Equidistant Surfaces in $\mathbb{H}^2 \times \mathbb{R}$ Space

ABSTRACT

After having investigated the equidistant surfaces (“perpendicular bisectors” of two points) in $S^2 \times \mathbb{R}$ space (see [6]) we consider the analogous problem in $\mathbb{H}^2 \times \mathbb{R}$ space from among the eight Thurston geometries. In [10] the third author has determined the geodesic curves, geodesic balls of $\mathbb{H}^2 \times \mathbb{R}$ space and has computed their volume, has defined the notion of the geodesic ball packing and its density. Moreover, he has developed a procedure to determine the density of the geodesic ball packing for generalized Coxeter space groups of $\mathbb{H}^2 \times \mathbb{R}$ and he has applied this algorithm to them.

In this paper we introduce the notion of the equidistant surface to two points in $\mathbb{H}^2 \times \mathbb{R}$ geometry, determine its property and we shall visualize it in some cases. The pictures have been made by the Wolfram Mathematica software.

Key words: non-Euclidean geometries, geodesic curve, geodesic sphere, equidistant surface in $\mathbb{H}^2 \times \mathbb{R}$ geometry

MSC 2010: 53A35, 51M10, 51M20, 52C17, 52C22

1 Basic notions of $\mathbb{H}^2 \times \mathbb{R}$ geometry

The $\mathbb{H}^2 \times \mathbb{R}$ geometry is one one of the eight simply connected 3-dimensional maximal homogeneous Riemannian geometries. This Seifert fibre space is derived by the direct product of the hyperbolic plane \mathbb{H}^2 and the real line \mathbb{R}. The points are described by (P, p) where $P \in \mathbb{H}^2$ and $p \in \mathbb{R}$.

In [2] E. Molnár has shown, that the homogeneous 3-spaces have a unified interpretation in the projective space $\mathbb{P}^3(V^4, V_4, \mathbb{R})$. In our work we shall use this projective model of $\mathbb{H}^2 \times \mathbb{R}$ and the Cartesian homogeneous coordinate simplex $E_0(e_0)|E_1^+(e_1)|E_2^+(e_2)|E_3^+(e_3)$, $\{e_i\} \subset V^4$ with the unit point $E(e = e_0 + e_1 + e_2 + e_3)$ which is distinguished by an origin E_0 and by the ideal points of coordinate axes, respectively. Moreover, $y = cx$ with $0 < c \in \mathbb{R}$ (or $c \in \mathbb{R} \setminus \{0\}$) defines a point $(x) = (y)$ of the projective 3-space \mathbb{P}^3 (or that of the projective space \mathbb{P}^3 where opposite rays (x) and $(-x)$ are identified). The dual system $\{e_i\} \subset V_4$ describes the simplex planes, especially the plane at infinity $(e_0) = E_1^+|E_2^+|E_3^+$, and generally, $v = u_2^1$ defines a plane $(u) = (v)$ of \mathbb{P}^3 (or that of \mathbb{P}^3, respectively). Thus $0 = xu = yv$ defines the incidence of point $(x) = (y)$ and plane $(u) = (v)$, as $(x)||y(y)$ also denotes it. Thus $\mathbb{H}^2 \times \mathbb{R}$ can be visualized in the affine 3-space \mathbb{A}^3 (so in E^3) as well.

The point set of $\mathbb{H}^2 \times \mathbb{R}$ in the projective space \mathbb{P}^3, are the following open cone solid (see Fig. 1-2):

$$\mathbb{H}^2 \times \mathbb{R} := \{X(x = x' e_i) \in \mathbb{P}^3 : -(x^1)^2 + (x^2)^2 + (x^3)^2 < 0 < x^0, x^1\}.$$
\[
\begin{align*}
\text{(ds)}^2 &= \frac{1}{-x^2 + y^2 + z^2} \left((x^2 + y^2 + z^2) (dx)^2 + 2dxdy(-2xy) + 2dxdz(-2xz) + (x^2 + y^2 - z^2) (dy)^2 + 2dydz(2yz)(x^2 - y^2 + z^2) (dz)^2 \right), \\
&= (dt)^2 + (dr)^2 + \sinh^2 r (d\alpha)^2, \\
g_{ij} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sinh^2 r \end{pmatrix},
\end{align*}
\]

By the usual method of the differential geometry we have obtained the equation system of the geodesic curves [5]:

\[
\begin{align*}
x(\tau) &= e^{\tau \sin \nu} \cosh (\tau \cos \nu), \\
y(\tau) &= e^{\tau \sin \nu} \sinh (\tau \cos \nu) \cos u, \\
z(\tau) &= e^{\tau \sin \nu} \sinh (\tau \cos \nu) \sin u, \\
-\pi < u \leq \pi, &\quad -\pi / 2 \leq v \leq \pi / 2.
\end{align*}
\]

Remark 1.1 The starting point of our geodesics can be chosen at \((1,1,0,0)\) by the homogeneity of \(H^2 \times \mathbb{R}\).

Definition 1.2 The distance \(d(P_1, P_2)\) between the points \(P_1\) and \(P_2\) is defined by the arc length \(s = \tau\) in (5) of the geodesic curve from \(P_1\) to \(P_2\).

Definition 1.3 The geodesic sphere of radius \(\rho\) (denoted by \(S_{\rho}(p)\)) with center at the point \(P_1\) is defined as the set of all points \(P_2\) in the space with the condition \(d(P_1, P_2) = \rho\). We also require that the geodesic sphere is a simply connected surface without selfintersection in \(H^2 \times \mathbb{R}\) space (see Fig. 3).

1.1 Equidistant surfaces in \(H^2 \times \mathbb{R}\) geometry

One of our further goals is to visualize and examine the Dirichlet-Voronoi cells of \(H^2 \times \mathbb{R}\) where the faces of the DV-cells are equidistant surfaces. The definition below comes naturally.

Definition 1.4 The equidistant surface \(S_{P_1, P_2}\) of two arbitrary points \(P_1, P_2 \in H^2 \times \mathbb{R}\) consists of all points \(P' \in H^2 \times \mathbb{R}\), for which \(d(P_1, P') = d(P', P_2)\). Moreover, we require that this surface is a simply connected piece without selfintersection in \(H^2 \times \mathbb{R}\) space.

It can be assumed by the homogeneity of \(H^2 \times \mathbb{R}\) that the starting point of a given geodesic curve segment is \(P_1(1,1,0,0)\). The other endpoint will be given by its homogeneous coordinates \(P_2(1,a,b,c)\). We consider the geodesic curve segment \(\gamma_{P_1P_2}\) and determine its parameters \((\tau, u, v)\) expressed by \(a,b,c\). We obtain by equation system (5) the following identity:

\[
\sqrt{a^2 - b^2 - c^2} = e^{\tau \sin \nu}
\]
If we substitute this into (5), the equation system can be solved for \(\tau, u, v \).

\[
\tau = \frac{\log \sqrt{a^2 - b^2 - c^2}}{\sin \nu}, \quad \text{if } \nu \neq 0.
\]

\[
v = \arctan \left(\frac{\log \sqrt{a^2 - b^2 - c^2}}{\arccosh \left(\frac{u}{\sqrt{a^2 - b^2 - c^2}} \right)} \right),
\]

if \(P_2(a, b, c) \) does not lie on the axis \(|x| \) i.e. \((b, c) \neq (0, 0) \).

\[
\tan u = \frac{z(\tau)}{y(\tau)} = \frac{c}{b} \Rightarrow u = \arctan \left(\frac{c}{b} \right).
\]

Remark 1.5 If \(P_2 \in |x| \), then \(v = \frac{u}{\tau} \) and \(u = 0 \), and the geodesic curve is an Euclidean line segment between \(P_1 \) and \(P_2 \). If \(v = 0 \), then \(\tau = \arccosh a \) and the two points are on the same hyperboloid surface. These special cases will be discussed in section 3 in terms of the equidistant surfaces belonging to them.

It is clear that \(X \in S_{P_1} \) if \(d(P_1, X) = d(X, P_2) \Rightarrow d(P_1, X) = d(X^\mathcal{F}, P_2^\mathcal{F}) \), where \(\mathcal{F} \) is a composition of isometries which maps \(X \) onto \((1, 1, 0, 0)\), and then by (7) the length of the geodesic (e.g. the distance between the two points) is comparable to \(d(P_1, X) \). This method leads to the implicit equation of the equidistant surface of two proper points \(P_1(1, a, b, c) \) and \(P_2(1, d, e, f) \) in \(\mathbb{H}^2 \times \mathbb{R} \):

\[
S_{P_1}(x, y, z) \Rightarrow 4\text{arccosh}^2 \left(\frac{ax - by - cz}{\sqrt{a^2 - b^2 - c^2} \sqrt{x^2 - y^2 - z^2}} \right) + \log^2 \left(\frac{x^2 - b^2 - c^2}{x^2 - y^2 - z^2} \right) = 4\text{arccosh}^2 \left(\frac{dx - ey - fz}{\sqrt{d^2 - e^2 - f^2} \sqrt{x^2 - y^2 - z^2}} \right) + \log^2 \left(\frac{d^2 - e^2 - f^2}{x^2 - y^2 - z^2} \right).
\]

1.2 Some observations

We introduce the next denotations to simplify the equation (10): \(a = \overline{OP_1}, b = \overline{OP_2} \) and \(x = \overline{OX} \). We define the scalar product for all vectors \(u(u_1, u_2, u_3) \) and \(v(v_1, v_2, v_3) \) by the following equation:

\[
(u, v) = -u_1v_1 + u_2v_2 + u_3v_3,
\]

moreover, we introduce the denotation \(|v| = \sqrt{(v, v)} \) similarly to the \(S^2 \times \mathbb{R} \) space (see [6]).

With these denotations, the equation of the surface becomes shorter and gives important informations about equidistant surfaces:

\[
\text{arccosh}^2 \left(\frac{\langle a, x \rangle}{|a||x|} \right) + \log^2 \left(\frac{|a|}{|x|} \right) = \text{arccosh}^2 \left(\frac{\langle x, b \rangle}{|x||b|} \right) + \log^2 \left(\frac{|b|}{|x|} \right).
\]
The last step is to notice that \(\arccosh \left(\frac{-\langle a, x \rangle}{||a|| \cdot ||x||} \right) \) is the hyperbolic distance between points \(a \) and \(x \) in the projective model of the hyperbolic plane. So let \(\varepsilon = d_h(a, x) \) and \(\delta = d_h(x, b) \). The final form of the equation is the following:

\[
\varepsilon^2 + \log^2 \left(\frac{||a||}{||x||} - 1 \right) = \delta^2 + \log^2 \left(\frac{||b||}{||x||} - 1 \right)
\]

Remark 1.6 This formula also describes the equidistant surface of \(S^2 \times \mathbb{R} \) with the usual Euclidean scalar product, vector length and angle formula (see [6]).

It is now easy to examine some special cases: when \(|a| = |b| \), the equidistant surface consists of those points of an Euclidean plane in our model, which are inner points of the cone (e.g. proper point of \(H^2 \times \mathbb{R} \)). Another special case appears when \(a \) and \(b \) are on the same fibre. In this case (\(\delta = \varepsilon \)) the equidistant surface is the “positive side” of a hyperboloid of two sheets.

Our projective method gives us a way of investigation the \(H^2 \times \mathbb{R} \) space, which suits to study and solve similar problems (see [10]). In this paper we have examined only some problems, but analogous questions in \(H^2 \times \mathbb{R} \) geometry or, in general, in other homogeneous Thurston geometries are timely (see [11], [8], [9]).

References

János Pallagi

e-mail: jpallagi@math.bme.hu

Benedek Schultz

e-mail: schultz.benedek@gmail.com

Jenő Szirmai

e-mail: szirmai@math.bme.hu

Budapest University of Technology and Economics, Institute of Mathematics, Department of Geometry H-1521 Budapest, Hungary

Acknowledgement: We thank Prof. Emil Molnár for helpful comments to this paper.

6