Apsorpcija intaktnog proteina u riba; određivanje i fiziološko značenje

E. McLean, R. Ash E. Teskeredžić, Z. Teskeredžić

Sažetak

Apsorpcija intaktnog proteina u provabnom traktu riba zanimljiv je fiziološki fenomen. Nažalost, detaljni mehanizam (mehanizmi), njezina odvijanja, ni nakon nika eksperimenta, nije u potpunosti razjašnjen.

U ovom radu prikazane su različite hipoteze vezane uz resorpciju proteina, kao i načini njezina odvijanja.

Istraživanja su pokazala da se nakon unosa hrvenova (hoserađish) enzima kroz usta ili čmar u krvotok utvrdi dvostruko veća kolirina, pri unosu kroz čmar negoli pri unosu kroz usta. Mnogi su autori utvrdili propusnost crijeva sluznice za makromolekule upotrebom proteinorskog trasera. Jednako tako postignuti su rezultati koji pokazuju da ribe koje nemaju želuca (šaran, karas), za razliku od riba sa želucom (postrva, losos) pokazuju veći potencijal za resorpciju kroz ustane enešenih intaktnih proteina u krvotok.

Hranidbena hipoteza pokazuje da je unutarstanična probava pinociteta proteina normalnome kapacitetu probave riba. Jednako tako, kroz razdoblje povećanog gladovanja, aktivnost crijevne proteaze može biti nedostatna prema kompletnoj hidrolizi probavljenih hrana.

Utvrđeno je da postoji crijevni sekretioni imunološki sustav, te da je moguće pasivni prijenos imunitet. Moguće je da mukofagne larve proizvedu pasivni imunitet konjestom roditeljskih protutijela.

Iziskivost fenomena apsorpcije intaktnog proteina u provabnom traktu riba bit će iscrpno obrađena u uđućem članku.

UVOD

Probavni trakt vertebrata nepropusno je za makromolekule zbog fizičkih, kemijskih i imunoloških komponenta probave koje tvore tzv. mukoznu barijeru (sl. 1). Sekrecija sluzi, mikrovilusna stijenka i perilističke kontrakturama probavnog trakta predstavljaju fizičku opstrukciju za makromolekule, dok kemijska barijera apsorpcije makromolekula proizlazi iz želučane i gusteračne sekrecije. Imunološka barijera nastaje zbog izlučivanja imunoglobulina koji inhibira apsorpciju makromolekule obavijajući je i čini se mnogo pogodnijom za enzimsku degradaciju.
Pokus izvedeni kod riba (kalifornijske pasatre) u nošenjem HRP-a (herbaridih peroxidase - henerator biho vog enzima), perilorno ili kroz rektum, pokazali su da se u kvotoku nalazi dvostruko više proteina pri rektalnom unasanju nego pri perilornom. Ovaj fenomen je vjerojatno nastao zbog davanja HRP-a u srednji dio crijeva. Istraživanja su također pokazala da proteazi inhibitori (McLean i Ash, 1990) i antacid (Solar et al., 1990) zaštićuju uzete proteine i peptide od želužane i gušteračne sekrecije. Imunološka komponenta probavnoga trakta riba može također djelovati na smanjenje apsorpcije intaktih proteinskih čestica. Unutar mukoznoga sloja probavnog trakta protutijela, kao sekretorna forma imunoglobulina - tip M (sigM), smanjuju prijenos makromolekula iz crijevnog lumena u kvotok. Misli se da je produkcija sigM smještena u stanicama sa svim bazu epitelijalne površine. Kao što je već poznato, antigeni su materijali probavljeni, a limfolastični ili inaktivacijski probavnoga trakta stimulirani su na sekreciji sigM. Pretpostavlja se da protutijela (sigM) - antigen kompleks uzrokuje mnogo značajnije djelovanje proteolitičkih enzima. Razna dosadašnja istraživanja upozorila su na postojanje imunološkog sustava sekrecije unutar probavnoga trakta koštanjača (Lob, 1988; Rombout et al., 1989).

Histoloske i histokemijeske analize probavnoga trakta u ribi pokazale su da u njih srednji i stražnji dio probavnoga trakta sudjeluje u apsorpciji intaktoga

Sl. 11. Sumarni diagram mukozone barijere i način apsorpcije proteina u probavnom traktu riba

(McLean & Donaldson 1990)
MEHANIZAM APSORPCIJE

Naillac-Depeyre i Gas (1973) dokazali su histokemijskom metodom peroralni prolaz unesenog proteininskog trasera (horseradish peroxidase; HRP) u izvanstanični prostor i osnovnu membranu probavnog trakta šarana Cyprinus carpio. To isto potvrdilo je više dosadašnjih istraživanja, primjerom oralnog davanja proteininskog trasera te je on utvrđen u krivožilnom (McLean i Ash, 1986, 1987a, 1989) i u limfatičnome sustavu riba (Georgopoulou i sur., 1988). Izravno je usporedba objavljenih podataka otežana zbog različitih količina unesenog proteina, razlika u vrstama i dobi eksperimentalnih riba, kao i s obzirom na njihovo kondicijsko i zdravstveno stanje. Iz dosadašnjih rezultata proizlazi da vrste riba bez želuca, kao što su šaran i zlatni karas Carassius auratus, pokazuju mnogo veći potencijal za resorpciju peroralno unesenih intaktnih proteina od vrste koje imaju želuca, kao što su kalifornijska pastrva Oncorhynchus mykiss (prije Saima gairdneri, Smith i Stearly, 1989, Gali i Groot, 1990), chanook salmon O. tshawytscha, i čoh salmon O. kisutch. Takve razlike mogu se odraditi na različitu provabilnost kod tih riba, a također pružaju važnost i želučane barijere koja ograničava iskorištavanje makromolekula u daljnoj resorpciji crijevnog epitela.

S obzirom na podatke iz literature postoji mala sumnja da probavni trakt riba može adsorbirati neke proteine.

Tablica 1. Neke vrste riba koštajuca kod kojih je utvrđena propusnost crijevne sluznice za makromolekule upotrebljavam hipernjad

<table>
<thead>
<tr>
<th>VRISTE</th>
<th>AUTORI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprinus carpio — šaran</td>
<td>Naillac-Depeyre i Gas (1973)</td>
</tr>
<tr>
<td>Tinca tinca — linjak</td>
<td>Naillac-Depeyre i Gas (1976)</td>
</tr>
<tr>
<td>Perca fluviatilis — greč</td>
<td>Naillac-Depeyre i Gas (1979)</td>
</tr>
<tr>
<td>Oncorhynchus masou — masou losos</td>
<td>Watanable (1981)</td>
</tr>
<tr>
<td>Tilapia nilotica — nilapija</td>
<td>Watanable (1981)</td>
</tr>
<tr>
<td>Catla catla — samo</td>
<td>Watanable (1981)</td>
</tr>
<tr>
<td>Carassius auratus — zlatni karas</td>
<td>Watanable (1981)</td>
</tr>
<tr>
<td>Hypomesus olidus</td>
<td>Strobland i Kroon (1981)</td>
</tr>
<tr>
<td>Claris latera — afrikani sam</td>
<td>Nagai i Fujino (1983)</td>
</tr>
<tr>
<td>Oncorhynchus mykiss — kalifornijska pastrva</td>
<td>Nagai i Fujino (1984)</td>
</tr>
<tr>
<td>Amurinus nebulosus — somič</td>
<td>Naillac-Depeyre i Gas (1983)</td>
</tr>
<tr>
<td>Plecoglossus olivellosis</td>
<td>Naillac-Depeyre i Gas (1983)</td>
</tr>
</tbody>
</table>
hidrolizirane proteine. Može se međutim postaviti pitanje što je fiziološka značajnost (ako je ima) apsorpcija intimnog proteina na ribu.

Ukratko, hipoteze prikazane u objašnjavanju fenomena apsorpcije intimnog proteina mogu biti svrstane u jednu od dviju kategorija: hranidbenu ili imunološku.

a) Hranidbena

b) Imunološka

Prema navedenim hipotezama, crjevna je propusnost makromolekula u rabi vrlo značajna. Širina je takve površine prikazana u tabl. 1. Postavljaju se mnoga pitanja o tome prirodnim fenomenu, kao i o njezinoj iskorištenosti iz oralnoj unesenju biološki aktivnom materijalu u uzgajane ribe. Problemi vezani uz primjenu toga prirodnog fenomena u akvakulturi bit će iscrpljeno obrađeni u udućem članku.
S U M M A R Y

INTACT PROTEIN ABSORPTION BY THE FISH GUT I. MECHANISM OF UPTAKE AND POTENTIAL PHYSIOLOGICAL SIGNIFICANCE

Interest in the ability of the fish gut to absorb intact proteins has, in recent years, gained increased attention. However, uncertainty still exists regarding the precise mechanisms of protein absorption, and the physiological importance of this process to the well-being of the animal.

In this paper, we briefly review the potential mechanisms by which intact proteins may gain access to the fish bloodstream. Quantitative aspects of protein absorption, and the restrictive nature of the gastric and pancreatic barriers to uptake are considered, with reference to the use of the protein tracers, horseradish peroxidase (HRP). Studies with gastric (carp) and gastric (trout, salmon) teleosts, demonstrate that the lack of a peptic phase of digestion increases the amount of HRP which may be detected in the circulation, following oral delivery. Furthermore, rectal administration of HRP to gastric species appears to increase the amount of the protein tracer which is absorbed. Also, agastic fish appear to exhibit a higher potential for intact protein absorption than gastric animals.

Proposals concerning the potential physiological significance of this phenomenon are also considered. Nutrition-related hypotheses suggest that intact protein absorption may represent an extension to the normal digestive capacity of the fish gut. Thus, an ability to absorb protein macromolecules may be an important compensatory mechanism, following periods of prolonged starvation (when activity of luminal proteases may be compromised), or during periods of food abundance, where intestinal transit rates may be decreased.

Alternatively, the phenomenon may be of importance in the ability of fish to respond to antigen challenge. Or, it may play a role in the passive transfer of immunity to certain species of mucus-producing fish larvae, wherein parental antibodies are co-injected during feeding. The potential application of this phenomenon to the aquaculture industry will be examined in a future presentation.

L I T E R A T U R A

Primljena 8. 10. 1990.