
�AB STRA CT
Traditional techniques to identify a depositional body from core data are costly and sometimes diffi cult to extrapo-
late to uncored wells. The application of Kohonen’s Self Organized Map (SOM) approach may be useful for the in-
terpretation of a depositional rock body through well-log data. SOM is based on a clustering algorithm and this me-
thod can be used to discover spatial patterns occurring as clusters in unstructured data sets. An example of the 
application of SOM is presented whereby clusters through SOM can indicate the contours of well-known deposi-
tional patterns such as sub-environments.
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1. INTRODUCTION

The neural network approach is a well-known development 
tool, which became popular within the last couple of de-
cades. Supervised and unsupervised trainable networks are 
used in many different fi elds of geology, especially petro-
leum geology or facies analysis e.g. the unsupervised net-
work as a tool for lithofacies identifi cation (CHANG et al., 
2002), application of a supervised neural network for pre-
dicting permeability from porosity (ROGERS et al., 1995), 
using a supervised neural network tool in reservoir charac-
terization (AHMED et al., 1997). However, supervised net-
works are more frequently used, because the unsupervised 
learning networks can solve specifi c problems like cluster-
ing or, pattern recognitions problems as a way of defi ning 
spatial patterns. Application of a particular unsupervised 
neural network called Kohonen’s network (in other words 
Self Organized Map, abbreviated SOM) in the identifi cation 
spatial pattern of some delta-plain sub-environments is dem-
onstrated here. Kohonen’s neural network has been success-
fully applied to studies with different representation methods 
or as a tool to defi ne clusters e.g. a well log interpretation 
model for the determination of reservoir facies and fl uid con-
tents (AKINYOKUN et al., 2009), lithofacies identifi cation 
(CHANG et al., 2002), and classifi cation of biogenic sedi-
mentation (ULTSCH at al., 1995).

Traditional techniques to identify depositional environ-
ments from core data are diffi cult as they require a large da-
taset and/or are less precise than some results gained by us-
ing mathematical models for mapping. This study shows a 
neural network methodology which can handle simultane-
ously more point data and even join more attributes, or prop-
erty of data points. Therefore the SOM approach may be re-
garded as a possible method for pattern recognition by 
parallel analysis of multiple data sources. In this study we 
describe a method based mostly on data of electrofacies ob-
tained from e-logs. It is a possible tool for the characteriza-
tion of depositional environments comprising the rock body. 
Contrary to traditional geostatistical interpolation methods, 
neural networks as clustering schemes can provide many 
possibilities for modeling. Kohonen’s algorithm reveals 
these spatial patterns in the terms of clusters. From this as-
pect, SOM is quite similar to general clustering algorithms, 
although ULTSCH (1995) has shown that SOM can even 
recognize point-clusters in those situations where traditional 
cluster techniques fail to fi nd any reasonable groups. Here, 
spatial patterns are defi ned as spatial groups of points, where 
points are bounded by a polygon (e.g. contour of sand con-
tent). By using this defi nition, one can conclude, that pattern 
recognition can be drawn back to a clustering problem. The 
shape of the polygon, i.e. the contour geometry, refl ects the 
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2D or 3D geometry of the depositional facies identifi ed. This 
is the sedimentary environment according to PETTIJOHN 
and POTTER (1972).

In this study, the main emphasis is given to the follow-
ing issues: (1) Demonstration of how a known depositional 
geometry outlined by sand-content contours can be honored 
by using SOM analysis of points of three petrophysical grids. 
This analysis relies on good average porosity, net pore vol-
ume and hydraulic conductivity grids; (2) Description of an 
example of the application of this robust approach in re-rec-
ognizing the known distributary mouth bar shape in a par-
ticular Pannonian reservoir.

2. APPLIED METHOD

2.1. Self organized maps (SOM)

Kohonen’s neural network (or Self Organized Map (SOM)) 
means that the neurons are organized in a grid (Fig. 1) as a 
‘map’. However it is not a real map since it does not assign 
any spatial coordinates to the samples. So, self organizing 
gives a ‘map’ where the nearby locations represent inputs 
with similar properties.

SOM is a type of competitive and unsupervised network. 
The competitive and unsupervised learning algorithm im-
plies that the network has to have the ability to recognize the 
structure of a multidimensional basic data set, by the method 
of dimension reduction (KOHONEN, 1982, KOHONEN 
2001; HAYKIN, 1999; PATTERSON, 1996; FAUSETT, 
1994). This reduction is only a “queasy” one, since each neu-
ron is an n-dimensional weight-vector, where n is equal to 
the dimension of the input vectors (Fig. 1). The main goal 
of SOM is to represent data points with fewer representatives 
preserving the original topology (JOHANNSON, 2003).

Even the unsupervised learning character implies that 
only one data set is available for analysis. So the data struc-
ture is explored within the input set without using any refer-
ence dataset. In the case of the supervised neural network, 
the training processes depend on training examples and each 
example is a pair of an input objects. In contrast with the un-
supervised network, the learning processes are based on un-

labelled examples. The framework (Fig. 2) of Kohonen’s 
Neural Network also demonstrates this difference between 
the supervised and unsupervised neural networks. There are 
no real output layers, but neurons are arranged into a grid of 
dots. In other words, the grid is the output” layer. This is the 
so-called Kohonen’s layer. It contains m neurons; each neu-
ron includes one output cluster. Figure 1 shows that in this 
layer neurons give a two dimensional map (usually we can 
use one or two dimensional Kohonen’ layer), however the 
neurons saved and represent the original data dimension be-
cause each neuron is represented as an n dimensional vector, 
where n is the dimension of the input, training, vectors.

Weighted xi inputs are processed by all three neurons 
(Fig. 2). Each neuron computes its weighted input, but only 
the neuron with the largest excitation is the winner. These 
units are adjusted to cluster the training data using the acti-
vation values of winning neurons. In Kohonen’s layer the 
other units are reserved by this active element through the 
lateral connections during training shown in Fig. 2.

An advantage of the SOM network is that it attempts to 
learn the structure of the original data. It means that the train-
ing data set gives the contact between the original data points 
and identifi ed classes. If new data, unlike previous cases, is 
encountered, the network fails to recognize it which indicates 
novelty. Therefore, in the next learning step, the grid is updated 
based on the novelty. The updating process is quite similar to 
that of the K-means algorithm, where the arrangements of clus-
ter-centroids change in the regular low-dimensional grid. How-
ever, in case of SOM, changing the position of neurons in the 
data space infl uences the positions of its neighbors through the 
lateral connections within a predetermined distance.

Since SOM consists of neurons organized on a regular 
low-dimensional grid, these neurons control the classifi ca-
tion of data using a suitable distance. The input vectors are 
compared step by step with the reference vectors using a 
neighboring function and the grid is revised continuously 
using a winning neuron algorithm. During the comparison 

Figure 1: Kohonen’s layer with n-dimensional neurons. Figure 2: Network of three competing units.
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process, each sample input vector is randomly drawn from 
the input data set, and their similarities to the ‘codebook’ 
vectors are computed. This process is based on Euclidean 
distance that measures distance from the data sample to each 
neuron to obtain the winning neuron (LAMPINEN et al., 
2005).owever better selections use either Mahalanobis dis-
tance, (developed by MAHALANOBIS in 1936), or cosine 
distance as alternative measures. The latter is derived from 
correlations between variables in the property space.

Kohonen’s network learns iteratively and uses the mod-
ifi ed Hebb-rule as the winning neuron algorithm (LAMP-
INEN et al, 2005).

The modifi ed law is w(t+1)=w(t)+ρ(t)´(x–w(t)).Where 
x is the training case, w(t) is weight, and ρ(t) is the learning 
rate.

The application of neural networks is relatively simple. 
An artifi cial network studies the data structure, which means 
that it necessarily must have some preliminary empirical 
knowledge e.g. on appropriate size of network, rate of learn-
ing, number of learning steps. In this case, the size of the 
network corresponds to the number of neurons representing 
the clusters of which numbers must be given previously. This 
setting depends on preliminary expertise.

2.2.1. Pattern recognition as a clustering method
SOM is a type of clustering method. It differs from any tra-
ditional clustering method in its robustness. However it 
needs, like any ‘traditional k-mean algorithm’, to input the 
number of groups to be revealed.

SOM, (as any clustering method), provides an opportu-
nity for deriving solutions for geological problems which can 
be related to different clustering problems, such as pattern rec-
ognition (ULTSCH, 1995). For implementation, Kohonen’s 
network has been used as it is possible to recognize spatial 
patterns being defi ned as spatial groups of points bounded by 
a polygon. It has potential for applying pattern recognition to 
problems such as identifying the spatial pattern of a sub-en-
vironment on a delta plain, which is resoluble by applying the 
SOM method based on a clustering algorithm.

Shapes shall be construed as clusters of data points that 
are bounded by a polygon which implies that pattern recog-
nition is a clustering problem. However, this approach raises 
the question of the defi nition of patterns as statistical groups. 
Within a pattern, there are points with the same or similar 
properties. In practice, this means that all points in a sub-set 
represent a certain cluster which is bounded by polygons. A 
polygon represents the shape and refl ects the borders of sub-
environments, where the properties change between separate 
clusters. Figure 3 demonstrates an example for mapping clus-
ters using the original coordinates. SOM creates cm clusters 
(m is the number of clusters) based on the property values 
of data points without original spatial coordinates. After the 
clustering process we map the resulting clusters as patterns 
using the original coordinates. In this manner the different 
properties clusters are mapped and the pattern is visualized on 
the map. Thus after the clustering process, the resulting clus-
ters are patterns in a map using the original coordinates.

2.2.2. Recognisable patterns in the map
The mapping processes compose the closed patterns by the 
arrangement of the points in space through the original (xi,yi) 
coordinates. In this case it is necessary to give some condi-
tions and defi nitions for recognizing patterns for mathemat-
ical reasons.

(1) A Closed pattern means that there is at least one in-
ner point of the group.

(2) A point is an inner point if all of its neighboring 
points belong to the same cluster, i.e. there are at least four 
edge-neighbours to it.

(3) The border of a shape is defi ned by a point which has 
neighbours from another cluster. Of course a pattern might 
also have more neighbours.

(4) Within a shape we can also defi ne another shape if 
it has inner points. Otherwise we should disregard these 
points as a pattern. However in this case, the question is how 
many inner points are enough to defi ne a pattern. The answer 
depends on the grid dissolution. Since a 100 x 100 m grid 
size was applied over the study area, we can defi ne the inner 
pattern which has at least one inner point. (This considera-
tion gives 5 inner points in case of 50 x 50 m grid size and 
25 inner points in case of 25 x 25 m grid size and so on.)

(5) The ‘inner shape’, should be covered by border 
points of only one other cluster.

3. STUDY AREA

Data originated from the Szőreg-1 reservoir (Algyő Field) 
that was used as a test area for the application of pattern rec-
ognition of palaeoenvironments in a clastic reservoir using 
the Kohonen’s neural network. The Algyő Field is the larg-
est Hungarian hydrocarbon accumulation consisting of sev-
eral oil and gas bearing reservoirs (Fig. 4). The upper mem-

Figure 3: Arrangement points on the map. Where pi means data points 
within clusters (cm); and (xi ,yi) means the positions of data points with 
their original coordinates in the map.
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bers of these reservoirs developed in a Pannonian delta 
system as the consequences of complex lateral delta-shifting 
and prograding phases. They can be subdivided into delta 
slope and delta plain rock bodies. The sills of the individual 
reservoirs were formed during delta abandonment phases. 
Below this series, the lower reservoirs are regarded as tur-
bidity rock bodies of partly pro-delta fans and partly deep 
basin origin (RÉVÉSZ, 1982).

The Szőreg-1 oil reservoir, with a large gas cap is one of 
the largest rock bodies within the delta plain record (Fig. 4). 
Its average gross thickness is about 35 m, but locally it can 
be up to a maximum of 50 m thick. Earlier works by RÉVÉSZ 
(1982), GEIGER et al., (1998) and GEIGER (2005) have 
proved its delta plain origin with a signifi cant amount of fl u-
vial channel sedimentation. Figure 5 shows the original well 
density, the dataset is from 506 well on Szőreg-1 study 
area.

4. DATA PRE-PROCESSING AND ANALYSIS BY SOM

The network depends on the quality and quantity of training 
data, so data pre-processing is very important. This is as fol-
lows: 1) defi nition of the data type (discrete or constant), 
2) calculation of statistics: mean, standard deviation, and 3) se-
lection of outlier data. No 1 is critical because the outlier 
data reduces the effi ciency of the network.In the case of cat-
egory data, it is necessary to encode or scale the data. In this 
study we used continuous variable data.

It is imperative to set the initial values for the training 
rate and the neighborhood radius. The Kohonen-learning rate 
is altered linearly from the fi rst to the last training cycle. We 
specifi ed 0.3 for the start value and 0.02 for the end value. 
The neighborhood radius designates the adjacent area cen-
tered on the winning unit; in this case the size was 1 and 
specifi ed a 3X3 square. Normal randomization of weights 
was used for the training; the mean and variance are speci-
fi ed, and are used to draw the initial weight values.

The second important step is to defi ne the training, test 
and validation sets for training of SOM. The original data-

base comprises 7500 points (grid points). This dataset is de-
constructed into three sub-sets (training-, test- and validation 
set) using a random number generator to avoid bias. 60% of 
this database is used for building a neural network by SOM 
as a training set, 20% as a test, and 20% as a validation set.

Training set: this set is important to learn to fi t the pa-
rameters of the clusters (in this case clusters are the neurons 
that characterized the clusters). SOM is applied to fi nd the 
optimal weights to update the Kohonen’s layer and to posi-
tion the neurons of clusters.

Validation set: this set is applied to tune the parameters 
of a classifi er, and determine the stopping point of learning 
process.

Test set: this set lends itself to assess the performance 
of the trained clusters.

After pre-processing, the fi rst step only sampled distrib-
utary mouth bars developed in Szőreg-1 to analyze how the 
SOM method can recognize the pattern for this part. The pat-
tern of distributary mouth bars was given by sand contours 
that can refl ect the geometry (Figs. 6a,b). It was an impor-

Figure 4: Macro-sedimen-
tological model of the Pan-
nonian series of Algyő (af-
ter BÉRCZI, 1988).

Figure 5: Well density of the study area (Szőreg-1 reservoir).
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tant step since it can show how well the SOM-method re-
fl ects patterns jointly through three other variables. These 
variables were porosity, net pore volume and hydraulic con-
ductivity data (Figs. 7a,b). The input data set comprises 2200 
grid points (with 100X100 m dissolution), randomly divided 
into three (training, test and validation) subsets. The prede-
fi ned number of clusters was tuned into 3, 4 and higher. In 
the case of more than 4 clusters, the algorithm became too 
confused for interpretation. Even, after mapping these results 
it did not constitute disjunctive clusters. In the fi rst run, the 
minimum number of clusters is easier to tune in 3 because 
distributary mouth bars can be divided into three sub-envi-
ronments as channel, outer bar, and bar crest.

After the clustering, we mapped the patterns. In the maps 
these patterns are the separated clusters of the analyzed area 
(distributary mouth bars) and this patterns mean the blocks 
of similar properties.  Figure 8a,b represents the mapped re-
sult of the fi rst run of SOM. The pattern within this deposi-
tional environment can affect the spatial arrangement of res-
ervoir properties. Usually the sand contour used to refl ect 
the spatial patterns but in the case of the clustering method 
and after that the mapping of clusters, similar patterns are 

discernible like the maps of three original properties (Figs. 
7a,c) or map of sand contour (Fig. 6b). In this case the result-
maps can demonstrate that it is also possible to apply clus-
tering methods for outline the depositional geometry which 
are based on other three petrophysical parameters jointly.

Figure 6: a) Gross thickness map of the Szőreg-1 reservoir (entire area), 
b) Gross thickness map of the area of the distributary mouth bars in the 
Szőreg-1 reservoir.

Figure 7: a) Porosity map of distributary mouth bars in the Szőreg-1 reser-
voir, b) HFI map of distributary mouth bars in the Szőreg-1 reservoir, c) HK 
map of distributary mouth bars in the Szőreg-1 reservoir.

a)

b)

a)

b)

c)
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In the second run, we have involved each of the avail-
able 7500 grid points of the ‘basic’ grid system (with 
100X100 m resolution, derived from well 506, Fig. 5). In 
addition to recognizing the patterns again, the goal was also 
to identify the contours of the distributary bars. In this case, 
the number of clusters was tuned in 4 and 6, because we as-
sumed at least one, but possibly two additional groups com-
pared to the fi rst run.

Figures 9 a,b represents the mapped result of the second 
run of SOM. It expresses again, that the boundary of this 
depositional environment can also affect the spatial arrange-
ment of reservoir properties. However, if we compare the 
mapped clusters to the original contours of the distributary 
mouth bars, Figure 10 shows the similarities and differences.  
It can be seen that joint use of three variables in the SOM 
method produces a similar pattern within the distributary 
mouth bars as using one variable (i.e. sand content), but the 

contours of the shapes are different. So, the mapped results 
show the clusters which contain the points with similar prop-
erties in the present stage of diagenesis.

In both cases, the run time of the training algorithm de-
pends primarily on the size of the network and only second-
arily on the number of training steps.  The presented mapped 
results (Figs. 8,9) are composed by setting 1000 learning 
steps in the SOM process. For this setting, (above mentioned 
numbers of clusters and number of learning steps) the run of 
SOM gives similar values for the error rates. Table 1 shows 
the rate of errors for each set.

Figure 9: a) Mapped result for 4 clusters, where clusters contain points with 
similar properties in the present stage of diagenesis, b) Mapped result for 
6 clusters, where clusters contain points with similar properties in the 
present stage of diagenesis.

Figure 8: Mapped result for 3 clusters, where clusters contain points with 
similar properties in the present stage of diagenesis, b) Mapped result for 
4 clusters, where clusters contain points with similar properties in the 
present stage of diagenesis.

a)

b)

a)

b)

a)

b)
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Besides the error rates of sets, we can determine the 
goodness of clustering of SOM. Discriminant analysis can 
show how well the group a particular case belongs to can be 
predicted (see Table 2 a-d). Since the size of each cluster is 
not the same (the clusters contain different amounts of 
points), the priori probabilities (p) are not equal to 1/3 for 
each subset. The fi rst column of the spreadsheet indicates 
the percentage of cases that are correctly classifi ed in each 
cluster. Other columns show the number of misclassifi ca-
tions. According to discriminant analysis, the results of SOM 
are 95% adequate on average.

Figure 10: Mapped result for 6 clusters with the original geometry of dis-
tributary mouth bars by sand content, (where clusters contain points with 
similar properties in the present stage of diagenesis).

Table 1: Error rates of running sets in case of running a-b-c-d.

errors rate of sets case a) case b) case c) case d)

training set 0.02786 0.028644 0.01515 0.01515

test set 0.020765 0.028264 0.031158 0.031158

validation set 0.019769 0.028178 0.0319757 0.031957

Table 2a: Classifi cation Matrix (distributary mouth bars – 4 clusters)

C_i
ith cluster

Percent
Corrects

C_1
p=0.16789

C_2
p=0.39853

C_3
p=0.18582

C_4
p=0.24830

C_1 88.02589 544   56   0  18

C_2 99.38651   0 1458   9   0

C_3 84.31085   0  107 575   0

C_4 92.88840  42   23   0 849

Total 93.07253 586 1644 584 867

Table 2b: Classifi cation Matrix (distributary mouth bars – 3 clusters)

C_I
ith cluster

Percent
Correct

C_1
p=0.45314

C_2
p=0.31459

C_3
p=0.23227

C_1 98.32134 1640   28   0

C_2 96.80483   30 1121   7

C_3 96.49123    0   30 825

Total 97.41918 1670 1179 832

Table 2c: Classifi cation Matrix (entire dataset – 6 clusters)

C_i
ith cluster

Percent
Corrects

C_1
p=0.23560

C_2 
=0.14747

C_3
p=0.25400

C_4
p=0.13680

C_5
p=0.11200

C_6
p=0.11413

C_1 94.68025 1673    0   72    4  18   0

C_2 99.18626    0 1097    0    9   0   0

C_3 97.42782   43    0 1856    6   0   0

C_4 94.15205   34    0    0  966   0  26

C_5 88.33334   26    0    0   15 742  57

C_6 92.87383    0   18    0    0  43 795

Total 95.05334 1776 1115 1928 1000 803 878

Table 2d: Classifi cation Matrix (entire dataset – 4 clusters)

C_i
ith cluster

Percent Correct C_1
p=0.35520

C_2
p=0.15800

C_3
p=0.32853

C_4
p=0.15827

C_1 94.68025 1673    0   72    4

C_2 99.18626    0 1097    0    9

C_3 97.42782   43    0 1856    6

C_4 94.15205   34    0    0  966

Total 95.05334 1776 1115 1928 1000
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5. CONCLUSIONS

Usually Kohonen’s network is applied to solve classical pat-
tern recognition problems such as the recognition of a writing 
character or pictures. Frequently nonetheless, it can be applied 
to identifying a pattern as a classifi cation problem, since in the 
background of pattern recognition there are clustering prob-
lems. This paper demonstrated the approach of using an un-
supervised neural network to distinguish parts of the deposi-
tional sub-environment as clusters which contain points with 
similar properties in the present stage of diagenesis. Thus the 
SOM is an adequate tool to help identify genetic geological 
environments, sub-environments supplemented with the map-
ping process. The fi rst test using the SOM-method refl ected 
considerably well the patterns of the distributary mouth bars 
using three variables (Figs. 7 a,b). In the case of the second 
run of SOM, the mapped results cluster does not show exactly 
the same boundaries of the distributary mouth bars, but a sim-
ilar pattern within the area can be recognized.

This paper focused on joint handling of more property 
to characterize parts of the sub-environment; and then map-
ping these as arranged points in space using some defi ned 
rules for geometry.

In fact, the neural network answers do not differ signif-
icantly from the original geological model obtained. How-
ever, differences are visible, especially at the contour of dis-
tributary mouth bars. This raises the question of whether the 
differences show greater accuracy or greater uncertainty. 
Nevertheless the discriminant analyses show that the clusters 
are well-defi ned at least on average for 95 % of the time.
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