pyr 0 –5.1159 · 10–12 –1000 1000

62 malate synthase [c] : accoa + glx + h2o 


 coa + h + mal-L

0 1.8071 · 10–10 0 1000

63 Malate transport via proton
symport (2 H)

(2) h[e] + mal-L[e] 


 (2) h[c] + mal-L[c]

0 3.0499 · 10–16 0 1000

64 malate dehydrogenase [c] : mal-L + nad 	 h + nadh + oaa 5.0644 5.0644 –1000 1000

65 malic enzyme (NAD) [c] : mal-L + nad 
 co2 + nadh + pyr 0 4.0902 · 10–11 0 1000

66 malic enzyme (NADP) [c] : mal-L + nadp 


 co2 + nadph + pyr

0 5.8181 · 10–11 0 1000

67 NADH dehydrogenase
(ubiquinone-8 & 3 protons)

(4) h[c] + nadh[c] + q8[c] 


 (3) h[e] + nad[c] + q8h2[c]

38.5346 38.5346 0 1000

68 NAD transhydrogenase [c] : nad + nadph 
 nadh + nadp 0 6.2334 · 10–11 0 1000

69 ammonia reversible transport nh4[e] 	 nh4[c] 4.7653 4.7653 –1000 1000

70 O2 transport via diffusion o2[e] 	 o2[c] 21.7995 21.7995 –1000 1000

71 pyruvate dehydrogenase [c] : coa + nad + pyr 


 accoa + co2 + nadh

9.2825 9.2825 0 1000

72 phosphofructokinase [c] : atp + f6p 
 adp + fdp + h 7.4774 7.4774 0 1000

73 pyruvate formate lyase [c] : coa + pyr 
 accoa + for 0 6.0134 · 10–11 0 1000

74 glucose-6-phosphate isomerase [c] : g6p 	 f6p 4.8609 4.8609 –1000 1000

75 phosphoglycerate kinase [c] : 3pg + atp 	 13dpg + adp –16.0235 –16.0235 –1000 1000

76 6-phosphogluconolactonase [c] : 6pgl + h2o 
 6pgc + h 4.96 4.96 0 1000

77 phosphoglycerate mutase [c] : 2pg 	 3pg –14.7161 –14.7161 –1000 1000

78 phosphate reversible transport via
proton symport

h[e] + pi[e] 	 h[c] + pi[c] 3.2149 3.2149 –1000 1000

79 phosphoenolpyruvate carboxylase [c] : co2 + h2o + pep 
 h + oaa + pi 2.5043 2.5043 0 1000

80 phosphoenolpyruvate carboxykinase [c] : atp + oaa 
 adp + co2 + pep 0 2.8585 · 10–11 0 1000

81 phosphoenolpyruvate synthase [c] : atp + h2o + pyr 


 amp + (2) h + pep + pi

0 5.2692 · 10–11 0 1000

82 phosphotransacetylase [c] : accoa + pi 	 actp + coa 0 6.2528 · 10–12 –1000 1000

83 pyruvate kinase [c] : adp + h + pep 
 atp + pyr 1.7582 1.7582 0 1000

84 pyruvate reversible transport
via proton symport

h[e] + pyr[e] 	 h[c] + pyr[c] 0 –5.0022 · 10–12 –1000 1000

85 ribulose 5-phosphate 3-epimerase [c] : ru5p-D 	 xu5p-D 2.6785 2.6785 –1000 1000

86 ribose-5-phosphate isomerase [c] : r5p 	 ru5p-D –2.2815 –2.2815 –1000 1000

T a b l e 2
– continued



fluxes correspond to an equilibrated growth of cell,
with a glucose uptake rate of –10 mmol gDW–1 h–1,
and an oxygen uptake rate of –1000 mmol gDW–1 h–1.
The model was obtained by lumping the extended
model of Edwards and Palsson20 that includes 720
reactions and 436 metabolites. In the extended vari-
ant, unconstrained uptake routes for inorganic phos-
phate, carbon dioxide, oxygen, sulphate, potassium,
sodium, and ammonia are provided, and the capac-
ity constraints were used to define the reaction re-
versibility. Lower limits for the internal fluxes were
set to zero for all irreversible fluxes, and all revers-
ible fluxes were upper bounded at a large value.
Transport fluxes for metabolites not available in the
media were always restricted to zero, while forward
and backward reactions result in positive and nega-
tive fluxes respectively.

Due to the applied lumping procedure, the re-
duced model contains many overall reactions that
sum ‘elementary’ metabolic steps. For instance, the
rate of biomass production, vbiomass = v13, results as a
sum of many contributory steps leading to the over-
all stoichiometry of Table 2.

Burgard et al.33 solved the dual-optimization
problem of succinate production maximization
(vsuccinate), subjected to biomass production maxi-
mization (vbiomass) in the presence of linear constraints.
They obtained a large number of gene knockout solu-
tions, such as: removed genes no. {61,73}, or no.
{1,10,61,73} in the reduced model, with vsuccinate = 11
mmol gDW–1 h–1, vbiomass = 0.3 h–1; removed genes
{3,50,82,83} in the reduced model with vsuccinate = 15

mmol gDW–1 h–1, vbiomass = 0.16 h–1, etc. (see represen-
tation of some solutions in Fig. 2). On the other hand,
the size of the MILP combinatorial problem increases
largely with the number of removed genes. Simula-
tions and experiments also revealed existence of a
non-linear relationship between vsuccinate and vbiomass,
that is large vsuccinate (of maximum 16.4 mmol gDW–1

h–1 in the studied cell growth conditions) corresponds
to vbiomass close to zero, and vice-versa. Consequently,
it was concluded that several sub-optimal solutions
can exist when designing a mutant cell, according to
the considered sets of removed genes.
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87 succinate transport via proton
symport (2 H)

(2) h[e] + succ[e] 
 (2) h[c] + succ[c] 0 1.1830 · 10–10 0 1000

88 succinate transport out via proton
antiport

h[e] + succ[c] 
 h[c] + succ[e] 0 1.2295 · 10–10 0 1000

89 succinate dehydrogenase
(irreversible)

[c] : q8 + succ 
 fum + q8h2 5.0644 5.0644 0 1000

90 succinyl-CoA synthetase
(ADP-forming)

[c] : atp + coa + succ 	
	 adp + pi + succoa

–5.0644 -5.0644 –1000 1000

91 transaldolase [c] : g3p + s7p 	 e4p + f6p 1.497 1.497 –1000 1000

92 NAD(P) transhydrogenase (2) h[e] + nadh[c] + nadp[c] 


 (2) h[c] + nad[c] + nadph[c]

0 5.7674 · 10–10 0 1000

93 transketolase [c] : r5p + xu5p-D 	 g3p + s7p 1.497 1.497 –1000 1000

94 transketolase [c] : e4p + xu5p-D 	 f6p + g3p 1.1815 1.1815 –1000 1000

95 triose-phosphate isomerase [c] : dhap 	 g3p 7.4774 7.4774 –1000 1000

*Fluxes correspond to equilibrated stationary growth with a glucose uptake rate of –10 mmol gDW–1 h–1, and an oxygen uptake rate of
–1000 mmol gDW–1 h–1.
**Flux values are obtained by means of LP procedure from solving the single level optimization problem of biomass production maximization in
Escherichia coli cells with basic CONSTR (not the global optimum).

F i g . 2 – Succinate and biomass production in wild-type
E. coli cells (–––), and location of some restricted gene-knock-
out mutants predicted by Burgard et al.33 (�) (anaerobic con-
ditions), and by the present study for vbiomass t_ arget (�) (aerobic
conditions). Numbers in parenthesis denote removed genes
from wild-type E. coli cell.



Formulating the succinate production
optimization problem

When designing an optimal phenotype, a
bi-/multi-objective cell flux optimization problem
should be formulated, by accounting for several
goals:37

– maximize ATP production to determine con-
ditions of optimal metabolic energy efficiency.

– minimize nutrient uptake, by determining the
conditions under which the cell will perform its
metabolic functions while consuming the minimum
amount of available nutrients.

– minimize redox production by finding condi-
tions where the cells operate to generate the mini-
mum amount of redox potential, and minimum
adenylate energy charge (ATP, ADP, AMP) neces-
sary to draw the inner cell syntheses.

– minimize the Euclidean norm, i.e. the sum of
the fluxes allowing to channel the metabolites as ef-
ficiently as possible through the metabolic pathways.

– maximize target metabolite production, by
optimizing the cell capabilities to produce a certain
compound of practical (industrial) interest.

– maximize the biomass production ensuring
the cellular network to evolve and proliferate.

It should be mentioned that the last two goals,
i.e. maximize the biomass and metabolite produc-
tion, are competing objectives in a cell due to the
requirement of using the resources for a maximum
responsiveness to the environmental changes rather
than for the overproduction of a specific compound.
In a design strain, a certain tradeoff should be real-
ized between cell growth and forced metabolite
production to preserve the cell growth and prolifer-
ation objectives.

The single level optimization problem can be
formulated in terms of biomass production maximi-
zation (“cellular objective”), in the form:

[ , , ] ( )v v Max v vM biomass1 13� � � �arg �

s.t. S v i Nij j

j

M

�

� � � �
1

0 1, , , (1)

v v vj j j, min , max ,� � j M� �1, ,

where M = 95 fluxes and N = 72 metabolites are
considered in the metabolic system (flux notations
correspond to those of Table 2). The way to for-
mulate the stoichiometric matrix and mass balance
for the considered metabolic reactions in the S v = 0
format is exemplified in Annex 1.

Other objectives can be considered with a simi-
lar formulation, for instance a linear combination of
target metabolic fluxes.20,27 Successive solutions de-
rived under various environmental conditions allow

for instance determination of the correct sequence
of byproduct secretion under increasingly anaerobic
conditions.38 When the same objective is associated
with gene knockout alternatives, estimated fluxes
can give information on the essential genes in the
cell (lethality of gene knockout).20,27 Additional lin-
ear constraints to the optimization problem usually
account for environmental requirements (e.g. nutri-
ent limitation).28

When not only the “cellular objective” is opti-
mized, but also the production of a certain metabo-
lite (the so-called “bioengineering / chemical objec-
tive”), a bi-level optimization problem results (e.g.
by using succinate as target metabolite):

Primal:

[ , , ]v v Max vM succinate1 � � �arg �

s.t. Max v biomass

s.t. S v i Nij j

j

M

�

� � � �
1

0 1, , , (2)

v v vj j j, min , max ,� � j M� �1, , ;

v vbiomass biomass t _ arget

where v biomass t_ arget is the minimum level of biomass
production which has to be realized by the ‘opti-
mized’ cell. One alternative to solve the ‘primal’
problem is to transform it into an equivalent LP
problem (called ‘dual’ problem):

Dual:

[ , , ]v v Max vM succinate1 � � �arg �

s.t. v vbiomass biomass biomass t et� � _ arg

S v i Nij j

j

M

�

� � � �
1

0 1, , , ;

� �i
stoich

i biomass biomass

i

N

S , � �
�

�
1

1

� �i
stoich

i j j

i

N

S , ,� �
�

�
1

0 j biomass� ; � i
stoich R�

v v vj j j, min , max ,� � j M� �1, , ; (3)

v vbiomass biomass t _ arget

� � �j j j, min , max ,� �
(for reversible reactions, but not secr_only)

� �j j , min ,

(for reversible reactions, and secr_only)

� �j j� , max ,

(for irreversible reactions, and not secr_only)

� j R� ,

(for irreversible reactions, and secr_only)
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where ‘secr_only’ denotes transport fluxes for metab-
olites that can only be secreted from the network; �j =
dual variable associated with any restriction of the
corresponding flux vj in the primal problem; � i

stoich =
dual variable associated with the stoichiometric con-
straints). Such a transformation of (2) to (3) is possi-
ble due to the observation that if the optimal solutions
of primal and dual problems are bounded, their objec-
tive functions must be equal at optimality.39–42

However, the previous LP problem raises sev-
eral complications when additional constraints are
formulated and/or the extended cellular model is
approached, making the problem preparation very
laborious and computation-intensive to be solved.
For instance, in the Burgard et al.33 formulation,
two additional constraints have to be added to (2),
while finding the optimal gene knockout strategy
requires searching for optimal additional Boolean
variables y j � { , }0 1 that multiply the fluxes (i.e.
y vj j instead of v j ), complicating the formulation
(3). Besides, other algorithm disadvantages have to
be mentioned, as follows: I) the LP transformation
of primal problem is valid only for the bi-level opti-
mization and not for several objective functions; ii)
exclusion of nonlinear constraints; iii) effective so-
lution of the dual LP problem requires the correct
setting of upper/lower bounds of the dual variables,
i.e. � j , min , � j , max ; iv) when more than 2–3 genes
are simultaneously removed from the network, the
resulting LP combinatorial problem becomes ex-
tremely computation-intensive, and practically inef-
fective for cells including a large number of genes.

Consequently, to solve the multi-objective LP
or NLP problems, various alternatives can also be
approached: min-max formulation, single-compos-
ite function, or Pareto front method.43–47 There is no
general approach for such a choice because the
decision is case-dependent.34 For instance, if the
individual objective functions fj are scaled in
the same range, a composite objective function
can be defined as a linear combination, of the form
� �LP j j jw f� , where the adopted weights usu-
ally satisfy the conditions � j jw � 1.20,48 However,
nonlinear combinations of individual fj are also pos-
sible, depending on their physical significance.34

For instance, one possibility retained for com-
parison is to transform the two-objective problem
(2) into a single level LP optimization by using the
composite function:

[ , , ]v v MaxM LP1 � � �arg �

� � � �w v w v w v wsuccinate succinate biomass biomass( 39 39 13v13 )

s.t. S v i Nij j

j

M

�

� � � �
1

0 1, , , (4)

v v vj j j, min , max ,� � j M� �1, ,

In the present case study, we want to investigate
another route to achieve the multi-objective optimi-
zation of cell fluxes, by formulating a nonlinear pro-
gramming (NLP) problem using a power-law type
composite objective function, of the form:

[ , , ] ;v v MaxM NLP1 � � arg �

� NLP j

j

M

v
j�

�

� �

1

, � j R�

s.t. CONSTR:

S v i Nij j

j

M

�

� � � �
1

0 1, , , , (or Sv = 0) (5)

v v vj j j, min , max ,� � j M� �1, ,

The individual fluxes can be included (� j � 0)
or not (� j � 0) in the optimization, in an (un)scaled
form, with an exponent sign and magnitude de-
pending on the maximization / minimization goal
and its relative importance in the metabolism.
As another observation, when some fluxes (index
‘exp’) are measured, a supplementary equality
constraint should be added to (5), of the form
S v S vunk unk �� exp exp , where ‘unk’ index denotes
the unknown vector of fluxes.

In fact, if a logarithmic transformation is
applied to the goal function � NLP in (5), an equiva-
lent weighted multi-objective LP optimization prob-
lem of type Max(wv) is obtained. However, the
NLP formulation is not fully equivalent with
the LP formulation, as long as linear transforma-
tion distorts the flux contribution to the main
goal and can not represent the nonlinear
inter-dependencies among fluxes. For instance,
various nonlinear objectives of power-law type
can be formulated according to the desired mo-
dification of phenotype, e.g.: I) maximum of vs

with minimum of vb, Max� NLP s bv v� ; ii)
maximum of a series of scaled fluxes vk, vl, vm, …,
Max� NLP k l mv v v� ( || || )( || || )( || || )v v v2 2 2 ; iii)
maximum of a flux vk related to the correspon-
ding overall production of entropy into the cell,
Min� �NLP k j j jv v A T� �( ) ( ) , etc. (where: Aj =
reaction affinity, T = temperature; see Heinrich and
Schuster9 for other nonlinear objectives and con-
straints). Besides, NLP formulation can include also
nonlinear constraints derived from imposed proper-
ties of the metabolic pathway, accounting for gene
inferences7 and regulatory network properties,4 or
other thermodynamic properties.56

In the present study, a particularization of (5) is
used for maximizing the succinate and biomass
positive fluxes, of the form:
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[ , , ] ( );v v Max MinM NLP NLP1 � � � �arg arg� �

� NLP succinate biomassv vs� �
, � s � 0 . (6)

The degree of freedom (DF) of the NLP prob-
lem depends on the number NEQ<N of equality
constraints of Sv = 0 balance set. The constraints
are accounted during the solution search in a simple
way, for instance by evaluating the constraint viola-
tion degree by means of two indices:
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if

else

When solving the NLP problem, constraint vio-
lations “penalise” the objective function by means
of an extended Lagrange function, of the form:

[ , , ]v v Min LM1 � � �arg

�� � �� NLP eq eq ineq ineqCV CV� �2 2 ,
(8)

where the Lagrange multipliers � eq , � ineq are chosen
to be zero if the constraints are not violated, and re-
ceive positive values (constant, or increasing / de-
creasing numbers according to the search failure /
success).43,49 The constraints are scaled according to
the objective function range. In the present study, as
� NLP is a product of two fluxes, squared indices of
constraint violation are included, with a uniform
weight of � �eq ineq� � 1.

To make our results comparable to similar case
studies, the considered constraints in the optimiza-
tion problem of biomass and target metabolite pro-
duction maximization are those indicated by
Burgard et al.33 for the extended model, but adapted
to the reduced model structure, that is, glucose up-
take balance, maintenance requirements, and mini-
mum level of biomass production:
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where: M = number of considered fluxes / reactions
in the metabolic network (720 in the extended
model, and 95 in the reduced model); N = number
of metabolites (436 in the extended model,
and 72 in the reduced model); vj = generic metabolic
flux; Sij = stoichiometric coefficient of the meta-
bolite i in the reaction j. In the previous formulations,
v glc uptake_ is the basic glucose uptake scenario,
v atp ma enance_ int is the non-growth associated ATP main-
tenance requirement, while v biomass t et_ arg is the mini-
mum level of biomass production imposed by the
designer (theoretically being higher than zero, or
even zero).33 Adaptation of metabolic constraints
reported some modified relationships due to lumped
species and reactions. Thus, the equality constraint
“ _v v vpts glk glc uptake� � ” refers to phosphotransferase
(glc-D[e] + pep[c] 
 g6p[c] + pyr[c]) and glucoki-
nase ([c] : atp + glc-D 
 adp + g6p + h) fluxes of the
extended model. In the reduced model, vpts refers to
GLCpts reaction in Table 2 (i.e. v50 flux), but the E. coli
core reduced model does not include the glk/gluco-
kinase flux. Consequently, this constraint reduces to “
v vpts glc uptake� _ ” constraint as long as vglk is not ac-
counted for. The constraint “ _v vbiomass biomass t et arg ”
was implicitly considered during the MINLP optimi-
zation problem of maximum biomass production, so
v biomass t et_ arg is usually set to zero.

Solving the FBA problem to determine
various gene knockout strategies

To determine possible optimal phenotypes of
the analysed microorganism, coupled FBA with the
multi-objective optimization can be applied, by es-
timating the stationary fluxes associated with a pro-
posed sub-set of genes encoding the enzymes par-
ticipating in the metabolic pathway. To point-out
the importance of the number and structure of the
problem constraints, a step-by-step strategy to iden-
tify the optimal E. coli mutant for succinate produc-
tion was developed.

By setting the number KG of genes which have
to be removed from the cell, the basic MINLP rule
consists of simultaneously finding the removed
genes and the optimal fluxes, in a problem formula-
tion similar to (6–8), that is:
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When one gene (and its encoded enzyme) is re-
moved from the cell, the associated flux is also omitted
from the reaction pathway, by setting y j�0. The ob-
tained mutant presents optimized fluxes, but it is not
necessarily able to preserve the main cell functions to
ensure cell survival. Consequently, every mathematical
solution has to be metabolically viable for being inter-
preted as a physical meaning before validation.

Solving gene knockout LP and MINLP problem
by accounting for only stoichiometric constraints.
One starts by finding optimal fluxes in the E. coli
cell in the presence of only basic stoichiometric
constraints of the metabolic pathway (Table 2). The
problem is solved by using both the LP formulation
(4) (with wsuccinate = wbiomass = 1), and the NLP for-
mulation (5) with the CONSTR set of constraints
and �s = 1. The results, presented in Fig. 3, indicate
practically the same (unique) solution, irrespective
of the used method. As expected, the resulting very
large values for the reversible succinate-to-fumarate
transformation (fluxes #44 and #89) is the main reac-
tion responsible for succinate production maximiza-
tion. But this theoretical solution does not necessarily
ensure cell viability, and other dynamic / thermo-
dynamic constraints should be further considered.

When genes are in-silico knockout from the
cell, the problem solution ceases to be unique, and
several alternatives might exist. Theoretically, a
number of C M

KG mutant cells results from removing
KG genes. For KG = 1, the number of knockout tri-
als equals the number of genes (M). This number
increases sharply with KG, following an approxi-
mate power law given by the Stirling formula:
N N e NN! ( / )� 2' .50

By successively removing one gene after one
(from gene #1 to gene #95, KG = 1), every time
evaluating the optimal fluxes vs. criterion (4), opti-
mal LP solutions are thus obtained, being presented
in Fig. 4-a (the MatlabTM LP solver has been used).44

By analyzing the results, it should be mentioned that
a large number of alternatives exhibit the same
performance index �NLP = vsuccinate + vbiomass = 16.384
mmol gDW–1 h–1, even if two additional constraints
(| | | |v v28 50� and v12  v11) have been added (Fig.

G. MARIA et al., Multi-objective MINLP Optimization Used to Identify Theoretical …, Chem. Biochem. Eng. Q. 25 (4) 403–424 (2011) 417

F i g . 3 – Flux distribution (absolute values in mmol gDW–1 h–1)
in wild-type E. coli for succinate and biomass production maximi-
zation (with only basic CONSTR constraints): (a) LP solution
(v13 = 2.90 · 10–12, v39 = 16.3840, L = 1.36 · 10–3); (b) NLP solu-
tion (v13 = 2.97 · 10–12, v39 = 16.3842, L = 1.07 · 10–5, DF=94).

F i g 4 – LP objective function (�LP v v� �39 13) for
succinate and biomass production maximization of various mu-
tants of E. coli when successively removing one single gene
(from gene #1 to gene #95). (a) Imposed basic constraints
CONSTR; (b) Imposed basic constraints CONSTR, and the
supplementary constraints | | | |v v28 50� and v12�v11.



4-b). This result is similar to those of Edwards and
Palsson,20 suggesting that “a large number of the cen-
tral metabolic genes can be removed without eliminat-
ing the capability of the metabolic network to support
growth under the conditions considered”, due to the
interconnectivity of the metabolic reactions.

The same single-gene knockout rule was re-
peated by using the MINLP criterion (10) with the
basic stoichiometric constraints included in the
Lagrange function L. The results, presented in Fig.
5, indicate the same conclusion as those obtained
from using the LP criterion, that is, a large number
of genes can be removed by keeping the succinate
production at the highest level of vsuccinate = 16.384
mmol g–1 h–1 (Fig. 5-b). The inequality constraints
are all time fulfilled, while the violation index CV eq

of equality constraints is roughly negligible (more
precise solutions are possible but with the expense

of a significant supplementary computational ef-
fort). Slight violation of equality constraints (CV eq

index) is sharply penalized by large Lagrange func-
tions L in Fig. 5c. It should be mentioned that many
removed genes lead practically to the same optimal
fluxes into the cell, as for instance the removed
genes 1 and 10 in Fig. 6 (reactions #1 and #10).
These removed reactions block the EtOH produc-
tion, being also removed in one of the mutant cells
obtained by Burgard et al.33

To investigate multiple gene knockout solu-
tions, two or four genes have been concomitantly
removed from the pathway. It should be mentioned
that the number of possible solutions of the same
quality increases very much (i.e. of approximately
the same objective function L). Some of the in
silico mutant E. coli cells obtained by means of
MINLP criterion (10) are presented in Table 3. As
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F i g . 5 – Example of optimal solutions with the MINLP for
succinate (v39)(b) and biomass (v13)(a) production maximiza-
tion of various mutants of E. coli when successively removing
one single gene (from gene #1 to gene #95; DF=95, basic
CONSTR). The MINLP Lagrange objective function (L) (c) is
displayed together with the logarithm to the base ten of CV eq

equality constraint index (d). All inequality constraints are met
(CV ineq

2
= 0).

F i g . 6 – Example of local solution – flux distribution (abso-
lute values in mmol gDW–1 h–1) of two E. coli mutants for
succinate and biomass production maximization (MINLP solu-
tion with basic CONSTR, DF = 95): (a) gene #1 knockout
(v13 = –2.90 · 10–12, v39 = –16.384, L = 2.41 · 10–5); (b) gene
#10 knockout (v13 = –2.90 · 10–12, v39 = –16.384, L = 2.21 · 10–5)
(units are in mmol gDW–1 h–1, and in g-biomass gDW–1 h–1 for
biomass formation).
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T a b l e 3 – Various local solutions of the MINLP problem for succinate and biomass production maximization in mutant E. coli by re-
moving two or four genes from the central metabolism (Edwards and Palsson20 model). The CV ineq

2
inequality constraint

violation index (7) is zero for all below solutions (all inequality constraints fulfilled). The CV eq index is defined by eq. (7).

Knockout genes
v13

(biomass rate, h–1)
v39

(succinate rate, mmol gDW–1 h–1)
v39/v50

(Note b)
Lagrange

function (L)
CV eq

index
v39 > v39

min

two genes removed under basic constraints CONSTR

61, 73 2.8477 · 10–12 1.6384 · 101 1.6384 4.88 · 10–7 9.71 · 10–6

51, 82 2.8566 · 10–12 1.6384 · 101 1.6384 1.71 · 10–7 5.75 · 10–6

45, 51 2.6734 · 10–12 1.6384 · 101 1.6384 2.39 · 10–7 6.79 · 10–6

45, 55 2.7374 · 10–12 1.6384 · 101 1.6384 5.80 · 10–7 1.05 · 10–5

10, 94 2.7726 · 10–12 1.6384 · 101 1.6384 3.92 · 10–7 8.70 · 10–6

9, 61 3.0328 · 10–12 1.6384 · 101 1.6384 6.01 · 10–7 1.07 · 10–5

1, 84 2.7496 · 10–12 1.6384 · 101 1.6384 2.94 · 10–7 7.53 · 10–6

51, 82 2.9069 · 10–12 1.6384 · 101 1.6384 1.19 · 10–5 4.79 · 10–5

51, 54 2.9085 · 10–12 1.6384 · 101 1.6384 1.55 · 10–7 5.47 · 10–6

1, 78 2.9555 · 10–12 1.6384 · 101 1.6384 3.16 · 10–6 2.47 · 10–5

1, 3 3.2408 · 10–12 1.6384 · 101 1.6384 1.68 · 10–7 5.70 · 10–6

(82, 83), Etc. 2.7578 · 10–12 1.6384 · 101 1.6384 2.60 · 10–7 7.08 · 10–6

four genes removed under basic constraints CONSTR

1, 10, 61, 73 2.9187 · 10–12 1.6384 · 101 1.6384 5.69 · 10–7 1.04 · 10–5

61, 73, 51, 54 2.8809 · 10–12 1.6384 · 101 1.6384 7.35 · 10–7 1.19 · 10–5

25, 45, 55, 78 2.9001 · 10–12 1.6384 · 101 1.6384 2.10 · 10–5 6.37 · 10–5

1, 30, 51, 94 2.8650 · 10–12 1.6384 · 101 1.6384 1.46 · 10–5 5.31 · 10–5

43, 1, 78, 41 2.9872 · 10–12 1.6384 · 101 1.6384 2.12 · 10–7 6.40 · 10–6

85, 73, 41, 1 3.1386 · 10–12 1.6384 · 101 1.6384 3.51 · 10–7 8.23 · 10–6

(78, 42, 59, 76), Etc. 3.0323 · 10–12 1.6384 · 101 1.6384 5.03 · 10–7 9.85 · 10–6

two genes removed by three more additional constraints (a)

61, 73 2.3229 · 10–12 1.6514 · 101 1.6514 4.84 · 102 3.05 · 10–1 Yes

51, 82 2.4282 · 10–12 1.6498 · 101 1.6498 6.28 · 102 3.48 · 10–1 Yes

1, 10 2.4588 · 10–12 1.6497 · 101 1.6497 4.77 · 102 3.03 · 10–1 Yes

60, 45 4.7780 · 10–12 1.4549 · 101 1.4549 8.40 · 102 4.02 · 10–1 Yes

91, 22 2.9067 · 10–12 1.2613 · 101 1.2613 4.16 · 102 2.83 · 10–1 Yes

61, 73 8.7392 · 10–1 4.6207 · 10–12 ~ 0 1.85 · 10–6 1.89 · 10–5 No

(60, 45), Etc. 8.7393 · 10–1 4.6496 · 10–12 ~ 0 2.29 · 10–5 6.64 · 10–5 No

four genes removed by three more additional constraints (a)

1, 10, 61, 73 9.7773 · 10–13 1.7213 · 101 1.7213 5.42 · 102 3.23 · 10–1 Yes

61, 73, 51, 54 3.4073 · 10–12 1.6721 · 101 1.6721 6.08 · 102 3.42 · 10–1 Yes

90, 21, 55, 48 3.2508 · 10–12 1.6377 · 101 1.6377 8.72 · 102 4.10 · 10–1 Yes

84, 73, 41, 1 3.3764 · 10–12 1.6186 · 101 1.6186 6.08 · 102 3.42 · 10–1 Yes

78, 42, 59, 76 3.0796 · 10–12 1.6510 · 101 1.6510 5.71 · 102 3.32 · 10–1 Yes

94, 84, 39, 85 2.9541 · 10–12 1.6436 · 101 1.6436 1.24 · 103 4.89 · 10–1 Yes

1, 10, 61, 73 3.8510 · 10–1 1.6744 · 10–12 ~ 0 8.44 · 103 1.27 · 100 No

(61, 73, 51, 54), Etc. 3.2685 · 10–1 8.0169 · 10–12 ~ 0 1.32 · 104 1.59 · 100 No

two genes removed by three more additional constraints (a) and �NLP = v vs b
2

61, 73 2.3229 · 10–12 1.6434 · 101 1.6434 1.03 · 102 1.41 · 10–1 No

(1, 10), Etc. 5.10 · 10–7 1.6314 · 101 1.6314 9.52 · 101 1.35 · 10–1 No

(a) Solutions of MINLP problem with the additional constraints of Burgardt et al.33

(b) succinate production rate/glucose consumption rate.



marked in Fig. 1, some of the solutions are ex-
pected, for instance the use of cell resources for
succinate production maximization by blocking for-
mation of ethanol (removed fluxes #1 and #10), lac-
tate (removed flux #61), formate (removed flux
#73), glutamine (removed fluxes #51 and #54), etc.
(see some of these solutions in Fig. 2). Also, from
the mathematical point of view it appears that F6P
production by two alternative routes (#50 and #45)
is redundant, and one of them should be removed.
Such multiple solutions require a physical meaning
evaluation to check viability of each in-silico result-
ing mutant cell. For instance, the removed gene set
(82,83) is not viable as long as the flux #82 is re-
sponsible for PYR production and its elimination
will not ensure the essential energy pathway of the
cell. As the visual inspection of a larger number of
solutions is difficult for complex cell system cases,
an automatic rule is preferable, by using, for in-
stance, the Wunderlich and Mirny30 synthetic acces-
sibility concept (described in the introductory part)
to identify unfeasible cases of non-viable cells path-
ways when products cannot be synthesized from the
network inputs. As another observation, Burgard et
al.33 have found several optimal-Pareto solutions by
eliminating the oxygen uptake reactions (#36, #70)
that maximize the succinate production. This alter-
native was not identified by our procedure after a
significantly large number of trials, probably due to
the reduced form of the model requiring the use of
oxygen in Q8 production (#16), which is essential
for the metabolism.

From the numerical point of view, solving the as-
sociated MILP/LP multi-objective problem leads to an
extended combinatorial calculus when optimizing the
sum of fluxes and also removing certain genes. The
advantage of using the MINLP formulation comes
from the concomitant random search for optimal
fluxes and gene knockout alternatives during the same
iterative rule, with the risk of missing gene knockout
alternatives of similar quality in terms of objective
function. This risk can be reduced when additional
constraints are added to the optimization problem, or
when a suitable flux prioritisation (by means of expo-
nents � j ) is formulated. However, the proposed
MINLP formulation presents some limitations. Simi-
lar to the weighted multi-objective and goal optimiza-
tion cases, the proposed criterion leads to a reduced
number of Pareto-optimal solutions (see the extended
discussion of Nagrath et al.53 in this respect). Two
such Pareto-optimal solutions, corresponding to the
removed gene set (1,10,61,73) are displayed in Fig. 2.
An increased number of solutions can be obtained if a
repeated application of the procedure is performed by
using different sets of weights/exponents (varied
within certain limits), with the expense of a consider-
able computational effort.

Solving gene knockout LP and MINLP problem
with additional constraints. To check the effect of
introducing new constraints to the optimization
problem for reducing the set of gene knockout solu-
tions, three additional constraints (9) suggested by
Burgard et al.33 are added to the multi-objective op-
timization problem (10). Some of the MINLP solu-
tions, for the case of two- or four-genes simulta-
neously removed from the wild-type E. coli cell,
are presented in Table 3. The results reveal several
conclusions.

i) Multiple solutions are obtained as possible
knockout alternatives to optimize the biomass and
succinate production, valid for removing one, two,
four or more possible genes from the metabolic net-
work. Beside Pareto-optimal solutions (two of them
are represented in Fig. 2 for removed genes #1,
#10, #61, #72), the slow convergence of the used
MINLP algorithm may lead to approximate
(sub-optimal) solutions also, as indicated by the ap-
proximate fulfillment of the equality constraints,
with an average error from 10–6 to up to 1.5 flux
units compared to the ±1000 range. However, the
sub-optimal solutions can be easily identified from
the constraint fulfillment analysis and eventually
removed. The used MINLP algorithms were the
adaptive random search of Maria,51 and a modifica-
tion of the Nelder-Mead algorithm.44 The use of
other solvers (e.g. evolutionary algorithms) might
improve the solution quality, but a trade-off be-
tween an acceptable precision level and the compu-
tational effort remains an open question.

ii) By inspecting the solutions (Fig. 2, Table 3)
it is to observe that high biomass production rates
correspond to low production in succinate, and
vice-versa. This result is in perfect agreement with
the experimental data and findings of Burgard et
al.33 from Fig. 2, which display a nonlinear depend-
ence between the two mentioned stationary fluxes.
For instance, negligible values of vbiomass corre-
sponds to ca. vsuccinate = 17 mmol gDW–1 h–1.

iii) The analysis of the physical meaning of
fluxes in the designed E. coli can indicate the via-
bility of the solution. As previously mentioned and
marked in Fig. 1, succinate production maximiza-
tion can be achieved by removing some metabolic
unessential steps, e.g. synthesis of ethanol, lactate,
formate, glutamine, etc., which correspond to the
findings of Burgard et al.33 with using an extended
cell model (i.e. removed genes no. 1, 3, 10, 50, 61,
73, 82, 83). However, such a check of cell viability
for each of the multiple solutions is very laborious,
and an automatic rule might be preferred (e.g. the
Wunderlich and Mirny30 synthetic accessibility
rule). Other imposed system constraints can also be
used in this respect.
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Solving gene knockout MINLP problem by
inducing high succinate production. The conflicting
succinate and biomass production in E. coli cells indi-
cates that several mutant cell solutions can be ob-
tained, some with large vsuccinate and low vbiomass levels,
and vice-versa. To design cells with a high succinate
production rate, one alternative is to “artificially”
introduce a constraint to the MINLP problem defin-
ing the lower limit, e.g. vsuccinate = v v39 39� min = 10

mmol gDW–1 h–1. The results indicate still a large
number of possible reduced networks, of close effi-
ciency. Some of the obtained E. coli cell solutions
when removing two or four genes are presented in Ta-
ble 3. For instance, the solution of removing genes
{91,22} and [v39, v13, L] = [12.6, 2.90 · 10–12, 416] is
close to the solution of removing genes {61,73} and
[v39, v13, L] = [16.5, 2.32 · 10–12, 484]. However, the
plausible solution is that corresponding to the missed
genes {61,73}, thus blocking the production of LAC
and FOR without disturbing the main metabolic path-
way (as is the case when removing the flux #91; Fig. 1).

An alternative to imposing “artificial” thresh-
olds for some fluxes is to increase the importance
of some fluxes in the composite MINLP objective
function. For instance, by adopting �s = 2 in (6),
other E. coli cell solutions are obtained (two of
them are displayed in Table 3). Not only derivation
of mutant cells of high succinate productivity is
thus favoured, but also the precision of the
Pareto-optimal solution is roughly doubled (i.e.
smaller CV eq index) for the same computational ef-
fort. The benefit of such an adjustable flux weight
in achieving the composite goal is obvious, by the
expense of requiring an extended computational
effort when investigating adjustable relative
prioritizations of fluxes in the MINLP formulation.
Comparatively to the LP approach, the advantage of
including nonlinear correlations among fluxes and
constraints recommends the MINLP approach as a
worthy alternative for designing optimal cells.

Conclusions

Application of a MINLP procedure to find theo-
retical gene knockout alternatives that optimize sev-
eral formulated objectives (e.g. maximize target me-
tabolite production) has been proved to be very
promising to in-silico design mutant cells. This com-
putational strategy can partly overcome the complex
combinatorial MILP problem that corresponds to a
multi-layer LP formulation, and can save consider-
able computing time by superposing the knockout
rule to the basic NLP optimization approach. How-
ever, the identified multiple solutions of the MINLP
problem, explained by the cell metabolism complex-
ity, must be further ‘filtered’ by adding supplemen-

tary (non)linear constraints (other than the
stoichiometric ones), leading to a considerable re-
duction in the number of gene-knockout alternatives.

The use of the LP formulation Max(wv), with
subjective weights allocated to the target fluxes, or
transformation of the primal problem into a dual LP
problem (for only bi-level optimization) is labori-
ous, requiring to formulate and prepare the derived
dual problem. Moreover, the solution is dependent
on the adopted upper/lower bounds of the dual vari-
ables, while the resulting LP combinatorial problem
when removing several genes from a large number
becomes computationally intensive. Recent im-
provements of the LP method lead to a better de-
scription of the optimal solution set, but do not
overcome the combinatorial problem.

The advantage of the proposed power-law type
MINLP multi-objective function comes from the pos-
sibility of accounting, in a simple way, for the flux
nonlinear interactions and complex constraints as
mentioned in the literature.28,34,35 The combinatorial
rule is included in the iterative MINLP solver, while
the larger number of considered (nonlinear) con-
straints can increase the chance to obtain a reduced set
of feasible gene-knockout solutions for a given meta-
bolic network. The preferred random search can offer
a higher reliability in finding a global solution (if any)
of the optimal-flux-gene- knockout problem, with also
providing the opportunity for the integer variables to
span their range of possible values during the flux op-
timization. In such a manner, a continuous evaluation
of the effects of removing various genes during the
MINLP solver iterations is realized. Because the ran-
dom searches are usually slowly convergent near the
problem solution, approximate solutions are usually
retained, with an acceptable precision of fulfilling the
problem constraints. However, derivation of a larger
set of optimal solutions by using an adjustable relative
prioritization of fluxes in the MINLP formulation will
lead to an extended computational effort.

In any variant, the resulting multiple gene knock-
out solutions have to be validated from several points
of view, both theoretically (physical meaning) and ex-
perimentally. To reduce the number of solutions, for-
mulation of problem constraints is crucial. Gene infer-
ence,6 feasible reaction paths,30 or any information on
protein-gene interactions, and on the regulatory cir-
cuits can be used for such purposes. On the other
hand, several criteria to check the design optimal cells
for viability can be used, for instance the Wunderlich
and Mirny30 synthetic accessibility index, or addi-
tional information on the gene inferences.

A more systematic rule for designing mutant
cells should be based on using hybrid station-
ary-dynamic models to incorporate stationary and
kinetic information on flux distribution over time.
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Annex 1
– Metabolic stoichiometric balance

Chemical and biochemical kinetics are based
on the postulate that a reaction rate, vj, can be ex-
pressed as a unique (usually nonlinear) function of
the concentrations, ci, of all participating chemical
species at a certain time t. When (bio)chemical re-
actions are the only cause of concentration changes,
that is the transport processes are negligible, the
concentration dynamics is given by the balance
equation:
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d
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, i N� �1, , (A1)

When the biochemical system subsists in a
steady state, the balance equation (A1) in a matrix
formulation becomes:

S v c*( ) � 0 (A2)

where ‘*’ superscript denominates the steady-state
values of concentrations. To exemplify the way to
relate the stoichiometric matrix to the steady state
reaction rates (denominates as fluxes), the follow-
ing metabolic reactions are considered:9

glucose + ATP
HK( 
((( glucose-6-phosphate + ADP

(A3)

glucose-6-phosphate
PGM( 
((( glucose-1-phosphate

The reactions are catalysed by the enzymes
hexokinase (HK, EC 2.7.1.1) and phosphoglucomu-
tase (PGM, EC 5.4.2.2), respectively. By attaching
the stoichiometric matrix of the two reactions (in-
dexed with 1 and 2), the steady-state mass balance
(A2) can be written as:
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(A4)

In the mass balance, all reacting species in-
volved have been included. To be feasible, the mass
balance has to be completed with input/output
fluxes into/from the system. For larger biochemical
systems, this procedure is neither necessary nor
useful, allowing checking the conservation relation-
ships to derive large models, and to study some
properties of the system, such as conservation rela-
tions and reaction invariants, as long as the station-
ary flux vector is the null space of the matrix S. 9

N o t a t i o n s

Aj � reaction affinity9

Ca
b � a!/b! (a – b)! = number of ways of choosing b

objects from a collection of a objects regardless
of order

CVeq � equality constraint violation index

CVineq� inequality constraint violation index

ci � species i concentration

fj � individual objective functions

KG � number of removed genes

L � Lagrange function of the optimization problem

� �eq ineq, � Lagrange multipliers of the equality and in-
equality constraints

M � number of fluxes in the considered metabolic
pathway

N � number of metabolites

S � stoichiometric matrix (of elements Sij, i.e. the
stoichiometric coefficient of the metabolite i in
the reaction j).

Sj � synthetic accessibility of an output j, i.e. the min-
imal number of metabolic reactions needed to
produce component j from the network inputs

St � total synthetic accessibility index, S St i i� � .

T � temperature

t � time

v, vj � vector of stationary metabolic fluxes, or reaction
rate

yj � Boolean variables

wj � weights of individual objective functions

G r e e k s

�j � exponent of vj flux in the NLP objective function

� � objective function

� i
stoich � dual variable associated with the stoichiometric

constraint involving reaction i

�j � dual variable associated with any restriction of
the flux vj

I n d e x

low � lower limit

max � maximum

min � minimum

up � upper limit
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A b b r e v i a t i o n s

ADP � adenosine diphosphate

AMP� adenosine monophosphate

arg � argument of

ATP � adenosine-5’-triphosphate coenzyme

DF � degree of freedom

DFBA � dynamic flux balance analysis

DW � dry weight

EMA� elementary mode analysis

ExPA� extreme pathways analysis

FBA � flux balance analysis

LP � linear programming

LSQ � least squares

MCA� metabolic control analysis

MILP � mixed integer LP

MINLP � mixed integer NLP

MOMA� minimization of metabolic adjustment’ method

NEQ � number of equality constraints

NLP � nonlinear programming

rank � rank of a matrix

sign � sign of

s.t. � subject to

|| ||) 2 � Euclidean norm
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