OPEN ACCESS
PUBLISHER

INTEC

Performance and Analysis of Blood
Flow Through Carotid Artery

Regular Paper

Anil Kumar Gupta'”

1 Department of Applied Mathematics, Greater Noida Institute of Technology, UP India

* Corresponding author E-mail: dranilkumar73@rediffmail.com

Received 08 Jul 2011; Accepted 09 Sep 2011

Abstract The present paper a finite element
implementation of a model of the arterial blood flow
through the carotid artery with the effects of magnetic to
considering fluid-wall interactions are investigated. The
Navier-Stokes equations are used as the governing
equations for the blood flow while an elastic compliant
model is used for the arterial wall. The reduced one
dimensional model solves the momentum and continuity
equations in compliant tubes so as to reproduce the
propagation of the pressure pulse in the arterial model.
The obtained results adequately reproduce the general
flow patterns reported in the literature. The results
obtained in the investigation are in reasonably good
agreement with experimental findings existing in the
literature. The effects of a magnetic field have been used
to control the flow, which may be useful in certain

hypertension cases, etc.

Keywords Blood flow, elastic compliant model, finite
element method, Hartmann
number.
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1. Introduction

One of the leading causes of deaths in the world is due to
heart related diseases. The heart diseases mainly occur
due to temporary deficiency of oxygen or blood supply to
the heart. This deficiency may be due to a constriction or
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obstruction in the blood supply to that part; the
constriction involves the deposition of some fatty
substances like cholesterol, cellular waste product,
calcium, etc. Boesiger st al. [6] used magnetic resonance
imaging (MRI) to study arterial homodynamics. This
stenosis disturbs the flow of blood from its normal state
which leads to the development of atherosclerosis. The
atherosclerosis may cause the heart attack. Hemodynamic
simulation studies have been frequently used to gain a
better understanding of functional, diagnostic and
therapeutic aspects of blood flow. These simulations
employed compartmental representations or branching
tube models of arterial trees as their geometrical substrate
[1],[24][26], as well as localized multidimensional models
have been often implemented to study arterial flow in
more fine, detailed aspects. The study of the flow in the
carotid artery bifurcation is of great clinical interest with
respect to both, the genesis and the diagnostics of
atherosclerotic diseases. It is well-known that the flow
separation zone of the carotid sinus has the propensity to
develop atherosclerotic plaques. In this sense, the local
haemodynamic structure is intimately related to
atherogenesis onset and progress [2]. Consequently, a
more deep understanding and better descriptions of the
flow structure in that region would be of greatest
importance to the early detection of stenoses. Low shear
stress regions are associated with the development of
stenotics plaques. Despite the importance of chemical and
physiological factors, the localized atherosclerotic lesions
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must be related to the local flow conditions as the other
factor may be considered in a well mixed condition, i.e.,
uniformly distributed along the vessels. Several local
three-dimensional (3D) in-vitro and computational flow
models have been implemented, revealing the complex
flow structure in the sinus district. Bharadvaj et.
al.[28][29], defined a standard geometry of the carotid
bifurcation (an average over 57 actual geometries from
different subjects) and conducted stationary studies of the
internal carotid blood flow. They found a region of low
velocities near the non-dividing wall that extend with
increasing Reynolds
opposite region showed large axial velocities and shear
stresses, results that were confirmed by Rindt et. al[4],
using experimental and computational stationary models.
Ku and Giddens[5][7] observed a similar process in 3D
models during the accelerating period of the diastole and
the existence of velocities disturbances during the
decelerating phase and at the onset of the diastole. Some
similar experiments have been conducted in compliant
models [14],[3]. To conduct focused numerical and in
vitro realistic experiments of such a district as the carotid
bifurcation, special attention must be paid to the
boundary conditions applied to the model. As the
pressure differences between inlet and outlet boundaries
are only a small percentage of the systolic-diastolic pulse
amplitude, this impose the problem of accurately
determine the pressure, a condition that is often
impossible to reach in practice. In this way, small errors
in the imposed pressure could lead to great departure of
the velocities from the real values. Conversely, if the flow
is imposed as boundary conditions, negligible variations
on these values could conduct to exaggerated low o high
pressures in the analyzed segment. Accurate enough

number, correspondingly, the

measures of those variables are very difficult or very
costly to obtain simultaneously at the inflow and outflow
regions for the entire cardiac period, even more in a
noninvasive manner. This in turn, leads to implement
models of the whole arterial tree in order to avoid
artificial boundaries in the vicinity of the analyzed zone
To conduct focused numerical and in vitro realistic
experiments of such a district as the carotid bifurcation,
special attention must be paid to the boundary conditions
applied to the model. As the pressure differences between
inlet and outlet boundaries are only a small percentage of
the systolic-diastolic pulse amplitude, this impose the
problem of accurately determine the pressure, a condition
that is often impossible to reach in practice. In this way,
small errors in the imposed pressure could lead to great
departure of the velocities from the real values.
Conversely, if the flow is imposed as boundary
conditions, negligible variations on these values could
conduct to exaggerated low o high pressures in the
analyzed segment. Accurate enough measures of those
variables are very difficult or very costly to obtain
simultaneously at the inflow and outflow regions for the
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entire cardiac period, even more in a noninvasive
manner. This in turn, leads to implement models of the
whole arterial tree in order to avoid artificial boundaries
in the vicinity of the analyzed zone. Recently, the
coupling and integration of models with different
dimensionality have been analyzed by Quarteroni et
al.[16][21] linking together lumped models with 3D
models of the arterial tree. The authors of the present
work has proposed an alternative approach to coupling
models of non-matching dimensionality and used them
to implement a model of stenoses in the common carotid
[12]. Here we implement a 3D finite element model of the
carotid bifurcation on a standard geometry as proposed
in [28][29] coupled with a 1D model of the rest of the
arterial tree. Sharma et al. [13] made a mathematical
analysis of blood flow through arteries using finite
element Galerkin approaches. Sharma et al. [17] studied a
MHD flow in stenosed artery using finite difference
technique. A multiphase kinetic theory for the computation
of viscosity of red blood cells and their migration from
vessel walls has been discussed by Huang et al. [19]. In the
above mentioned studies, no attempt has been made to
study the effect of magnetic field on stenosis under porous
medium together Gupta [18]. Kumar and Saket [20]
investigated reliability of convective diffusion process in
stenosis blood vessels. Nikparto and Firoozabadi [23 ]
studied numerical study on effects of Newtonian and
Non-newtonian blood flow on local hemodynamics in a
multi-layer carotid artery Bifurcation.

2. Mathematical Model
2.1 Governing equations

In the present investigation we assume a complete model
of the arterial tree have been developed with a three-
dimensional model of the carotid bifurcation embedded
in a reduced one dimensional Navier-Stokes equations
considering compliant arterial walls for the rest of the
arterial tree. The governing equations for the one
dimensional portion of the model result in the following
set of nonlinear hyperbolic equations
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where A is the artery cross sectional area, u the axial

velocity (# ) the corresponding mean value); x the axial
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coordinate, P the mean pressure, O the blood density,

2 . .
A Ax :O,TO the viscous shear stress acting on the

arterial wall with fr a Darcy friction factor (in this work a
fully  developed parabolic profile  is
considered).A closure equation is implemented relating
the pressure to the cross sectional area:

velocity

h, [4
P=P+E=2{|= -1 4
ot R{ § “)

0

A linear relationship between P and R is considered,
being R de radius, E an effective Young modulus, & the

thickness of the arterial wall and the subscript “o
denotes quantities evaluated at the reference pressure Po.

The former system of partial differential equations is
discretized using a Galerkin’s Least-Squares method for
the normal equations of the hyperbolic system [12].

The local three dimensional fluid dynamics has described
using the three dimensional time-dependent Navier-
Stokes equations for incompressible Newtonian fluids
where an Alternating Linear Euler
implemented in order to take into account deformability

method was

of the domain as the arterial walls were considered as
compliant tubes:

paa—?+p(u—v).Vu—yV2u+VP+M:f 5)

divu =0
AAx =0 (6)

where u is the fluid velocity, v is the moving reference
frame velocity consistent with the

Alternating Linear Euler formulation, p is the pressure;
o Ax is the displacement vector of the moving domain
from its reference configuration, ® 0 and [/ stand for the

constant fluid density and the dynamic viscosity,
respectively.

Ax=06n; u :ﬁn on
dt
Mzén;uzﬁn (7)
dt

where On is the displacement of the arterial wall in the
normal direction of the surface (n is the unit normal to the
surface). The first of Eq.(7) is analogous to that of the one
dimensional model given in Eq. (4). Another group of
equations must be considered to appropriately set the
coupling between the one dimensional and the three

www.intechweb.org
www.intechopen.com

dimensional models at the interface surfaces. The
continuity of mass, momentum and tractions must be
imposed. For the Reynolds numbers prevailing at the
carotid artery, continuity on tractions may be replaced by
continuity on pressure. Consequently, continuity of blood
flow 1is enforced at the interfaces between one
dimensional and three dimensional zones jointly with
weak continuity of pressures as described [12].

2.2 Numerical Method

For the numerical solution of the three dimensional flow
problem the finite element method was applied: the
approximation makes use of P1-P1 bubble tetrahedral
elements with linear enriched interpolation functions for
the velocity vector field and linear pressure[15]

z

b

Figure 1. Three Dimensional Carotid Bifurcation of Geometry Model

The equations are solved using the finite element SUPG
(Standard Upwind-Petrov Galearkin) method with
implicit Euler backward differences for the time
derivatives and Picard iteration for the non-linear
convection terms. The solution of the time-dependent
three dimensional Navier-Stokes equations is performed
in two sub-steps: in the first one, the bubble degrees of
freedom are eliminated by direct substitution, and in the
second one, those unknowns are updated as necessary for
the evaluation of the second member of the set of
equations at the following time step. The deformation of
the domain is accounted through a Laplace equation for
the displacement of the mesh —again, tetrahedral linear
elements are used- where the boundary displacements at
the arterial wall are given by the first of Eq.(7). Flow
velocity patterns were calculated for an anatomically
inspired carotid artery bifurcation model [27][28] as
shown in Figure 1, the three dimensional mesh exposed
in Figure 2 has 14159 nodes and 71732 tetrahedral
elements.
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Figure 2. Three Dimensional of Finite Element Method mesh —
Tetrahedral elements

The one-dimensional model was described in Urquiza[12]
discretized with a mesh displaying 686 nodes with three
degrees of freedom (A, P, Q) per node and 642 elements.
The inlet boundary condition describing the heart input
flow was obtained from 1?2l and has a period T=0.8sec. The
model is complemented with lumped “Windkessel”
representations of the peripheral beds. The geometry and
other parameters involved are shown in Figure 3.

Length |Proximal |Distal |[Exh

Name (cm)  |radius radius|(dinas/cm)
(cm) |(em)

1 Ascending aorta A [1.0 1.46 1.46 741500
2 Ascending aorta B|3.0 1.45 1.45 (741500
3 Aortic arch A 2.0 1.12 1.12 (741500
4 Aortic arch B 3.9 1.07 1.07 |576200
5 Thoracic aorta A |5.2 1.0 1.0 545640
6 ThoracicaortaB [10.4 0.675 0.675 |394000
7 Abdominal aorta |5.3 0.61 0.61 370500
A
8 Abdominal aorta |2.0 0.6 0.6 348000
B&C
9 Abdominal aorta |10.6 0.58 0.58 352400
D
10 Abdominal 1.0 0.52 0.52 |252500
aorta E
11,31 Common 5.8 0.37 0.37 |368150
iliac
12,32 External iliac |14.4 0.32 0.32 |148700
13,33 Femoral 443 0.26 0.26  |230900
14,34 Posterior 33.1 0.25 0.25 |667500
tibial
15 Innominate 34 0.62 0.62 |377000
16,17 Subclavian A 3.4 0.423 0.423 |288700
18,19 Subclavian B [42.2 0.403 0.403 |1170000
20,21 Ulnar A 6.7 0.215 0.215 |679100
22,23 Ulnar B 17.1 0.203 0.203 |717664
24,25 Carotid 20.8 0.37 0.37 |264000
26,27 External 17.7 0.177 0.177 |259000
carotid
28,35 Anterior 34.3 0.13 0.13 |513145
tibial
29,30 Radial 23.5 0.174 0.174 (682580

Name R1 (dinas.) [R2 (Seg/ |C (ml.cm?/
cm?/ml) |dinas)
1 Coronary 10.00E3 41.00E3 |.7900E-5
2 Intercostals 2.78E3 11.12E3 |.1638E-4
3 Gastric, Hepatic & |2.54E3 10.17E3  |.2967E-3
Esplenic
4 Renal (two) 1.26E3 5.04E3 .1235E-3
5 Superior 1.92E3 7.68E3 .1726E-3
mesenteric
6 Inferior mesenteric |16.62E3 66.46E3 |.7400E-4
7 Internal iliac 17.04E3 68.17E3 |.6750E-4
8 Deep femoral 11.60E3 46.39E3 |.5030E-5
9 Anterior tibial 56.15E3 224.61E3 |.4170E-5
10 Posterior tibial 9.54E3 38.16E3 |.3900E-5
11 Vertebral 16.65E3 66.60E3 |.9880E-4
12 Interosseous 211.74E3  |846.96E3 |.3107E-6
13 Ulnar 10.56E3 42.24E3 |.3520E-5
14 Radial 10.56E3 42.24E3 |.3520E-5
15 Carotid 6.31E3 25.55E3 |.1330E

Table 1. Windkessel terminals

The whole model was computationally implemented in a
numerical framework[11] that allows to easily integrate
different kinds of elements as “plug and play” without
modifying the main program, i.e., the programmer only
must to provide the elemental matrices and to organize the
input in such a way that all run together. The systems of
algebraic equations are solved by Gauss —Siedal mehod.
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Table 2. Geometrical and Rheological values of Arterial Segments.
3 Results

Here we present some illustrative plots at selected times.
In general, the flow has a very complex and unsteady
structure showing an early back flow due to the inversion
of the pressure gradient at the peak of the systole (Figure
4). A considerable deformation of the artery volume can
be observed in Figure 3 where volume differences during
diastole (red shaded) and systole (black wire frame) are
displayed.

Figure 3. Volume difference between systole and diastole.
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As can be seen in Figure 5 a zone of low velocities near
the non-divider wall of the carotid sin sinus is observed
and contrariwise, a high velocity region is displayed near
the divider wall. These results are in well agreement with
those obtained experimentally and numerically in
references [8][28][29][14]. Detailed inspection of the
computational results displays the general characteristics
occurring in the carotid sinus, a period with reverse axial
flow starts at the peak systole and remains until the
beginning of diastole.

187095
186920

Figure 5. Normal Stress during systole at t = 5.0E-2 sec. -Inverse
pressure gradient

Figure 5. Velocity profile during systole

4. Conclusions

A mathematical model that face the problem of
simulating compliant three dimensional arterial districts
coupled with a one dimensional model of the rest of the
arterial tree has investigated. The resulting scheme has
shown excellent capabilities to deal with considerable
domain deformations while preserving the computational
efficiency. The numerical results of the blood flow field
for the carotid artery with magnetic effect are in general
good agreement with those reported previously in the
literature for both experimental and numerical cases. Our
investigation may be helpful for the medical practitioners
and Bio-mathematicians to understand the flow of blood
in the presence of magnetic effects. The results are
interpreted in the context of blood in the carotid arteries
keeping the magnetic effects in view. The outcomes of
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investigation done may be useful for the treatment of
hypertension patients through magnetic therapy.
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