Validation of a laboratory and hospital information system in a medical laboratory accredited according to ISO 15189

Vanja Radisic Biljak1*, Ivan Ozvald1, Andrea Radeljak1, Kresimir Majdenic2, Branka Lasic3, Zoran Siftar1, Marijana Vucic Lovrencic1, Zlata Flegar-Mestric1

1Merkur University Hospital, Institute of Clinical Chemistry and Laboratory Medicine, Zagreb, Croatia
2Labnet software engineering, Josipovac, Croatia
3Grad d.o.o. computer engineering, Pula, Croatia

*Corresponding author: Vanja.Radisic.Biljak@idb.hr

Abstract

Introduction: The aim of the study was to present a protocol for laboratory information system (LIS) and hospital information system (HIS) validation at the Institute of Clinical Chemistry and Laboratory Medicine of the Merkur University Hospital, Zagreb, Croatia.

Materials and methods: Validity of data traceability was checked by entering all test requests for virtual patient into HIS/LIS and printing corresponding barcoded labels that provided laboratory analyzers with the information on requested tests. The original printouts of the test results from laboratory analyzer(s) were compared with the data obtained from LIS and entered into the provided template. Transfer of data from LIS to HIS was examined by requesting all tests in HIS and creating real data in a finding generated in LIS. Data obtained from LIS and HIS were entered into a corresponding template. The main outcome measure was the accuracy of transfer obtained from laboratory analyzers and results transferred from LIS and HIS expressed as percentage (%).

Results: The accuracy of data transfer from laboratory analyzers to LIS was 99.5% and of that from LIS to HIS 100%.

Conclusion: We presented our established validation protocol for laboratory information system and demonstrated that a system meets its intended purpose.

Key words: accreditation; medical informatics; data transfer; laboratory information system; hospital information system; validation

Received: July 23, 2011 Accepted: November 13, 2011

Introduction

Medical laboratories are the key partners in patient safety. Laboratory results influence 70% of medical diagnoses (1). The quality of laboratory service is the major factor that directly affects the quality of health care (2). Accreditation according to an internationally recognized standard such as ISO 15189 „Medical laboratories – Particular requirements for quality and competence” is a recognition of a laboratory’s competence and compliance with the requirements of the standard (3). It is acknowledged as the single most effective route to comprehensive quality assurance (4).

Improving quality of the work process is one of the main goals of accredited laboratories, and development of a laboratory information system is a precondition for quality improvement in this phase of laboratory process (5,6). The Institute of Clinical Chemistry and Laboratory Medicine of the Merkur University Hospital, Zagreb, Croatia, has successfully installed the Laboratory Information System (LIS) (7,8), and the Department of Laboratory Medicine, a part of the Institute, is additionally integrated into the Hospital Information System (HIS). The ISO 15189 standard requires that the computer
software be addressed in the same way as the instru-
ments (9). One of the newest accreditation re-
quirements includes recommendations for the
protection of LIS – Annex B. Amongst numerous
demands, the laboratory management must en-
sure maximum security of data entry and reports
(B5,) (10). To respond to the particular requirement
of the accreditation standard for medical laborato-
ries, the accuracy of the entire process of data
transfer between laboratory equipment and labo-
ratory (LIS) and hospital information (HIS) systems
needs to be validated and appropriately docu-
mented.

The aim of this study was to establish a protocol
for retrospective validation of laboratory and hos-
pital information systems in the Institute of Clinical
Chemistry and Laboratory Medicine in response to
ISO 15189 requirements, as described in Annex B,
section B5.

Considering the fact that only four out of more
than 200 medical-biochemistry laboratories in
Croatia have been accredited to ISO 15189 in the
field of medical biochemistry (11) and that, to the
best of our knowledge, validation process in
Croatian medical laboratories has not been previ-
ously described, this paper could be of great as-
sistance to other laboratory management in meet-
ing accreditation requirements in the future.

Materials and methods

The Institute of Clinical Chemistry and Laboratory
Medicine comprises two departments, the Depart-
ment of Clinical Chemistry consisting of four units,
and the Department of Laboratory Medicine con-
sisting of three units. The Institute performs test-
ing in the areas of clinical chemistry, laboratory he-
matology and coagulation, cell immunology-and
immunophenotyping, and molecular diagnostics.
The accuracy of data transfer from laboratory
equipment to LIS was validated in the entire Insti-
tute of Clinical Chemistry and Laboratory Medi-
cine, both in the Department of Clinical Chemistry
and the Department of Laboratory Medicine. The
applications used were LIS – BioNet (Labnet soft-
ware engineering, Josipovac, Croatia) and HIS – BIS
(Grad d.o.o. computer engineering, Pula, Croatia).

The accuracy of data transfer from LIS to HIS was
validated in the Department of Laboratory Medi-
cine according to the reference documents (12-14).
The main outcome measure was transfer accuracy
expressed as percentage (%). Our acceptance cri-
iteria were a complete match between numeric
data obtained from laboratory analyzers and re-
sults transferred into LIS, and between data en-
tered into LIS and then into HIS. An additional ac-
ceptance criterion regarding data transfer from LIS
to HIS was a complete match of comments entered
by laboratory personnel.

Validation protocol was designed in cooperation
with vendors of applications used according to the
available literature (10,12-14) described in detail
below. Validation of data transfer into LIS and HIS
was carried out from 31.03.2009 till 13.05.2009 in
the Department of Clinical Chemistry and from 20.
12.2010 till 23.02.2011 in the Department of Lab-
oratory Medicine. All data were processed in Mi-
crosoft Excel provided templates.

1. Transfer of data from LIS to laboratory
equipment and back to LIS

Transfer of data from laboratory equipment into
LIS was checked separately at each department.
The analyzers used are presented in Table 1. The
whole process was performed by entering virtual
demographic data with all test requests into LIS
and printing corresponding barcoded labels that
provided laboratory analyzers with the informa-
tion on requested tests. A total of about 200 tests
at the Department of Clinical Chemistry and 180
tests at the Department of Laboratory Medicine in
the areas of clinical chemistry, laboratory hematol-
y and coagulation, cell immunology and immu-
nophenotyping, and molecular diagnostics were
included in the validation study. Results of the fol-
lowing tests were calculated: Hba1c (both percent-
age and SI units), HDL-3 cholesterol, LDL-cholester-
ol, VLDL-cholesterol, functional tests (albumin to
creatinine ratio, creatinine clearance), and quanti-
tative analysis of 24-h urine samples (albumin, to-
tal protein; electrolytes: potassium, sodium, chlo-
ride, calcium, inorganic phosphorous; urea, uric
acid; cortisole). Barcoded labels were printed in
duplicate for further purposes. Data from several
Table 1. List of analyzers included in validation.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Connected to LIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of clinical chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU400</td>
<td>Olympus Optimal Co. (Tokio, Japan)</td>
<td>YES</td>
</tr>
<tr>
<td>AU600</td>
<td>Olympus Optimal Co. (Tokio, Japan)</td>
<td>YES</td>
</tr>
<tr>
<td>Fractoscan Junior</td>
<td>Olympus Diagnostica (Hamburg, Germany)</td>
<td>YES</td>
</tr>
<tr>
<td>XS1000i</td>
<td>Sysmex Corporation (Kobe, Japan)</td>
<td>YES</td>
</tr>
<tr>
<td>XE-2100</td>
<td>Sysmex Corporation (Kobe, Japan)</td>
<td>YES</td>
</tr>
<tr>
<td>CA560</td>
<td>Sysmex Corporation (Kobe, Japan)</td>
<td>YES</td>
</tr>
<tr>
<td>CA1500</td>
<td>Sysmex Corporation (Kobe, Japan)</td>
<td>YES</td>
</tr>
<tr>
<td>AxSYM</td>
<td>Abbott Laboratories (Illinois, USA)</td>
<td>NO</td>
</tr>
<tr>
<td>CLINITEK 500</td>
<td>Bayer Corporation (Pittsburg, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>VIVA-E</td>
<td>Vital Scientific N.V. (Dieren, Netherlands)</td>
<td>YES</td>
</tr>
<tr>
<td>EPICS XL</td>
<td>Coulter (Miami, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>ELECSYS 2010</td>
<td>Hitachi High-Technologies Corporation(Tokio, Japan)</td>
<td>YES</td>
</tr>
<tr>
<td>STAT PROFILE pHox1</td>
<td>Nova Biomedical (Waltham, Massachusetts, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>STAT PROFILE PHox2</td>
<td>Nova Biomedical (Waltham, Massachusetts, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>STAT PROFILE CCX</td>
<td>Nova Biomedical (Waltham, Massachusetts, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>Department of laboratory medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU400</td>
<td>Olympus Optimal Co. (Tokio, Japan)</td>
<td>YES</td>
</tr>
<tr>
<td>AU600</td>
<td>Olympus Optimal Co. (Tokio, Japan)</td>
<td>YES</td>
</tr>
<tr>
<td>ADVIA 120</td>
<td>Siemens Healthcare Diagnostics Inc. (Tarrytown, New York, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>ADVIA 60</td>
<td>Siemens Healthcare Diagnostics Inc. (Tarrytown, New York, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>Advia Centaur XP</td>
<td>Siemens Healthcare Diagnostics Inc. (Tarrytown, New York, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>Rapidlab 348</td>
<td>Siemens Healthcare Diagnostics Inc. (Tarrytown, New York, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>Osmometer 3250</td>
<td>Advanced Instruments (Massachusetts, USA)</td>
<td>NO</td>
</tr>
<tr>
<td>CLINITEK 500</td>
<td>Siemens Healthcare Diagnostics Inc. (Tarrytown, New York, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>StatStrip</td>
<td>Nova Biomedical (Waltham, USA)</td>
<td>YES</td>
</tr>
<tr>
<td>ImageQuant TL</td>
<td>GE Healthcare Bio-Sciences AB (Uppsala, Sweden)</td>
<td>NO</td>
</tr>
<tr>
<td>Immulite</td>
<td>Diagnostics Products Corporation (Los Angeles, California, USA)</td>
<td>NO</td>
</tr>
<tr>
<td>Delfia 1234</td>
<td>LKB Wallac (Turku, Finland)</td>
<td>NO</td>
</tr>
<tr>
<td>STAT FAX 2100</td>
<td>Awarenes Technology Inc. (USA)</td>
<td>NO</td>
</tr>
<tr>
<td>BFT II</td>
<td>Siemens Healthcare Diagnostics Inc. (Tarrytown, New York, USA)</td>
<td>NO</td>
</tr>
<tr>
<td>Kmotto 20 (keyboard)</td>
<td>provided by LIS vendors</td>
<td>YES</td>
</tr>
</tbody>
</table>

LIS – laboratory information system

Virtual patients with different demographic data to cover a broad field of gender- and age-specific reference intervals were entered. Entries were made for virtual patients of both genders: 14 patients (aged 21-105 yrs) at the Department of Clinical Chemistry and 12 patients at the Department of Laboratory Medicine (aged 24-84 yrs). Labeled samples were placed on laboratory analyzers. All tests were performed from a pool of non-infective human samples. After the analysis, data obtained by transfer to LIS were verified and validated by authorised personnel (medical biochemist) and
Radisic Biljak V. et al. Validation of data transfer traceability

printed in the form of a laboratory report. The original printouts of the test results from laboratory analyzer(s) were compared with the LIS-derived report. All patient demographic data as well as their test results and comments from laboratory analyses were entered into the template provided by the information application vendor. Examples of the comments were as follows: “H” for high or result above the corresponding reference interval; “L” for low or result below the corresponding reference interval. Barcoded labels were also stuck on provided templates. The accuracy of all entered data, both demographics and test results, and their matches, was verified by signatures of the validator (medical biochemist) and the manager of the company which created and installed the application. The whole procedure was also performed for laboratory analyzers that were not connected to LIS with a remark that the data were manually imported into LIS. Calculated test results from LIS were also validated using only a calculator and formulas required to calculate the results. Both data from the thus verified results and those from the analyzer outside the LIS network were entered into similar templates and their accuracy confirmed by signatures of the validator (medical biochemist) and the vendor manager. The whole validation process was finalized by a thorough description of the application protocol, servers and specifications of users’ computers with installed laboratory information system.

2. Transfer of data from HIS to LIS and back to HIS

The transfer of data was examined in the Department of Laboratory Medicine, the only department integrated into HIS. HIS and LIS are connected by a Health Level 7 (HL7)-protocol. HL7 specifies the number of flexible standards, guidelines and methodologies by which various healthcare systems can communicate with each other. Such guidelines or data standards are a set of rules that allow information to be shared and processed in a uniform and consistent manner (15). Validation was performed by entering data on four virtual patients of various ages (10–54 yrs) and both genders into HIS, requesting all tests in HIS and creating real data in a finding generated in LIS. At this point there was no real sample testing because data transfer from analyzer to LIS had been previously validated. Considering that HIS environment enables screen view of the laboratory test data, a print screen from HIS with completed laboratory test results was made upon validating virtually created data in LIS. A hard copy of the laboratory report from LIS and a print screen from HIS were compared. Demographic data and test results obtained from both LIS and HIS, together with previously described comments, were entered into a corresponding template and the accuracy of their match verified by signatures of the validator (medical biochemist) and the software company manager. The entire validation process was finalized by a description of a HL7 protocol for connecting LIS and HIS.

Results

The validation process was performed in the entire Institute of Clinical Chemistry and Laboratory Medicine of the Merkur University Hospital. The personnel authorized to validate data obtained were medical biochemists employed at the Institute. All obtained data were validated by authorised medical biochemists without employing auto-validation. The entire validation documentation is archived at the Institute’s secretariat.

1. Transfer of data from LIS to laboratory equipment and back to LIS

There were some discrepancies observed during the process. As software of some of the analyzers cannot include all reference intervals used in every day routine work, results on such analyzers were not adequately labelled when being out of reference intervals. Such labels differed between analyzers (arrows, H or L, asterix), while in LIS they were marked as H or L (in the Department of Clinical Chemistry), aligned to the left if the result was below reference interval or to the right if the result was above reference interval (in the Department of Laboratory Medicine). All these remarks were entered into provided templates with additional explanation if necessary. Four analyzers in the Institute (two in each department) did not have
printers integrated or connected to the interface, for which an additional comment was added. Nevertheless, the described discrepancies were not among our acceptance criteria because they reflected instrumentation characteristics rather than data transfer accuracy. Discrepancies in numeric data transfer were found for two tests, in which printouts of analyzer-derived data analyzer had different number of decimal places from those of data transferred to LIS, the accuracy of data transfer thus being about 99.5%. However, a careful analysis of these two cases showed that LIS and the analyzer expressed results differently (as percentage or a whole number, respectively), for which an additional explanation was supplied in templates. Considering the fact that calculated test results from LIS also showed no discrepancies, it was concluded that complete match of data between laboratory analyzer and LIS was achieved.

2. Transfer of data from HIS to LIS and back to HIS
No discrepancies were observed in the transfer of data from LIS to HIS either in the numeric data transfer or in the written comment transfer. The accuracy of the transfer from LIS to HIS was 100%. All data with corresponding comments entered into provided templates were checked and verified by an authorised medical biochemist. There was no need for corrective actions. The whole documentation including completed templates with laboratory findings and original printouts from analyzers or print screens from HIS were sent to our LIS and HIS vendors. The owners of the company, after carefully examining the data, confirmed the accuracy of transferred data by signing each completed template.

Discussion
The Institute of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, Croatia, implemented accreditation standards in every day routine work. New accreditation requirements include Annex B with eight requirements in the B5. section regarding safety of data entry and reports. A protocol for validation was defined and the validation process performed at the Departments of Clinical Chemistry and Laboratory Medicine of the Institute of Clinical Chemistry and Laboratory Medicine. The most important problem we encountered was the difficulty in performing retrospective validation of a computer software, since this kind of validation has not been previously described in detail (16,17). There are some “what-to” but not “how-to” articles (18), and the requirements of the ISO 155189 standard are too general, leaving it to laboratories to establish a protocol and standards for the validation process and associated documentation (19). Although initial system validations were performed by vendors of commercial computer software, a documented system validation demonstrates to all concerned that the laboratory information system manages information well, with the expected accuracy and reliability, file integrity, auditability and management control (20,21). An important issue in the process is the massiveness of documentation acquired during the process, as almost 400 different tests were used. Supporting documentation such as screen prints or laboratory findings serve to document the success or failure of the test case. Some discrepancies observed in the process, already described in the previous section, were carefully examined by the authorised medical biochemist and software vendors, and were concluded not to interfere with daily workflow nor the accuracy of final laboratory finding. Although this procedure is very comprehensive and time-consuming, it is mandatory in achieving accreditation requirements as set in the Annex B of the ISO15189 Accreditation Standard.

Limitations to this study were that there among the eight sections in Annex B of the ISO 15189 Accreditation Standard our study focused only on B5. section that is related to safety of data entry and reports, whereas there are other features of LIS that require validation. In addition, data for young children reference intervals were not taken into account. However, this protocol for validation process, developed at the Institute of Clinical Chemistry and Laboratory Medicine, ensures traceability of data transferred within and between LIS and HIS, and ensures that the equipment and laboratory information systems used meets their intended purpose, minimizing some types of medical errors in laboratory diagnostics.
Acknowledgements
The authors are thankful to Mrs. Lovorka Perkovic for professional language editing.

References