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SUMMARY 

In this paper the problem of finding the optimal separation sequence for a three-component mixture in 

a two-stage separation system is considered. Two solutions are obtained. The first minimizes the 

energy used, subject to a given flow rate of the input mixture, by selecting optimal separation 

sequence and by distributing the contact surfaces between the first and second stages optimally. It is 

also shown that the input flow rate of a heat-driven two-stage separation system is bounded and that 

this bound (the maximal possible rate of heat-driven separation) depends on the separation sequence 

used. The closed-form expression for this dependence is obtained. 
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INTRODUCTION AND PROBLEM FORMULATION 

Separation processes consume large amounts of energy. The lower bound on the amount of 

energy required is given by the reversible minimal work of separation A
0
 [1]. It depends on the 

amount of mixture, its composition and composition of the output mixtures and is equal to the 

increment of the mixture’s free energy. For mixtures that can be considered as nearly ideal 

gases or nearly ideal solutions the free energy (Gibbs energy) of one mole of the i-th 

component in the j-th flow is equal to its chemical potential 

 ijj
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Here R and T are the universal gas constant and mixture’s absolute temperature; xij is the 

concentration of the i-th component in the j-th flow measured in molar fractions; μi
0
(T, Pj) is 

the chemical potential of the pure i-th component (known for most of substances) and Pj is the 

pressure in the j-th flow. 

The reversible work of separation for N0 moles of k component mixture with concentration xi0 

(i = 1, ... ,k) (if the temperature and pressure of the mixture are equal to the temperatures and 

pressures of the m output flows of the separation system) is [2] 
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where γj is the fraction of the input mixture that is separated into j-th flow with vector of 

concentrations xj = (xj1, ... , xjk). In the particular case when the input mixture is separated into 

pure components the number of components is equal to the number of flows m = k, and the 

fraction of the j-th flow is equal to the concentration of the corresponding component in the 

input mixture: γj = xj0, xjj = 1 and xji = 0 for i ≠ j. 

Therefore the first term in the square brackets in (2) is equal zero and 
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If instead of the amount the molar rate of the input mixture g0 is given together with output 

rates gj = γjg0, then the same formulas can be used to derive the power of reversible separation 

for an incomplete separation 
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and for the complete separation into pure substances 
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The reversible estimates (4), (5) are realised if the rate g0 is infinitely close to zero or if the 

heat and mass transfer coefficients are infinitely large, that is, if the size of separation 

apparatus is infinitely large. These estimates are proportional to the rate g0, depend on the 

compositions of the input and output flows only and do not depend on the separation 

sequence. Therefore these estimates do not allow us to compare different separation 

sequences and to choose the best sequence. 

Real processes occur in finite-sized apparatus with finite rate. Irreversible losses, which 

increase the power required for separation, play an important role here. These losses depend 

on the exchange kinetics and on input/output flows’ compositions and rates. These losses 

depend nonlinearly on the rate of the input mixture g0. Irreversible losses are different for 
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separation sequences. They allow us to compare different variants with each other. 

Irreversible losses for separation using mechanical power are different to irreversible losses 

for heat-driven separation. For separation that uses mechanical energy (membrane separation, 

centrifuging, short-cycle absorption etc.) most of irreversibility is due to mass-transfer 

kinetics. For heat-driven separation that uses heat energy (distillation, boiling, drying, 

absorption-desorption cycles where the working solution changes temperature) irreversible 

losses are due to both mass transfer and heat-exchange accompanying transformation of heat 

energy into the work of separation. 

When the number of component increases, the number of possible separation sequences 

increases dramatically. The problem of optimal separation sequence attracted substantial 

interest (see review [3]). It can only be solved if dependence of irreversible energy losses at 

each stage of separation for all process design as function of its rate and sizes are known. 

We propose a much simpler approach in this paper. It provides coarser estimates and relies on 

mass and heat transfer coefficients only. Nevertheless, it allows one to find the ways to improve 

separation efficiency by distributing optimally contact surfaces between stages. 

Estimates for the minimal power of separation in mechanical systems and for minimal amount 

of heat required in heat-driven separation systems with given rate were obtained in [4 – 7] 

under the following assumptions: 

1. temperatures of the input molar flow g0 and output molar flows gj (j = 1, ... ,m) are equal to 

the same temperatures T, 

2. mass transfer flows depend linearly on the chemical potentials’ difference. For the i-th 

substance that is transferred from the flow g0 to the flow gj, 

 ijijijg  Δ , (i = 1, …, k and j = 1, …, m). (6) 

Here αij is the effective (that takes into account the area of contact surface) mass transfer 

coefficient for transfer of the i-th component into j-th flow, Δμij is the difference of 

chemical potentials for i-th component in the input mixture and in j–th flow (the driving 

force of mass transfer) 

 ),,(),,(Δ 000 ijjiiij xPTxPT   , (7) 

3. the laws of mass transfer in heat-driven separation systems are linear 

 Tq  , (8) 

where α is the heat-transfer coefficient for the whole heat-exchange surface, ΔT is the 

temperature difference between the working body and the mixture which is being heated. 

The flows structure for mechanical and heat-driven separation systems m = 2 are shown in Figure 1. 

 

Figure 1. Flows’ structures in a) mechanical and b) heat-driven separation systems. 

a)                                                                b) 
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Under these assumptions it was shown [4 – 7] that the power required for separation in 

mechanical system can’t be lower than 
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for separation into flows with compositions xj and 
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for separation into pure components. In (10), p0 and p0
0
 corresponds to (4) and (5), respectively. 

The first term is proportional to the feed rate g0 of the mixture that is separated, and the second 

term, due to process’ irreversibility, is proportional to the g0
2
. 

For heat-driven separation the heat flow q+, removed from the hot reservoir with the 

temperature T+, cannot be lower than 
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Here ν = 1 corresponds to separation into flows with given compositions, and ν = 2 corresponds 

to separation into pure components, while η(∙,∙) is the maximal efficiency of irreversible 

transformation of heat into work with power p [5, 6] 
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In heat-driven separation systems heat is supplied from the hot reservoir with the temperature 

T+ to the mixture that is separated. Heat is also removed from the mixture into cold reservoir 

with the temperature T. In absorption-desorption cycle these are the temperatures in desorber 

and absorber, and in distillation – the temperatures in boiler and condenser. The effective heat 

transfer coefficient α is expressed in terms of the heat transfer coefficient from the hot reservoir 

α+ and from the cold one α− as follows 
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The formulas (9 – 13) are derived from thermodynamic balances (mass, energy and entropy 

balances) for separation systems. The latter balance includes entropy production, which 

depends on the mass and heat transfer kinetics. In [4 – 7] the minimal possible entropy 

production subject to given heat and mass transfer coefficients, given flow rates and mass and 

energy balances was derived. This result led to finding the minimal extra energy needed. It 

turned out that the rate of heat-driven separation systems g0 is bounded since increase of the 

heat flow q+ above some threshold q  reduces the maximal rate of heat-driven separation 

system. The maximal rate is [5, 8] 
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where   is given by (13), and 
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Here p
0
 and Δp are defined by expressions (4) and (9) for incomplete, and by (5) and (10) for 

complete separations, respectively. Further in the text we will consider the problem of choosing 
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separation sequence for mixture of three-component mixture. The input flow g0 is described by 

concentrations x10, x20 and x30, 

 1
3
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x . (16) 

We assume that separation is carried out in two stages. During the first stage one component is 

separated out. The residual binary mixture is separated at the second stage. For simplicity we 

assume that output flows consist of pure substances (Figure 2) and the compositions of the 

input and output flows are fixed. 

This assumption means that we consider zeotropic mixtures only. 

 

Figure 2. Schema of two-stage separation system for three-component mixture. 

We would like to find out 

1. what component should be separated out first in order to minimise the power needed for 

separation, 

2. what component should be separated first in order to maximise the rate of separation, 

3. how to distribute optimally heat and mass exchange surfaces between separation stages in 

order to minimize power or maximize the rate of separation. 

MECHANICAL SEPARATION SYSTEM 

In mechanical separation systems the minimum of the power required corresponds to the 

minimum of the irreversible losses. Separation is based on the differences between the 

properties of mixture’s components (sizes of molecules, density boiling temperature, etc.). 

These differences lead to different interactions between different components of the mixture 

and membrane or absorber, different rate at which components are transferred from liquid 

into gaseous phase, etc. We assume that the property used for separation can be measured 

quantitatively. It is also assumed here that the difference between components’ properties 

used for separation does not depend on the composition of the mixture, which excludes 

separation of azeotropic mixtures. 

We order components in such a way that the difference (in term of this property) between the 

third and the first component was maximal. Now we can compare two separation sequences 

only. The first sequence is when the first component is separated first. The second sequence is 

when the third component is separated first. For the first sequence with the unit rate (g0 = 1) 

when the first component with concentration x10 is separated during first stage, the 

irreversible losses in accordance with (10) are 
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Here α11 and α23 are the effective mass transfer coefficients for the first and second stages of 

separation where the first component is separated out first. 

Similarly, when the third component is separated out first we get 

g0 

A, B, C 

A 

B + C 
B 

C 
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where α13 and α21 are the effective mass transfer coefficients for the first stage when third 

component is separated. 

Mass transfer coefficients are proportional to the contact area Sν (ν = 1, 2), for apparatus used at 

the ν -th stage of separation, and the specific (per unit contact area) mass transfer coefficient δ. 

This coefficient depends on the properties of the second and first (δ1) and second and third (δ3) 

components. Thus 

 1111  S , 3113  S , 3223  S , 1221  S . (19) 

Let us rewrite Δp2 and Δp2 as follows 
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These expressions represent irreversible power losses for one unit contact area and one-unit 

feed rate of the input mixture. 

Suppose that the total contact area is given as S = S1 + S2 and it is required to distribute it 

between stages to minimise power needed for separation. The problem of finding the optimal S1 

and S2 takes the form 

   min),(Δ),(Δ 212211  SSpSSp ,  

subject to S1 + S2 = S. Since Δpi is convex on S1, S2 the solution of this problem is unique and is 

determined by the conditions 
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for the first sequence and 
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for the second one. The optimal distribution of contact area is given by the equalities 
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for the second separation sequence. 
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Substitution of this optimal area distribution into (20) and (21) yields the following expressions 

for the irreversible power of separation 
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The condition when this power is lower for the first sequence takes the form 

 1
),,(),(

),,(),(

Δ

Δ

130102133013

330102311011

2/1

2

1 

















xxKxK

xxKxK

p

p
. (29) 

If left-hand side of this inequality is higher than 1 then it is energetically more efficient to 

separate the third component first. 

After substitution of (22 – 24) into (29) we get 
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where x20 = x10 – x30. The dashed areas in Figure 3 show where first separation sequence is most 

energy efficient for K = 0,5, K = 1 and K = 2. 

 

Figure 3. Boundaries between two areas where first and second separation sequences are optimal 

for different K. Dashed area corresponds to optimal sequence with separation of first component first. 

From the symmetry of the left-hand side of (30) it is clear that the boundary that corresponds 

to K = 1 is a straight line. Calculations show that for different values of K these boundaries are 

very close (with about 3 % error) to straight lines x10 = x30/K. It allows us to write down the 

approximate condition which determines when separation of first component at first stage is 

optimal as 

 330110  xx  . (31) 

In particular, if concentrations of components one and two are the same x10 = x20 = x0 < 0,5 

then separation of the first component at the first stage is optimal if δ1 > δ3; if δ1 and δ3 are 

close to each other then it is optimal to separate the first component first if x10 > x30. 
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In many cases, separation of a multi-component mixture is carried out in stages, when at each 

stage one component with the highest or lowest value of some property is separated. Since 

components are numbered in an arbitrary order, we denote the component with the highest 

value of Ri = xi0∙δi
1/2

 as the first one. Distribution of contact surfaces here are found from (25). 

For the problem where it is required to separate the middle component, the values of this property 

for the first and the third components are lower and higher than its value for the middle component. 

HEAT-DRIVEN SEPARATION 

When separation sequence is chosen for a heat-driven separation system one needs to take into 

account that the heat consumed at each stage of separation depend not only on the total power 

used at the i-th stage pi = pi
0
 + Δpi, (i = 1, 2) but also on the efficiency of the heat into work 

transformer ηi(pi, i ). When pi increases then ηi(pi, i ) decrease monotonically from ηK at pi = 0 to 
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for the maximal possible power for given heat transfer coefficients. In turn, the transformer, 

which transforms heat into work of separation, cannot generate power that exceeds the 

maximal power 

 2
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When i  increases, pi as well as ηi increase (see Figure 4). Note that the expressions (32) and 

(33) were derived in [9] much earlier than the expression (12), which easily follows from them. 

 

Figure 4. Characteristic change of the transformer’s efficiency as a function of separation power 

and the effective heat transfer coefficient. 

The maximal rate for a two-staged sequential separation system is determined by the maximal 

rate of the stage with the lower rate. Since the maximal rate for the i -th stage depends on the 

heat transfer coefficient i , (i = 1, 2) the maximal rate of two-stage system for the given total 

area of heat-transfer surfaces 

   21 , (34) 
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is achieved when the following equality holds )()( 2
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where Bi and Di, (i = 1, 2) are defined by (15). Quantities g0Bij and g0
2
Dij (i, j = 1, 2) represent 

reversible and irreversible losses of energy during the i−th stage of separation, respectively. 

The conditions (34) and (35) determine the optimal distribution of heat-transfer surface 1  and 

2  between two stages of heat-driven separation system. In turn, at each stage of separation for 

given i  the distribution of heat-transfer surface between heating and cooling is determined by 

the condition of minimum of the total cost of heat-exchangers subject to (13). If these cost costs 

are equal, then iii  2  . 

Since η(p,  ) decreases monotonically when p increases, reduction of power (for example, as 

a result of optimal redistribution of mass exchange surface S), reduces the amount of heat q+. 

That is why we assume that this surface S is distributed between the stages in such a way that 

combined irreversible power losses at these stages is minimal. This condition leads to 

expressions (25) or (26) for Si
*
. 

Suppose that during first stage of separation the first component is separated. The concentration 

of the first component in the input flow with rate g0 is x10. The residual binary mixture is then 

separated into pure components at the second stage of separation. Then for the first stage the 

power is p1 = p1
0
 + Δp11, where 
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Here S1
∗ corresponds to the expression (25). The subscripts of Bij and Dij in (36) and (37) 

denote the separation sequence and separation stage number, respectively. 

Similarly, for the second stage we have 

 12030302020100

0

2 )lnln)(1( BgxxxxxRTgp  , (38) 

 12

2

0

3

2

10

2

20

*

2

2

10

2

0

*

2

23

2

0

12

)1(
Dg

xx

S

xg

S

Kg
p 





. (39) 

We now introduce auxiliary notations for limiting power of heat into work of separation for the 

single-unit effective heat transfer coefficient r1 = (T+1
1/2

 – T
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)
2
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. Then for 

the first separation sequence from power balance it follows that 
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for the first stage of separation. Similarly for the second stage of separation we get 
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Since the maximal rate of the two-stage sequence of separations is determined by the minimal 

rate of its stages, we assume that the heat transfer surface is distributed in such a way that the 

maximal rates for both stages are equal. We denote this rate for the first separation sequence 

as g01. Let us express α1 and α2 from (40) and (41). After adding them together we obtain the 

following expression for g01, 
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Similarly we get for the second separation sequence 
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Solution of these equations with respect to g0i gives the maximum rate for the i–th separation sequence 
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The closed-form expressions for Bij and Dij are the following: 
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SEPARATION SEQUENCE FOR THREE-COMPONENT MIXTURE IN HEAT-DRIVEN 
SEPARATION SYSTEMS 

The choice of separation sequence with maximal rate depends on the value of   for which 

the maximal rates of two separation stages are equal and the curves F1(g01) and F2(g02) 

intersect. The point of intersection g0 is determined by the condition 
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Positive g0 exists if numerator and denominator in (47) have the same signs. Otherwise, the 

optimal sequence is determined by the sign of numerator in (47): it is positive then the second 

sequence is better, while if it is negative the first sequence has higher maximal rate. If curves 

intersect then this rule holds for g0i < g0. In case of g0i > g0 the opposite rule holds. 

It is clear that for r1 = r2 maximal rate always corresponds to the minimal irreversible power 

loss for separation. 

EXAMPLE 

We consider separation of three-component mixture with initial concentrations x10 = 0,1; x20 = 0,6 

and x30 = 0,3. The specific (per surface unit) mass transfer coefficients are δ1 = 0,2 and δ2 = 0,1. 

From (31) it follows that if mechanical separation is used then the third component should be 

separated first (0,3 > 0,141). 

Let us consider heat-driven separation and assume that the temperature of the input mixture is 

T = 300 K, the temperature of the hot reservoir T+ are T+1 = 400 K for separation of the first 

component and T+3 = 350 K for separation of the third one. The heat transfer coefficient is 

 = 20 000. The total heat-exchange area for both stages is S = 10 m
2
. 
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Step 1 

We calculate the optimal distribution of heat-exchange area between stages. From (22 – 24) 

K11 = 4,1; K13 = 5,8; K23 = 3,645 and K21 = 0,907. The optimal distribution of area for the first 

separation sequence are S1 = 5,15; S2 = S − S1 = 4,85 and S1 = 7,17; S2 = S − S1 = 2,83. 

Step 2 

For the first stage of the first separation sequence from (36) and (37) we get B1 =739,6; D1 = 

0,8 and for the second stage we obtain B2 = 1662,5; D2 = 0,75 see (38) and(39). For the 

second separation sequence we get B21 =1300,3; B22 = 1336,5; D21 = 0,81 and D22 =0,32. 

Step 3 

See (44). For the first separation sequence (separation of the first component at first stage) we 

get g0 = 20,48. For the second separation sequence we obtain g0 = 22,9. Therefore if third 

component is separated first then we can separate larger flow (with the same composition) than 

we can if we separated the first component first. 

CONCLUSIONS 

In this paper we show how to select the most efficient separation sequence for three-

component mixtures in a two-staged separation system. We also obtained the optimal 

distribution of contact surfaces for mass and heat transfer between separation stages. The 

minimal power required for mechanical separation at given production rate is derived. For 

heat-driven separation we obtain the maximal flow rate of the input mixture. 

REFERENCES 

[1] Bosnjakovic, F.: Technical Thermodynamics 
Holt, Rinehard & Winston, 1965, 

[2] Prigogine, I. and Defei, R.: Chemical Thermodynamics. 
Longmans-Green, New York, 1954, 

[3] Mixlenov, I.P.: Chemical-technological systems. 
Chimia, Moscow, 1986, 

[4] Amelkin, A.M.; Burcler, I.M.; Hoffman, H.K. and Tsirlin, A.M. 
Theoretical Foundation of Chemical Technology 35(3), 68-75, 2001, 

[5] Tsirlin, A.M.: Irreversible estimates of limiting possibilities of thermodynamic and 

microeconomic systems. 
Nauka, Moscow, 2003, 

[6] Rozonoer. L.I. and Tsirlin, A.M.: Optimal control of thermodynamics processes. 
Automation and Remote Control 44 Part 1, 55-62; Part 2, 209-220; Part 3, 314-326, 1983, 

[7] Berry, R.S.; Kazakov, V.A.; Sieniutycz, S.; Szwast, Z. and Tsirlin, A.M.: Thermodynamic 

Optimization of Finite Time Processes. 
Wiley, Chichester, 1999, 

[8] Tsirlin, A.M.; Zubov, D.A. and Barbot, A.V. 
Theoretical Foundation of Chemical Technology 40(2), 101-117, 2006, 

[9] Novikov, I.I.: The efficiency of atomic power stations. 
Journal of Nuclear Energy II (USSR) 7, 125-128, 1958. 



Optimal separation sequence for three-component mixtures 

135 

REDOSLIJED OPTIMALNOG RAZDVAJANJA 
U TRO-KOMPONENTNIM SUSTAVIMA 

A.M. Tsirlin1, V. Kazakov2 i T.S. Romanova1
 

1
Institut Programiranih Sustava Ruske Akademije Znanosti 

 Pereslav-Zaleskij, Rusija 
2
Fakultet financija i ekonomije – Tehnološko sveučilište 

 Sidney, Australija 

SAŽETAK 

U članku se određuje optimalni slijed razdvajanja za trokomponentnu smjesu u dvostupanjskom procesu. Dva su 

rješenja dobivena. Prvo rješenje minimizira korištenu energiju, pri stalnom toku ulazne smjese, putem 

izdvajanja optimalnog slijeda razdvajanja i optimalnim dijeljenjem kontaktne plohe između prvog i drugog 

stupnja. Pokazano je kako je ulazni tok toplinom upravljanog dvostupanjskog procesa razdvajanja omeđena 

iznosom (najveće moguće brzine toplinom upravljanog razdvajanja) koji ovisi o slijedu razdvajanja. Izvedeni su 

izrazi za navedenu ovisnost. 
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