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SUMMARY 

The better the model, the more features of the problem it explains. However, showing that the 
model has similarities to that of a phenomena is often less significant in applications due to lack 
of data. Forecasting, as special application of modelling, is neither an exception: besides 
statistical data one should use several types of subjective assumptions about the present and the 
future state of the model. In case of complex models, this fact is extremely important, because 
these models use often unobservable, hidden or – regarding its future evolution – uncertain 
variables. We developed a simple mathematical approach how these uncertainties can be 
managed in the model. We shall also show how these uncertainties can influence the behaviour 
of modelled variables, and how an approximate for time horizon of forecasts can be calculated. 
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INTRODUCTION 
It must have been an early discovery that understanding social phenomena needs 
complex modeling approach. Modeling difficulties, especially in the case of formal 
modeling, however, seemed to be much harder to surmount as explaining the results 
of the partial, noncomplex models. E.g. in economics, utility functions are an easy 
and capable tool for explaining several types of economic behavior, but formal model 
builders using this tool had never even been aimed to explain why and how these 
utility functions were chosen. Of course, all of them know very well, that the tool 
they use is the contact point to many other social behavior and phenomena. But, 
believing in traditional scientific separation of disciplines, these contact points are 
regarded as curtains indicating the border, the things behind which they simply do not 
want to care. Complex model approach concentrates on the targeted phenomena, uses 
interdisciplinary components if necessary. But as complex model approach covers a 
wider range of processes, it also demands a wider range of data, which is often 
inaccessible. Sometimes inaccessible data is only because of the fact that statistical 
offices supply only traditional models with aggregate macro data that is not detailed 
in the demanded complex way. Further research and experiments may access this 
data. But these research and experiments can also be very expensive or probably 
unfeasible: the data remains inaccessible, fitting the model needs further assumptions. 

UNCERTAINTY 
In the following, we shall show on a very simple example how uncertainty can be 
managed within a very simple model. Let us consider a certain social quantity x that 
can be observed continuously. We are certain about the growth rate of this quantity α, 
that should be considered to be constant even on the long run. The evolution of this 
quantity is given by 
 x(t) = x0eαt. (1) 
where x0 denotes the initial value of the variable x(t) at time 0. We are aware that 
most social processes are observed with more complex dynamics and structure, but 
here in this simple example we chose also a simple dynamics. In fact, here parameter 
α plays only a symbolic role, that shows the models self-deterministicity, as 1/α 
denotes how strong the model depends on its own parameters: e.g. if α is negative, 
that large α values mean short-time memory of the process. 

Regarding the small increments of x we write the previous form of the evolution of 
the process as: 
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We assume, that all type of uncertainties are due to an additive term to this 
expression: 
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where f(t) denotes some type of "disturbing" processes, that are not managed by the 
model. Of course as f(t) is an external variable, we do not know much about its 
behaviour, and we can have basically two types of assumptions. In the practice of 
data-analysis some probabilistic behavior is often assumed for uncertainty. The 



P. Alács 

90 

simplest example for this type is the white noise, which means in words that the 
uncertain variable f(t) is independent from the process x, but also from its previous 
values (uncorrelated), and the "size" of the uncertainty (variance of f(t)) does not 
change in time. Note that, as above in case of parameter α, the choice of white noise 
is also an illustration of the stochastic variables that may appear in the model. 
Another way to manage uncertainty in the model is to choose f(t) from a set of 
functions without any probabilistic assumptions. In this case (3) must be solved for 
all element of this set, and the future value, in case this type of uncertainty is the only 
one present, is the set of future value of all possible evolution of the process. The 
simplest example for this type of uncertainty is to assume f(t) to be small: |f(t)| <  ε 
for all t. Note that modeling using interval dynamics e.g. multifunctions is not 
unknown for economists (Debreu became a Nobel-prize for his research in this field [3]). 
Now, we solve for all "small" (measurable) functions (3). The uncertainty under these 
assumptions can be measured by the diameter of the interval of the future value of x: 
 EDet.(x(t)) = )(||)(||

minmax tfftff
xx

εε <<
− , (4) 

where xf denotes the solution of (3) for the measurable function f. 

Fortunately, we have an analytical solution of (3) for all (measurable) functions: 

 xf(t) = x(t) = ∫ −
t

st ssf
0

)( d)(eα , (5) 

In particular, if f contains stochastic and a deterministic part (a white noise and a 
"small" function), the solution can be written in the following form: 
 x(t) = ∫∫ −− ⋅+⋅ )()( e)(de)(d stst sfssW αασ , (6) 

where dW denotes the white noise, σ is the measure of the stochastic uncertainty and f 
is a "small" function. We see, that in our special simple case, the two types of 
uncertainties (the stochastic and the deterministic one, i.e. the first and the second 
part of the solution in (6) can be calculated independently. Note that this is now a 
very favorable case to consider, because in general even if analytical solutions are 
supplied, it is not ensured that the evolution of the system (e.g. in case of chaotic 
dynamics) will result contiguous sets for the deterministic disturbance. 

The interpretation of equation (6) can be approached from either the stochastic or the 
deterministic side. On the one hand, let us fix the deterministic disturbance function f. 
Now we get a stochastic process, and the future values of variable x are stochastic 
variables that can be managed by the usual probabilistic methods. If another possible 
disturbance function is chosen, we get another stochastic process. It is clear that one 
possible way to interpret the solution is a set of stochastic processes, and according to 
this the interpretation of the future variable x is a set of random variables. On the 
other hand, let us realize the white noise, and calculate all the results of the 
deterministic disturbance function f. This yields a set function where for each t the 
future value of x is a contiguous set (interval). If another realization is taken, we get 
another set function and intervals for the future value. In this sense the future value of 
x is a "random interval variable", which gives intervals as a result when realized. 

Let us analyse the solution (6) by calculating for any given time t the measures of 
uncertainty for the two terms. The measure of uncertainty of the first, stochastic term 
is the variance: 
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The measure of the "deterministic uncertainty" is the measure (i.e. length) of the 
interval, which can be calculated 
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where µL denotes the Lebesgue-measure and Fε the set of real functions that maps to [–ε, ε]. 

Comparing the measures of the two different type of uncertainty we see, that for small 
time-scales (t << 1/α), the stochastic one behaves as the square root function, while the 
deterministic one is linear. For large time-scales (t >> 1/α) however both expressions 
behave as eαt. This means that for small time-scales always the stochastic type of 
uncertainty is dominant. For large time scales the two type of uncertainty follows the 
same law, however, it depends on the parameters which is the larger, Figs 1 and 2. 

 
Figure 1. The two types of uncertainty follow the same rule on the long-run (illustration). 

Figure 2. The two types of uncertainty on short-run. Parameter α is a) negative, b) positive. 

Of course, the most important question is, what is the interpretation of a future variable 
with mixed types of uncertainty. 

Nowadays it is usually accepted to have stochastic uncertainty in a model. It is also 
accepted, that different future scenarios are worked out to manage easier the future 
complex behavior of the system. It is however not clear how to interpret future scenarios 
with stochastic variables (see table 1). Now we are facing a similar problem in our model. 

a) b) 
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Table 1. The impact of different types of uncertainty. 

Type of uncertainty None Stochastic 

none deterministic value Statistics 

deterministic scenario ? 

If we have small stochastic uncertainty than we can use an interpretation similar to the 
scenarios. If we have small deterministic (external) impact, we can use stochastic models 
(even on long run, as proven above). The problem arises when the two type of 
uncertainty have about the same impact. Our opinion is, that it is impossible to put a 
question about the future variable in this case. The main problem with this kind of mixed 
uncertainty is that the stochastic noise is large enough to make the "deterministic noise" 
(intervals) overlap, but not large enough to disperse them disjunctly. Therefore both 
approaches to interpret the future value fail. In fact, this is not the case, in which we do 
not know anything about the system. But it is the case, in which the two types of 
uncertainty together results in a much higher level of uncertainty compared to the 
accepted level. As we see in our simple model, stochastic uncertainty is always dominant 
for short time-scales. It depends on the parameters of the model, whether or not the 
deterministic uncertainty takes over for long time-scales. If so, then there exists a point 
where the usual probabilistic methods fail due deterministic perturbance. We define this 
point as the point where the measures of the two types of uncertainty are the same. 
According to the above, we regard this point as a goodness of the forecast: the larger this 
value is, the more stability our model has, against not modeled (e.g. external) 
perturbance. We call this point time horizon of the forecast, which is not to be regarded 
as a cutting point of our forecast to throw anything away behind this point, but as a 
characteristic value for our model, where increasing the value the model improvement 
should keep an eye on. Time horizon approximations are recently developed on complex 
models of demographic processes [1, 2]. 

Now, we calculate the time horizon of our simple model. Firstly we determine the 
condition of the existence of the time horizon. As mentioned previously, the deterministic 
noise can be small enough to be smaller for the whole evolution of the model. In this case 
there is only one solution of the equation 
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namely t = 0. So, the condition is 
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If the deterministic noise (i.e. ε) is small, stochastic models are appropriate also for the 
long time-scales. If this condition does not hold, the time horizon should be considered, 
so the (only) positive solution of (7) should be calculated: 
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Thus, how far we can predict with our simple model depends on how strong the 
deterministic noise is present in the model (compared to the stochastic noise), ε/σ and on 
how strong the model is determined through its inner dynamics, α. 
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Figure 3. Regions for different time horizons (D1, …,D5), and the stochastic stable 
region (Stoch.). 

In figure 3 we can see several regions of the model parameters defined by the 
different time horizons (not that in the figure not α but 1/α is plotted for a better 
overview). It is clear that in case of strong internal dynamics of the model, the 
deterministic noise has little impact on the process, but for each finite α a certain 
threshold can be given above which the influence is significant and time horizon 
should be considered. The regions of D1, …, D5 are separated by the 
iso-time-horizon lines for time horizons of 0,125, 0,25, 0,5 and 1. It is interesting to 
see, that the real "model risk" for forecast is the parameter α, the strength of internal 
determination of the model. Two similar models with little difference in internal 
determination can have larger difference in time horizons than two similar models 
with little difference in deterministic noise. If the parameter 1/α is negative, it is also 
to be interpreted as the memory of the system. If the system has large memory 
stochastic stability can be disrupted by small deterministic noise. In case of large 
memory, the time horizon is mainly the function of the deterministic noise. The real 
model risk in this case is similar as above: at a certain memory, a little change in 
deterministic noise can have large impact on the time horizon. In words, we would 
express this property as above this threshold the model would be depend stronger on 
other non-modeled (e.g. external) processes rather that its own dynamics. 

CONCLUSIONS 
The time horizon is defined for forecasting models of social phenomena as a test of the 
dependency of non-modeled or external processes. As almost all social phenomena is 
embedded strongly in a complex background, non-modeled processes should be quite 
often considered. Often these processes are not included in the model, because it is hard 
or impossible to obtain information about them. Stochastic models are used quite often 
especially in economics. These models proved to be unstable if other non-modeled 
processes (e.g. politics) can have large influence on the process. The question whether 
the impact of these processes from the complex background should be considered as 
large or small depends also on the internal dynamics of the system. Systems with small 
memory or characteristic internal dynamics are less sensitive to these effects. 
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SLOŽENOST I NESIGURNOST U 
PREDVIĐANJU SLOŽENIH SUSTAVA 
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 Centar za proučavanje budućnosti, Sveučilište za ekonomske znanosti i javnu upravu 
 Budimpešta, Madžarska  

SAŽETAK 
Što je bolji model, više svojstava objašnjava. Međutim, dokazivanje sličnosti modela i pojava obično 
je manje važnosti zbog nedostatka podataka. Predviđanje, kao posebna primjena modeliranja, pritom 
nije izuzetak: osim statističkih podataka potrebno je primijeniti nekoliko vrsta subjektivnih 
pretpostavki o sadašnjem i budućem stanju modela. U slučaju složenih sustava ova je činjenica 
posebno značajna, jer njihovi modeli upotrebljavaju obično nemjerljive, skrivene, ili – obzirom na 
njihovu buduću evoluciju – nesigurne varijable. Postavljen je jednostavni matematički pristup 
baratanju s nesigurnostima u modelu. Dodatno je pokazano kako nesigurnosti mogu utjecati na 
ponašanje modeliranih varijabli i kako se određuje približni iznos horizonta vremena predviđanja. 
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složeni sustavi, proučavanje budućnosti, predviđanje, modeliranje, horizont vremena 
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